
Using MuPAD and JavaView to Visualize Mathematics on
the Internet

M. Majewski K. Polthier
Zayed University, UAE Zuse Institute Berlin (ZIB)
majewski@mupad.com polthier@zib.de

Abstract Mathematics education strongly benefits from the interactivity and advanced features
of the Internet. The presentation of mathematical concepts on the Internet may go far beyond
what we could demonstrate in traditional mathematics textbooks. In this paper we demonstrate,
in a number of examples, the additional insight into complex mathematical concepts that can be
gained from 3D interactive visualization embedded into web pages. Mathematical visualization
is improving our teaching environments and the communication between teachers and students.

We combine two mathematical software systems—MuPAD as a development platform and
JavaView for computation and online visualization of interactive mathematics experiments. We
discuss the practical aspects of online publications and show some technical details about how to
develop mathematical experiments on your own. The conference presentation will demonstrate
MuPAD and JavaView components in live-action.

1. Introduction
There is no doubt about the future role of the Internet in education. For many teaching and research
institutions Internet is the main vehicle for publishing and discussing scientific concepts, doing
experiments and cooperate with the global academic community. If we wish to be successful in
progressing with this concept, it is very important to develop the most efficient tools for the online
communication of scientific ideas, and high quality materials that can be used through the Internet.

Mathematics, with its abstract ideas and concepts, is one of the disciplines where visualization can
significantly simplify and intensify the learning process. Creating online models to visualize
mathematical concepts is certainly a challenging task. We must mention two major difficulties — first,
the translation of abstract mathematical ideas into computational descriptions and, second, the technical
difficulties of implementing such descriptions. Many educators are able to develop a computational
description of a mathematical idea. They must choose the objects to be represented and how they will
look on the computer screen, the type of animation and other features to be used. However, the
technical knowledge can be a significant barrier even for very experienced teachers. Usually they need
to be familiar with some programming languages or computer packages that can be used for developing
online models. They have to know how to publish their models and finally about software limitations
on the user side. The need for such technical knowledge often prevents many educators from
developing their own online materials.

Let us concentrate for a while on the nature of the Internet and see how this environment can influence
development and publishing of online visualizations. Everyone knows that Internet means millions of
individual computers, servers, cables and other hardware, connected in a huge network. The advantage
of such a network is that everybody can access anything that was left for him on one of the servers.
Usually we do not need any sophisticated and expensive software on our local computers to access and
use the online resources. Information on the Internet is distributed, which means that various pieces
related to the same topic can be located on different servers. This leads to an interesting opportunity of
developing online courses based on distributed resources.



One of the limitations of such environment is the variable connection speed of accessing information.
Some parts of the network are very fast and while others are too slow to transmit documents even with
simple images. Another feature of this environment is the diversity of the operating systems on the local
computers. End users currently use various versions of MS Windows, Linux clones, Mac OS and many
other operating systems. Finally, on their local computers, the end users may have very different
software, different Internet browsers and different fonts installed. Their machines can be very fast or
very slow.

All the mentioned features give us some hints how online applications should be designed. Taking care
of all these aspects is important for online visualization of mathematics as we will transmit large sets of
data, perform intensive online calculations and produce interactive images in real time. Here are some
aspects, which are essential for web-based applications:
1. The size of used files must be very small.
2. Complex applications should have a modular design. Additional parts are downloaded only when
required during an experiment.

3. Applications should run on a majority of end-user computers, web browsers and operating systems.
4. Applications should deliver the major and unique components but try to use as much as possible
resources of the client computer.

5. Applications should have enough power to deal not only with static pictures but also with complex
calculations and the manipulation of 2D, 3D images and animations.

A number of authors have analyzed selected tools for the use on the Internet to visualize mathematical
concepts (see for example [1],[3],[4]). From their observations it follows that applications written in the
Java programming language fulfill all the above mentioned constraints (see [3],[7]). Java applets can be
very modular and additional classes can be downloaded from the server only when needed. With Java,
we are able not only to manipulate graphics but also build complex computing engines. Finally, a Java
runtime system is often pre-installed, or can be installed directly from Sun web site
(www.java.com), for most computers and operating systems. Because of the principles of Java, the
same Java applet is able to run on many different operating systems and web browsers.

2. The conceptual model of JavaView
JavaView is a software for computation and visualization in mathematics. The software is written in the
Java programming language. The class libraries are well-documented and allow the development of
custom applications and experiments. JavaView is free and its class libraries can be download from
www.javaview.de.

