
Equational Reasoning in Programming
Tetsuo Ida

Institute of Information Sciences and Electronics
University of Tsukuba

Tsukuba, 305-8573, Japan
email: ida@score.is.tsukuba.ac.jp

Abstract
Equality plays an important role in our life, and we practise equational reasoning everyday.
We can take advantage of our ability of reasoning with equalities and make explicit the
equational reasoning in programming and symbolic computation. Based on this observation
we developed an equational programming system called CFLP (Constraint Functional Logic
Programming system). We present various examples to show the importance of equations in
programming.

1. Introduction

Modern life demands a certain level of mathematical maturity. One of the most important is
the ability to reason with equalities. We do sophisticated reasoning with equalities in arith-
metic in everyday life, although we are often unaware of it.

Let us take a concrete example. Suppose we buy an item priced at 975 yen. Since in Japan
consumer tax is 5 %, we have to pay over 1000 yen. We calculate the exact amount of money
that we have to pay, while at the same time we fumble in the pocket and try to find appropriate
coins and notes so as to avoid filling up the pocket with many coins of change. We may decide
to give a note of 5000 yen and three 10 yen coins. How do we decide?

The involved reasoning is complex; it is not mere simplification of numerical expressions. It
involves equational reasoning. In the above example we need at least 6 steps of equational
reasoning even if integer arithmetic is assumed. Most people can somehow perform this kind
of mathematics. Indeed they master it at a fairly early age. They can comfortably handle
reflexivity, symmetry and transitivity of equality relation defined over numbers.

 In this paper we will show that reasoning with equality over various domains of objects is
also important, and easy to practise if we are provided with appropriate tools for reasoning.
One particular example that we are interested in here, and is relevant to mathematics education,
is programming. All the programming examples including these texts are in Mathematica
Notebook.

2. Equality in Programming

We will first show a very basic programming system, a subset of Mathematica, and extend it to
a system for equational programming. We begin by defining terms with which we construct a
program. Our vocabulary S, called signature, is given as a set of symbols {0, s, ∆, ≈}. The
symbols 0, s, ∆ and ≈ take 0, 1, 2 and 2 arguments, respectively. These numbers are called
arity. Furthermore we will use unlimited number of variables, say x, y, z, Then the syntax
of terms is as follows:

0 is a term.
x is a term if x is a variable.

f@ t1, ..., tn] is a term if t1, ..., tn are terms where n is the arity of f and f œ S.
Nothing other than those constructed in this way is a term.

At this point we only have syntactic equality, i. e. terms are equal only if they look the same.
Really interesting things emerge when we introduce rewriting rules on the domain of the terms.
We define rewrite rules for the symbols ∆ and ≈. For readability we use those symbols as infix
operators. The rewrite rules are specified in the following way in Mathematica.

ü Rewrite rules

0⊕y_ := y;
s@x_D⊕ y_ := s@x⊕yD ;
0⊗y_ := 0;
s@x_D⊗y_ := Hx⊗yL⊕y :

In order to distinguish variables from non-variable symbols, Mathematica has the convention
that the variables on the left hand side of the rewrite rule are marked by _ (underscore).

These four lines of rewrite rules define a term rewrite system R. R induces the reduction rela-
tion ØR .
This means that for any terms s and t in s := t œ R and any substitution q,
s q ØR t q and for any context C@ D, C@uD ØR C@vD, if u ØR v.
Here, context C[] denotes a term that has a hole to be filled by some term.

The reflexive and transitive closure of ØR is denoted by ØK
* . The reflexive, transitive and

symmetric closure of ØR is denoted by ¨R
* . Finally we identify equality ==R with ¨R

* .

A purely functional language is based on the notion of rewriting terms by ØR . The term which
is no longer related by ØR to any term is called a (ØR Lnormal form. For example, we see
the term s[s[0]]⊗s[s[s[0]]] is reduced to its normal form.

s@s@0DD⊗s@ s@s@0DDD
s@s@s@s@s@s@0DDDDDD

When R is understood from the context, we will drop subscript R in the above relations.

