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Abstract 
 
Students have difficulties in understanding graphs of functions.  We have observed that our night 
school students frequently have no idea what the graphs are representations for.  What are the 
relationships between the graphs and (analytically defined) functions?   Do the functions have 
anything to do with the real life situations? Do their graphs? 
 
In this paper we present the results of a test designed to see if students were making these 
conceptual connections.  We present their answers, and categorize their answers according to a 
certain framework intended to roughly measure their mathematical sophistication.  Some 
discussion is given.  We then discuss some calculator-aided activities which we hope will increase 
interest in learning to draw the graphs of functions and in turn will improve students’ performance 
as measured by this type of test. 
 
The Difficulties of Drawing the Graphs of Functions in Traditional Classroom 
 
Learning mathematics is almost a nightmare for most of the night school students in Taiwan.  
Especially when doing the graphs of functions, many students have no ideas what the graphs are 
representations for. What are the relationships between the graphs and (analytical defined) functions? 
Do the functions have anything to do with the real life situations? Do their graphs? 
 
Students are especially bored when drawing graphs by hand in the traditional classroom.  There 
are several things that discourage them when doing this activity. First, when drawing the graphs of 
functions by hand, students are wondering how many points are enough in order to make the curve 
smooth.  Secondly, computing the function values frequently requires some basic algebraic 
techniques which the students do not possesses.  Thirdly, the underlying reasons for drawing the 
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graphs are not apparent to them.  The first two difficulties can be overcome with the use of 
hand-held technology.  The third difficulty will require some new teaching strategies, and that is 
the main focus of the present paper. 
 
The Hand-held Technology as Innovation in Our Classroom 

 
Hand-held technology gives students marvelous opportunities to explore and discover relationships 
more efficiently than they can by using traditional pencil-and-paper methods. The technology often 
furnishes opportunities for extending the original content of the lesson to include insights that could 
not have been addressed otherwise (Cyrus & Flora, 2000).  
 
In teaching about functions, we believe in the use of hand-held technology, with its capacity for 
quickly producing numerous accurate examples.  In our classroom we use the Casio Fx9850 
calculator to introduce the functions, and try to introduce some real life tie-ins for each type of 
function. 
 
In order to test how well our students were doing, we presented them with five graphical diagrams 
(pictures in Figures 1-5 below) and asked them to write down how they think the functional graphs 
might apply to real life situations.  Many of the answers were inaccurate, and interestingly enough 
to investigate, many students seemed to see the graphs purely as pictures.  These phenomenon 
have been observed by many other researchers. 
 
Misconceptions in Connecting Graphs with the Real World 
Students may have difficulty distinguishing between the functional relationships of two variables 
and the visual stimuli received when observing the actual real world situations.  The most common 
misconceptions here is graphs-as-a-picture confusion, where students do not see a graph as a 
relationship between variables but rather as one object (Dumham & Osborne, 1991; Mokros & 
Tinker, 1987; Lapp & Cyrus, 2000).  Another is treat graph-shape and path-of motion as the same 
confusion.  Also, students often believe that the shape of the graph should resemble the shape of 
the physical situation (Cyrus & Flora, 2000). 
 
Monk and Nemirovsky (1994) suggest that students’ misconceptions are not simply replaced by 
correct conceptions but that students refine their conceptions in a gradual and continuous way. 
 
Transitioning between Graphs and Real life Situation 
A vital skill in learning mathematics function is the ability to leap back and forth between a graph 



of function and the real life situation that the graph describes.  The question is, how can we, in 
practice, help students make the leap from the real life situation to the graph and back?  Bruner 
(1966) suggested a progression from enactive to iconic to symbolic representations, that is, the 
student moves from physical modeling the problem with materials (enactive) to diagramming or 
graphing (iconic) to putting the problem into an abstract mathematics form (symbolic). 
 
Skemp identifies two levels of language: deep structures and surface structures. The vocabulary 
issues which the “surface structures” are used in classroom activities to transmit ideas as we engage 
students. We hope that classroom activities will lead students to the “deep structures” of 
mathematical concepts. We need to be sensitive to the language of mathematics we use in the 
classroom and the students’ growth in fluency with them (Thompson & Rubenstain, 2000).  
 
Two practices that offer promise in connecting graphs with physical events are prediction and 
duplication activities (Monk and Nemirovsky, 1994).  Engaging students in activities that 
demonstrate the relationship among different types of graphs is beneficial.  Letting students deal 
with different graphical representations of the same event can help develop understanding of how 
information is conveyed by various types of graphs. 
 