An important feature of JavaView is the smooth integration as a 3d viewer for graphics and animations,
as well as a geometry processing engine, into popular Computer Algebra Systems (CAS) like Maple,
Mathematica, Matlab and MuPAD. For example, JavaView is an official Maple Powertool. Figure 1
shows a JavaView applet that uses a webMathematica server to compute a complex surface. The
JavaView clipping algorithm is used to explore the surface. Figure 2 shows JavaView applet displaying
Maple plot on the home page of the Maple Powertools.

In the simplest case, JavaView is used to display a graphic produced by the CAS. This provides the
CAS with a state of the art viewing environment that allows interactive scaling, translation, rotations in
2D, 3D, and 4D, picking vertices, configuring material colors, adding textures and transparency. More
advanced applications use JavaView to build interactive components and animations in web pages or
use the visualization capabilities of JavaView to explore complex graphics, for example by clipping
parts of the geometry. From inside Mathematica, full scripting of JavaView is possible, based on
Mathematica J/Link package. This works bidirectional, i.e. JavaView events are able to invoke
Mathematica computations, which then change the content shown by JavaView.



Fig 1. JavaView applet using webMathematica server Fig. 2. Maple plot in JavaView

Additionally, webMathematica provides the technology to query a Mathematica kernel from a Java
applet over the web. This enables web pages equipped with JavaView applets to access the whole
Mathematica computation capabilities. On the other hand, webMathematica users who want to build
web interfaces to their Mathematica solutions can use JavaView as a convenient tool to enrich their
web pages with high quality visualizations and interactive elements.

This is important to mention the particular relation between JavaView and MuPAD. Both, MuPAD and
JavaView, use XML format to describe its graphics. Many features of graphical objects implemented in
MuPAD are the same, or very similar to those implemented in JavaView. The scene, camera and light
concepts are the same in both programs. Therefore, geometries developed in MuPAD and saved to
JavaView format, with some exceptions, behave and look the same in JavaView like they were looking
in MuPAD.

2.1 JavaView – an overview
JavaView can be used in different context. For example, it can be used as a standalone application on a
local computer, or in the form of specialized applets embedded into web pages. Such applications allow
an interactive calculation, display and manipulation of 2D and 3D geometries. The code of JavaView is
highly optimized to reduce file size while still having very sophisticated functionality. Like with many
other Java applets, the web browser on the user side downloads only the necessary classes and model
files. Therefore, the download time can be much shorter than for other types of online applications.

When downloading a web page with an embedded JavaView applet, the user may even be not aware
that he is dealing with something different than a web page with static pictures. However, the image
produced by JavaView on the web page can be rotated, scaled, moved, animated, etc. Easily accessible
menus contain hundreds of operations allowing us to perform complex experiments with our models.
Figure 3 shows a very basic 3D model displayed by JavaView.



Fig. 3. A simple JavaView model embedded into a web page

A more complex JavaView model may contain additional menus, toolbars, panels or sliders. An
example of such model is shown in figure 4. Here the list-browser applet of JavaView allows the user to
select from a user-specified list of precomputed geometry models.

Fig. 4. The JavaView list-browser applet

In the following sections of this paper, we will show how users can create their own JavaView models
and add them to a web page.

2.2 JavaView Lite, JavaView full and applications
JavaView is delivered as a set of jar archives. Each archive contains a collection of Java classes in a
compressed form. The libraries are well documented, allowing the development of own applets and
applications based on the high-level classes and methods available in JavaView. The user guide



provides an introduction to programming in Java and the usage of the classes of JavaView. The
reference documentation provides detailed comments for all classes and methods. The documentation
was automatically generated from the JavaView source code with the javadoc utility.

The basic archive JavaView.jar contains packages for the 3D display, geometry classes, import and
export loaders, linear algebra classes, and some other sub packages. The optional archive jvx.jar
provides extended geometry classes, a number of powerful workshop classes, and additional loaders. A
second optional archive vgpapp.jar contains a set of JavaView applications and introductory tutorials
for programmers.

For the efficient inclusion of precomputed geometry in interactive images, respectively applets in
online documents, the JavaView distribution contains a special archive, namely, the jvLite.zip archive
which is drastically optimized for download. This tiny lite version is about 15% of the size of the
original archive JavaView.jar. jvLite.zip was automatically generated using the JAX tool of IBM by a
sophisticated analysis of the Java byte code and by removal of all interface classes from JavaView.