Handling equality is more difficult in general than reduction. To see if s ==R t , we have to
show that s and t are related by ØR via several terms. We do not know in advance in what way
we should rewrite s and t so that the rewrites eventually lead to the same term. This seems a
formidable problem, unless we know certain properties of the term rewrite system R.

Equality in programming is discussed in a more challenging context. Instead of proving
"x1, ...,xn . s ==R t , we want to prove $x1, ...,xn . s ==R t ,

where we are interested not only in the truth of the statement, but a substitution q that makes
sq ==R tq . The computation to find the substitution is called solving in this paper.

In Mathematica we have a special function called Solve which computes such substitutions.

ü Solving equations: Cranes and Tortoise (cats and birds) problem
There are 32 legs and 10 heads of tortoises and cranes. The number of tortoises and cranes is
found by applying Solve to equations:

Solve@8cranes + tortoises == 10, 2 cranes + 4 tortoises == 32<,8cranes, tortoises<D
88cranes → 4, tortoises → 6<<

We obtain the substitution {cranesØ4, tortoisesØ6} as the answer.

ü Solving equations on the domain of terms
Then, we will try to solve a similar problem over the domain of terms that we have defined.

Solve@8x⊕ y == s@s@s@0DDD<, 8x, y<D
— Solve::dinv :

The expression x ⊕ y involves unknowns in more than one
argument, so inverse functions cannot be used.

Solve@8x⊕y == s@s@s@0DDD<, 8x, y<D
Mathematica does not give solutions that we would expect. You are invited to find the reason
why it does not give the solutions.

The important observation that has to be made is that the symbols that we are using are uninter-
preted, i.e. they are used as mere symbols. The symbol 0, for instance, is not an integer zero in
this setting. We do not assume any mathematical properties on the symbols except that we
define rewrite relations and equality induced by ØR . The situation is very different from the
case of solving linear equations.

3. Narrowing

Fortunately, we already have a method called narrowing for solving equations over the domain
of terms. Narrowing is a procedure to prove existentially quantified equations by presenting
values that bind the existential variables Formally, given a rewrite system R and a sequence of
equations s1 ãt1 , ..., sn ãtn , it computes a substitution q such that sk q==R tk q for k = 1, ..., n.
The basic idea is similar to rewriting; rewrite the terms of both sides of an equation repeatedly
until they become the same term using the rewrite rules and the substitutions. In narrowing,
the substitutions are used not only to substitute terms for the variables in rewrite rules, but also
in equations to be solved.

This method can be formalized as a calculus, which we call lazy narrowing calculus. The
calculus is called lazy because we incorporate in the calculus an algorithm for systematically
identify and rewrite a certain preferred parts of equations. The lazy narrowing calculus is the
interpreter of the programming language, which we discuss in the next section.

4. Language for solving equations

We now define the language for our equational programming. The signature consists of two
disjoint sets of function symbols; the set of constructors and the set of defined function sym-
bols. In our previous example, s is a constructor symbol, and ∆ and ≈ are defined function
symbols. The defined function symbols are associated with rewrite rules, whereas the former is
not. The syntax of the terms is as given before except that they are (sometimes implicitly)
typed. With that syntax we will represent a simply typed l-terms, e.g. l[{x, y}, plus[x, y]]: int Ø
int Ø int.

The equations to be solved is often called a goal. To avoid confusion of a Mathematica's built-
in equation s == t , we hereafter denote our equation by sº t .

The program is given by a higher-order rewrite system called pattern rewrite system. With
higher-order rewrite system we can treat functions systematically. Moreover, we can find
higher-order solutions, i.e. functions, wherever possible.

A pattern rewrite system is a set of unconditional rewrite rules
f @t1, ..., tn D Ø t,

or conditional rewrite rules
f @t1, …, tnD Ø t › E.