In today’s classroom, many students are strong visual learners thanks to video game practice, and 
they benefit when we support verbal learning with hand-held technology visual strategies. We can 
use pictures that are connected with written descriptions in the students’ own words as a strategy to 
develop mathematical concepts.   
 
Although linking a real life situation with its graph is important the student also needs to be flexible 
when interpreting graphs.  For example, the same graph can be interpreting different physical 
events based on how the graph is visualized as position-time, velocity-time and acceleration-time 
graphs.  Dealing with an apparent conflict between similar graphs arising from different real life 
situations can reinforce the way that information is obtained from each graph.  Of course, the 
flexibility depends on an awareness of precisely what real life quantity is being measured along 
each axis.  The vagueness of some of the responses to our questionnaire seems to indicate the 
students do not understand that the horizontal and the vertical axes must correspond to precisely 
understood and definitely measurable quantities. 
 
The Project 

 
We would like our students to have the ability to display graphical representations of data in real 



time and to have the ability to link the graph and the physical concepts.  Bruner’s progression is 
somewhat similar to, and suggested, our framework for categorizing students answers to our test 
and using Skemp’ level of language to elicit students’ understanding of the concept of function. 
 
The Questionnaire 
The test given to the students was as follows: What do you see when the following pictures are 
given?  Use your own words to describe how these functional graphs might apply to real life 
situations. 
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Fig. 5 
 
The Framework 
For some students they are graphs of functions or combinations of graphs of functions (symbolic).  
For some other students, they are pictures or diagrams (iconic) we see every day in our real life 
situations or some physical event phenomenon (enactive) they encounter everyday.  Based on 
Bruner’s progression, we designed the following criteria for our framework of categorizing the 
responses from our students’ written works. 
 
Criteria of the Framework 
Category 0: Students presented a real life situation having no observable relation with the picture. 
Category 1: Students presented a real life situation only seeing the graph purely as a picture.  
Category 2: Students presented a real life situation with some vague mathematical content. 
Category 3: Students presented a real life situation with some strong mathematical content. 
Category 4: Students presented a real life situation comprising a mathematically correct answer. 
 



The Results 
In this paper, we do not analyze the results of students’ responses.  We simply present the students’ 
responses and the categories of their responses based on our criteria of the framework.  
First Graph.   
Category 4: Upside-down absolute value, absolute value.  
Category 3: linear function, number of customers in a restaurant from 2:00 to 10:00. 
Category 2: corner of a baseball diamond, reach highest point then come down, stock market goes 

up and down (students tend to think growth laws should be linear), a person’s mood 
during the day, a students’ grade, equilateral triangle, Taiwan’s economic miracle, human 
energy map, stress (on a job), mirror reflection, health status, like taking a math class 
(level of interest), working load. 

Category 1: mountain, climbing mountain, pyramid, tent, road-sign, gun-sight, headlight pattern, 
measure angles, measure height, scaffolding. 

Category 0: umbrella. 
 
Second Graph.  
Category 4: sine wave, motion of a swing. 
Category 3: oscillations, stock market, price of a commodity, electrical current, sound wave. 
Category 2: wave, pulse, two waves, a person’s mood, brain wave, pain level of a toothache, 

Nielson rating, stress of homework. 
Category 1: Two s-shapes, obstacle sign, bumpy road, path of a car with a drunk driver, river, race 

car road map, electrocardiogram, s-curve road, part of a snake’s body, ribbon, permanent 
hair wave, two persons whose lives have no intersection. 

Category 0: road map. 
 
Third Graph.   
Category 4: cumulative frequency graph, money in the bank, speed of running downhill, total salary 

if given a percentage raise every year, parabola. 
Category 3: number of written words getting more and more, accelerating a car, cost of living 

(money spent), activity level rising after getting out of bed, a0=1, index of good mood. 
Category 2: “just a curve”, stock market, “getting better and better”, growth rate, desired growth of 

grades, flight of an airplane, inflation, rise of temperature, mood of a person (how do you 
quantify your mood?), accumulated money put in a slot machine (which actually 
shouldn’t be exponential), people’s age, performance on a job, life-style getting better, 
weight getting higher, blood pressure, production of a company. 

Category 1: climbing mountain, flying a kite, roller coaster, turning left, go uphill (based on the 



slope), a children’s slide, shape of thread of flying kite, rocket flight, path of airplane, 
path of a released balloon, ran from the bottom to the top of a slide. 

Category 0: rising sun, promotions, no job then finding a job. 
 