2.3 Programming library
The public interface of JavaView allows the use of the library for own Java applications and applets.
The spectrum of applications that can be created ranges from interactive educational applets for online
courses to computational services for research and industrial applications as well as mathematical
experiments that can easily be published on the web.

The JavaView library offers:
Data structures to represent geometries
Algorithms for geometric modeling
A numeric and a linear algebra package
A framework to build animations
Classes that handle picking and camera events

The framework to build own applications in JavaView is called a project. For programmers, projects
simplify the integration of modules with the JavaView environment by providing an easy access to
display windows, animation support and handling of display and camera listeners. A project is a
full-fledged application and similar to a Java applet. For example, a project often provides the setup of
a mathematical experiment including different Java classes, panels and dialogs, and HTML
descriptions. In comparison to Java applets, JavaView projects provide a more flexible functionality by
deriving from an own superclass of jv.project.PjProject. Whereas Java applets are solely designed to run
inside an HTML page. JavaView projects may be created in an applet but may as well be invoked by
another project. Since each project has a well-defined interface for its configuration, this allows to reuse
the same project in different applets, where each time the project is configured differently.

3. Producing and publishing JavaView models on the web
There are a number of methods for producing JavaView models. In this article we concentrate on the
most recent development—producing models with MuPAD and exporting them to JavaView. Although
some other possibilities are still discussed, we will concentrate only on using the native JavaView
format JVX. JVX files are text files following XML syntax. One can read them like any other text files
and edit them by hand. MuPAD graphics properly exported to JVX contains all necessary information.
Therefore, we can simplify our activities to produce graphics in MuPAD, exporting it to JVX and
adding to a web page. In some situations we may wish to modify the final JVX file in JavaView so it
will contain specific features.



It is important to note that JavaView models produced this way will be mostly limited to displaying,
customizing and animating 3D geometries and scenes. However, much sophisticated functionality of
such models can be obtained by using or writing specialized applets extending functionality of
JavaView.

3.1 Producing graphs and geometries in MuPAD
Let us start with a very simple example and show step by step how such example can be created in
MuPAD, saved as JVX files. The goal of this example is to produce a picture of a cone and show the
shape of the curve formed by the intersection of the cone with a plane.

We can start by declaring all necessary components in MuPAD. At this stage we do not bother about
colors, lines and other parameters of our objects. We just create a cone using spherical coordinates and
a plane using its functional description. In the final output we force constrained scaling and we remove
the coordinate system. Here is all necessary MuPAD code and the resulting picture.
Cone : plot::Spherical([u, v, 1], u -2*PI..2*PI, v 0..2*PI):
Plane : plot::Function3d(x 1, x -5..5, y -5..5):
plot(Cone, Plane, Scaling Constrained, Axes None)

Such an image can be enhanced using VCam, which is a MuPAD tool. We can improve the quality of
the surface, apply some additional corrections to it, change the transparency of the cone or the plane,
and so on.

Now, we are ready to export our image to JavaView. In VCam, in File menu we choose the Export
option and then from a long list of possible formats we choose JavaView Geometry (*.JVX). In
MuPAD version 3.1, we can also save current display setting file *.JVD.

Finally we attach both produced files to a web page using very simple HTML code:
applet archive jars/javaview.jar,jars/jvx.jar

width 400 height 350 code javaview.class
param NAME "model" VALUE "conical.jvx"
param NAME "displayFile" VALUE "conical.jvd"
param NAME "control" VALUE "Hide"
Loading parametric surface.

/applet

The final result on the web page may look like the one in the figure 5. We made it very simple so users
can concentrate only on the shape of the intersection, i.e. the conical curve. A number of other changes
and experiments can be done directly using applet menus (right click on the applet area). While



displaying this model on a web page we can rotate or translate any of these two objects separately. This
way students can observe how the shape of the conical section changes depending on the location of the
plane and its slope.

Fig. 5. Final JavaView model on the web page

3.2 Customizing models in JavaView
As we have said before, JavaView can be used also as modeling tool. By executing JavaView on a local
computer we get into a very sophisticated modelling environment where we can manipulate, modify our
models and save them in many different formats for future use.