We have certain restrictions on the syntactic structure and the types of the terms that can be
used to form a pattern rewrite system (See [1] for technical details).

5. Solving equations over the domain of terms

à Solving first-order equations

We return to the problem of solving the equation in Section 2 with our system [2]. The system
is called Constraint Functional Logic Programming system (CFLP for short). CFLP is imple-
mented as a package of Mathematica. After loading CFLP package, we start a CFLP session by
declaring the signature. Ù denotes some first-order basic type, in this case type integer.

<< FrontendCFLP.m

DataConstructor@s : Ù → ÙD
CirclePlus and CircleTimes are actual function names of ∆ and ≈ , respectively.

H∗ We clear previous definitions
about CirclePlus and CircleTimes ∗L

Clear@CirclePlus, CircleTimesD;

DefinedSymbol@CirclePlus : Ù → Ù → Ù, CircleTimes : Ù → Ù → ÙD
The following is our program assigned to a variable R. All the rewrite rules in this example
turn out to be unconditional. In CFLP we have to declare all function symbols. Hence the
other symbols are automatically identified as variables. So we do not have to mark variables
with _.

R = FLPProgram@8
0⊕y → y, s@xD⊕y → s@x⊕yD,
0⊗y → 0, s@xD⊗y → Hx⊗yL⊕y<D;

This is the goal to be solved.

G1 = 8exists@8X, Y<, X ⊕Y ≈ s@s@s@0DDDD<8∃8X:Ù,Y:Ù< X⊕Y ≈ s@s@s@0DDD<

We specify the solver to solve the above goal. Our system is designed to be general, in that we
can also specify solvers for the problem and the strategy to apply various solvers. We omit the
explanation of the following two lines of program, as we discuss the solver collaboration in
later sections. The reader can see that we use Lazy Narrowing solver (LNSolver) for solving
our problem. Actually, the lazy narrowing solver consists of several narrowing calculi, and we
will use the one called LCNCd tailored to the first-order solving.

H∗ solver ∗L
flp = MkLocalSolver@"LNSolver`"D;

ConfigSolver@flp, 8Program → R1, Calculus −> "LCNCd"<D
Computation, i.e., solving the equation, starts when we apply the solver LNSolver to the goal.

ApplyCollaborative@flp, G1D
Then LNSolver yields the following solution:

LNSolver` yields

88X → 0, Y → s@s@s@0DDD<, 8X → s@0D, Y → s@s@0DD<,8X → s@s@0DD, Y → s@0D<, 8X → s@s@s@0DDD, Y → 0<<
We can ask ourselves the following questions. Are these correct? Are these all the solutions?
The former is concerned with so-called soundness, and the latter with completeness. There are
several ways that you can convince yourselves of the affirmative of these questions. Concerning
the soundness, we apply the substitutions to the goal, and rewrite both sides of the equation. In
our case the right hand side is already a normal form. So what you have to do is to reduce the
left hand side of the equation. Another way of convincing yourselves is to use a model. Inter-
pret 0 as the natural number zero, s as a function of increment by one over the natural numbers.
You will see that ∆ and ≈ are addition and multiplication operators on natural numbers. Hence
the goal is actually x + y = 3, and we solve for x and y in the domain of natural numbers. It is
easy to see (by simple enumeration) that we have 4 solutions, i.e., (x, y) = (0,3), (2,1), (1,2),
(3,0). These correspond to the solutions that we obtained.

Proving soundness and completeness of the calculus in general setting requires deeper investiga-
tion [3].

à Solving higher-order equations

The next example is more difficult. It involves higher-order, i.e. function, variables. Even in
high school mathematics, we often encounter higher-order mathematical objects, and equations
involving higher-order objects. However, mostly problems are restricted to obtain first-order
quantities. In the following example, we want to solve for higher-order variables, i.e. we want
to obtain a function as a solution. As in the previous example, Mathematica is able to give
solutions of certain kind of equations for certain domains. For example, Mathematica's DSolve
gives solutions to differential equations.

DSolve@ f'@xD m x, 8f<, 8x<D
99f → FunctionA8x<, x2

ccccccc
2

+ C@1DE==
In the domain of terms, however, this is not the case. Solving for higher-order variables is non-
trivial task. For certain class of programs, we do have a method for solving equations over the
domain of terms. The method is generically called higher-order narrowing. As in the first-
order case, we can formalize the higher-order narrowing as a narrowing calculus. So in this
case let us use higher-order lazy narrowing calculus HOLN. Our problem is as follows:

G2 = 8exists@8F, Y : Ù → Ù<,
λ@8x<, F@x, Y@xDDD ≈ λ@8x<, x⊕s@s@s@0DDDDD<8∃8F:Ù→Ù→Ù,Y:Ù→Ù< λ@8x : Ù<, F@x, Y@xDDD ≈ λ@8x : Ù<, x⊕s@s@s@0DDDD<

We want to solve this equation for higher-order variables. For those who are not familiar with
the lambda calculus, read l as Function.

holn = MkLocalSolver@"LNSolver`"D;
ConfigSolver@holn, 8Program → R, Calculus −> "HOLN"<D
ApplyCollaborative@holn, G2D

Then, CFLP returns the following solutions.

LNSolver` yields

88F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@s@0DDDD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@s@x2DDDD, Y → λ@8x57 : Ù<, 0D<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@x2DDD, Y → λ@8x45 : Ù<, s@0DD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@x2DD, Y → λ@8x31 : Ù<, s@s@0DDD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕x2D, Y → λ@8x19 : Ù<, s@s@s@0DDDD<,8F → λ@8x1 : Ù, x2 : Ù<, x2⊕s@s@s@0DDDD, Y → λ@8x9 : Ù<, x9D<,8F → λ@8x3 : Ù, x4 : Ù<, x4D, Y → λ@8x7 : Ù<, x7⊕s@s@s@0DDDD<<
Let us take a closer look at the second solution: {F→λ[{x1:Ù,x2:Ù}, x1⊕s[s[s[x2]]]],

Y→λ[{x57:Ù},0]}. In order to solve the higher-order equation, the system needs type informa-
tion. The solution is attached with types by the system. Let us ignore the types temporarily and
describe the answer in the mathematical representation familiar to college students.

F[x, y] =x⊕s[s[s[y]]]]

Y[x] = 0

It is easy to see that those are indeed solutions.

6. Solving equations over various domains

Many scientific problems are modeled as a set of equations. Specialized algorithms have been
developed for solving various equations over various domains. The domain of terms that we
discussed in the previous sections is very important since it is in this domain that equational
programs are interpreted. Equations and rewrite rules are regarded as programs. These pro-
grams are different from those of procedural programming languages such as JAVA and C.

The next challenge is whether we can combine solvers to make a single framework in which
specific solvers are called for specific problems automatically. CFLP is actually designed to
work in this way. CFLP is at present equipped with four solvers including HOLN. The system
coordinates those solvers to work on a given goal. A programmer can either use a default
combination of solvers or can program the collaboration of solvers using a simple coordination
language.

Below we explicitly declare solvers and put the references to solvers in variables holn, elim,
deriv and polyn. The latter three variables hold the references to the solver for a system of
linear equations which implements Gaussian elimination method, the solver for partial and
differential equations, and the solver for general polynomial equations which implements Gröb-
ner basis algorithm, respectively.