Fig. 6. JavaView Effects menu

The JavaView application contains sophisticated algorithms for geometry processing and visualization.
Each algorithm has an individual dialog that provides control over the relevant parameters. The
algorithms can be selected from the menus Modeling and Effect. Among the included tools for
geometric modeling are:

Mesh simplification
Global and local subdivision schemes



Mesh optimization using several curvature-based criteria
Boolean operations on a set of curves and surfaces
Feature preserving surface smoothing
Cliping a geometry at an arbitrary level function
Stellate, punch, shrink or truncate the faces of the mesh
Visualize techniques for vector fields on surfaces
Various surface coloring techniques based on scalar fields such as curvature
Computation of topological properties such as Reeb Graph
Scalar field analyzer
... (many other)

Figure 7 demonstrates the JavaView subdivision functionality. The left image shows an initial, roughly
discretized surface. The user may choose an adequate subdivision method from a collection of ten
different schemes. The image in the middle shows the refined surface. Still the mesh of the initial
surface is available as a control grid to model the refined surface. The vertices of the control grid can be
interactively dragged with the mouse. The image on the right shows the resulting surface after some
modeling has been performed.

Fig. 7. Initial surface of genus 3 created with JavaView

4. Selected JavaView applications for school use
JavaView contains a number of specific and very interesting educational applications. Many of them
are published on the JavaView web site at www.JavaView.de in the section entitled Geometric
Surfaces. Here we can analyze a large group of predefined surfaces and change the parameters of their
graphs. The enclosed figure 8 shows JavaView application with a crossection of the Kuen surface so
one can see how it looks inside.

Another interesting application from a school point of view is an applet to display and experiment with
solids. In this applet we can experiment with a number of famous solids. We can display them in highly
attractive form where edges of applets are shown as tubes with a given number of sides and a given
radius.



Fig. 8. Crossection of the Kuen surface in JavaView

Fig. 9. JavaView applet to explore Platonic Solids

In a short paper, it is impossible to describe all the existing JavaView applications. In fact some of them
may disappear in the future or may be replaced by newer versions. There are many JavaView
applications that are not displayed on the JavaView web site but can be downloaded and explored on a
local computer. For example, the tutorials section (see jv-tutor.zip file) contains a number of interesting
examples which are very useful in the school practice. The figure below shows the L-system JavaView
applet. This applet can be used for exploring properties of L-systems and a number of other activities.
For example, the picture shows creation of a grid-like fractal. One of interesting school activities is to
investigate how the pattern develops, invent formulae for the number of vertices in each step of
iteration, the size of the grid, the number of edges in the grid, etc.



Fig. 10. JavaView applet to explore L-systems

Finally, let us mention the most recent, somewhat experimental, additions to JavaView applications.
This is large collection of JavaView applets for exploring gravity. These applets can be very useful as
an experimental online laboratory for learning physics.

7. Conclusions
The diversity of JavaView applications presented in this paper demonstrates how useful JavaView can
be for mathematics teachers, mathematics students and scientists. We can use it to display mathematical
concepts, build interactive mathematical experiments and add interactive component to our online
courses. Creating JavaView models for MuPAD, Maple or Mathematica users can be a very easy task
provided that they got some experience in using their CAS. Java programmers are able to extend
functionality of JavaView and build custom applications using JavaView classes. The number of web
sites using JavaView models proves that JavaView is already an appreciated tool in academic
community.

8. Literature
1. Bauslaugh B., Cannings C.L., Nicholson K.: An Intutitive Approach to Elementary Mathematics on
the Web, in Multimedia Tools for Communicating Mathematics, Springer Verlag 2002.

2. Caprotti O., Cohen H., Sterk H., OpenMath Technology for Interactive Mathematics Documents, in
Multimedia Tools for Communicating Mathematics, Springer Verlag 2002.

3. Cervone D.P., The StageTools Package for Creating Geometry for the Web, in Multimedia Tools
for Communicating Mathematics, Springer Verlag 2002.

4. Husch L.: Visual Calculus—Development and Tools, in Multimedia Tools for Communicating
Mathematics, Springer Verlag 2002.

5. Joswig M., Polthier K.: EG-Models—A New Journal for Digital Geometry Models, Springer Verlag
2002, in Multimedia Tools for Communicating Mathematics.

6. Polthier K., Khadem S., Preuß E., Reitebuch U.: Publication of Interactive Visualizations with
JavaView, in Multimedia Tools for Communicating Mathematics, Springer Verlag 2002.