H∗ solvers ∗L
holn = MkLocalSolver@"LNSolver`"D;
elim = MkLocalSolver@"ElimSolver`"D;
deriv = MkLocalSolver@"DerivSolver`"D;
polyn = MkLocalSolver@"PolynSolver`"D;

Using these elementary solvers we can define a new solver that combines these solvers. The
following defines a new solver which applies solvers HOLN, ElimSolver, DerivSolver and
PolynSolver sequentially (seq) in this order. This application is repeated until the goal
becomes fixed point (which means the goal is solved).

newSolver = repeat@seq@8holn, elim, deriv, polyn<DD;

Finally we apply the new solver to the goal

ApplyCollaborative@newSolver, G2D;

Of course, newSolver returns the same solution in this case since solvers other than HOLN does
not change the goal. We will see in the next section that the collaboration of solvers can solve
more sophisticated problems.

7. Examples from geometry

Our final examples are taken from elementary geometry. We give these examples since many
geometrical properties are stated declaratively, i.e., without resort to describing a concrete
method to realize those propertied. If declarative statements are given in equations, it is easy to
make them run on the computer. Those statements can be regarded programs.

Consider parallelism of lines. Let us first represent a line a x + b y + c = 0 by line[a, b, c] using
constructor line. The following one taught in a high school is easy to see.
line[a1,b1,c1] ˛ line[a2,b2,c2] → True ⇐ a1 b2-a2 b1 º 0

It says that two lines are parallel if the coefficients of the equations of each line satisfies a1 b2
- a2 b1 º 0. In our language we can omit " Ø True ", and write simply
line[a1,b1,c1] ˛ line[a2,b2,c2] ⇐ a1 b2 - a2 b1 º 0

We will give the definitions of several geometric functions below. Our language requires
function declarations with types. In this paper we omit the explanation, but the declaration is
necessary for our examples to run.

Constructor@TyLine@αD = line@α, α, αDD;
Constructor@TyPoint@αD = point@α, αDD;
Constructor@TySegment@αD = segment@TyPoint@αD, TyPoint@αDDD

Instance@8α : Reals< ⇒ TyLine@αD : EqD;
Instance@8α : Reals< ⇒ TyPoint@αD : EqD;
Instance@8α : Reals< ⇒ TySegment@αD : EqD
DefinedSymbol@

DoubleVerticalBar : TyLine@ÑD → TyLine@ÑD → Á,
UpTee : TyLine@ÑD → TyLine@ÑD → Á,
DownRightVector : TyPoint@ÑD → TyLine@ÑD → Á,
SegmentToLine : TySegment@ÑD → TyLine@ÑD,
PerpendicularBisector :

TyPoint@ÑD → TyPoint@ÑD → TyLine@ÑD,
MidPoint : TyPoint@ÑD → TyPoint@ÑD → TyPoint@ÑD,
BrTh : TyPoint@ÑD → TySegment@ÑD → TyPoint@ÑD → TyLine@ÑDD

Then we have the following function definitions.

R2 = FLPProgram@8
line@a1, b1, c1D ˛ line@a2, b2, c2D ⇐ a1 b2 − a2 b1 ≈ 0,
line@a1, b1, c1D ¶ line@a2, b2, c2D ⇐ a1 a2 + b1 b2 ≈ 0,Hpoint@x, yD 4 line@a, b, cDL ⇐ a x + b y + c ≈ 0,
SegmentToLine@segment@point@x1, y1D, point@x2, y2DDD →

line@y2 − y1, x1 − x2, x2 y1 − x1 y2D,
MidPoint@point@px, pyD, point@qx, qyDD →

point@Hpx + qxLê2, Hpy + qyLê2D,
PerpendicularBisector@P, QD → m ⇐8m ¶ SegmentToLine@segment@P, QDD, MidPoint@P, QD 4 m<,
BrTh@P, seg, QD → n ⇐ 8PerpendicularBisector@P, RD ≈ n,

Q 4 n, R 4 SegmentToLine@segD<<D;

ConfigSolver@flp, 8Program → R2, Calculus → "LCNCd"<D;

The functions ¦, 4 , MidPoint, SegmentToLine, PerpendicularBisector are defined as
auxiliary functions to function BrTh. Similar to the parallelism of lines, the condition of the perpendicularity of
two lines are asserted by :

liine[a1,b1,c1]¦ line[a2,b2,c2] ì a1 a2 + b1 b2 º 0

We next represent a point whose x- and y-coordinates by Point[x, y]. The fact that point P is
on line m is expressed by the notation P 4 m.

We represent a segment whose end points are Point[x1, y1] and Point[x2, y2] by Segment[-

Point[x1, y1] , Point[x2, y2]]. Then the program SegmentToLine which transforms a segment to
a line is given as above.
PerpendicularBisector[P, Q] returns a line that bisects and is perpendicular to Segment[P, Q].

After the definition of the program, we can issue a question like:

G3 = exists@8l<, 8line@2, 3, 5D ¶ l<D;

ApplyCollaborative@seq@8flp, elim<D, 8G3<D
Then the system returns the following answer.

ApplyCollaborative@seq@8flp, elim<D, 8G3<D
LNSolver` yields

8∃8a2$2268:Ñ,b2$2268:Ñ< 8l → line@a2$2268, b2$2268, c2$2268D< &&
2 a2$2268 + 3 b2$2268 == 0<

ElimSolver` yields

99l → lineA−
3 b2$2268
ccccccccccccccccccccccccc

2
, b2$2268, c2$2268E==

Note that a2$2268, b2$2268 and c2$2268 are internally generated variables.

With these preparations we can give a program of one of six basic Origami folds, known as
Huzita's axioms [4, 5]. The axiom (O5) says that given two points P and Q, and a line m , we can
make a fold that places P onto m and passes through Q.

BrTh[P, s, Q] computes a line n that passes through Q, such that the fold along the line n brings P
onto s. BrTh is read as "bring P onto s along the line through Q".

We will try to solve the goal defined below:

G4 = exists@8l<, l ≈ BrTh@point@3ê2, 1ê2D,
segment@point@0, 0D, point@2, 2DD, point@1, −2DDD

ApplyCollaborative@seq@8flp, polyn<D, 8G4<D
We finally obtain the solutions of the goal.98l → line@0, 0, 0D<, 8l → line@a1$2625, 0, −a1$2625D<,9l → lineA 3 b1$2625cccccccccccccccccccccccccc

2
, b1$2625, b1$2625

cccccccccccccccccccccc
2

E==
In this example, we have three solutions.

8. Conclusion

In this paper we have shown the following:

† Equality plays an important role in programming.

† Equality can be defined in many domains, but the equality defined over the domain terms is
essential one in programming.

† Many properties defined in terms of equations naturally turn into algorithms when solvers for
equations are developed.

† Solvers can be combined to make a more versatile and powerful solver. Collaboration of
solvers are important for solving real-life problems.

† In summary, equations are (one of) bridges between mathematics and computer science,
especially programming.

References
[1] Tetsuo Ida, Mircea Marin and Taro Suzuki, Higher-order Lazy Narrowing Calculus: a Solver for Higher-order Equations,
Conference on Computer Aided Systems (EUROCAST 2001)}, Lecture Notes in Computer Science 2178, Las Palmas de Gran
Canaria, Spain, pp. 478-493, 2001
[2] Tetsuo Ida, Mircea Marin and Norio Kobayashi, An Open Environment for Cooperative Scientific Problem Solving, Proceedings
of the fourth International Mathematica Symposium (IMS 2001), Chiba Japan, pp. 71--78, 2001
[3] Mircea Marin, Taro Suzuki and Tetsuo Ida, Higher-Order Lazy Narrowing Calculi for Pattern Rewrite Systems, Technical
Report, ISE-TR-01-180, Institute of Information Sciences and Electronics, University of Tsukuba, 2001
[4] Humiaki Huzita, Axiomatic Development of Origami Geometry, Proceedings of the First International Meeting of Origami
Science and Technology, pp. 143--158, 1989
[5] Thomas Hull, Origami and Geometric Constructions, http://web.merrimack.edu/~thull/geoconst.thml, 1997