Fourth Graph.   
Category 4: concentric circles. 
Category 3: sound waves, supersonic waves. 
Category 2: radar, indicators of a mountain’s height (contour map).  
Category 1: growth rings of a tree, target, multiple vision (as when dizzy), racetrack, water ripples, 

hula hoops, expanding yourself (by walking out of the circle you are in), smoke rings, 
planetary orbits, spiral, examining things locally at first then from broader and broader 
points of view (as in making a business decision). 

Category 0: seeing stars (as in cartoons when knocked on the head), clock, cycle of a washing 
machine, typhoon, donuts, car, wheel. 

 
Fifth Graph.  
Category 4: step-function. 
Category 3: ages, yearly growth of tuition, postage, electricity bill, income tax. 
Category 2: grades, getting promoted each stage of the way, growth rate, temperatures, progress of 

the homework, interest rate, different people’s income. 
Category 1: Stairs, climbing the stairs, merit pay, ages of classmates. 
Category 0: different stages of life. 
 
Discussion 
 
We note that a large number of answers landed in Category 1, which indicates that many students 
were interpreting the graphs in purely pictorial terms.  Evidently these students have not learned to 
think of a graph as a relationship between variables, for the very context of the test should have set 
them to looking for functional relationships. 
 
Some answers were very interesting and imaginative even when they were not mathematically 
sound.  We especially liked the answer about the number of customers in a restaurant (for Figure 1) 
(The linearity of the graph may not be quite plausible, but it is very reasonable that the high point 
occurs at 6:00.)  Some answers gave psychological or sociological interpretations: for instance the 
interpretation of three concentric circles in terms of expansion of one’s personality.  These answers 
show a capacity for abstraction, but in different direction from mathematics.  We did not get a lot 



of answers in Category 0, which we are inclined to find encouraging.  Almost always, the students 
tried to make some sense out of the graph, and gave answers which had some clear relationship to 
what they were seeing.  There were few instances in which the answers were incomprehensible to 
us.  In most cases, however, a strong link to the mathematical language of equations and functions 
were not there. 
 
For the third graph, only a couple of students made explicit mention of the exponential function.  
However, many gave the real life situations that are frequently used as examples when teaching the 
exponential function.  These many students could look at that graph and think of compounded 
interest on a saving account, but perhaps could not explicitly identify the graph as an exponential 
function.  A really good answer for Figure 4 would have to involve the equation of a circle. Ideally, 
the students should be aware that a circle is the union of two function graphs.  Nobody gave such 
an answer, but many interesting applications of circle were given. 
 
We believe we see that the “surface structures” (in Skemp’s terminology) have communicated 
themselves fairly well, but the “deeper structures” are not really grasped by many of the students.  
Students remember the real life tie-ins used to introduce the functions but are not familiar with the 
functions themselves.  We noted that increasing functions are generally perceived as linearly 
increasing and there are not many answers of different kinds of growth.  Many students do not 
seem to understand that horizontal and vertical axes have to represent clearly defined and 
measurable quantities. 
 
Although the students’ notion of functional graphs is based on the lower categories, still it reveals 
an education practical value.  We can verify that the use of technology can reinforce the 
connection between the real life situations and the analytical expression of functions.  For the 
present study, the data clearly show that the students are not good at identifying the analytical 
expression of functions.  They exhibit the graph as-a-picture confusion, treat graph-shape and 
path-of motion as the same confusion and believe that the shape of the graph should resemble the 
shape of the physical situation.  However, they surely learn to make the connection between the 
real life situations and the functional graphs.  With the help of technology, we hope to explain that 
mathematics is not just for the elite but for all, because it is around us and it is fun. 
 
We hope to return in later work to the results of this test and other like it, perhaps with more 
rigorous examination of data and possibly some refinement of our simple five-category scale for 
measuring responses (many of which seemed to fall on the boundaries of categories). 
 



Most of the students in night school environment will find the notion of functions intimidatingly 
abstract.  The new hand-held technology, with its capacity for quickly generating a variety of 
examples, can greatly help in getting the function concept across.  Functions can be presented in 
three representations; by equations, by graphs, and by tables of values.  Each type of presentation 
makes connections with real life situations in different ways.  Hand-held technology can help 
students tie these different forms of presentation together as a single concept. We turn now to a 
discussion of some calculator-aided suggestions that we hope will help students build the deep 
structures for understanding and working with function graphs.   
 
Suggestions for Classroom Use 

 
Try to see the following scenarios.  If the students were asked to plan for a camping trip and they 
need to build a tent.  What shape does the tent have?  If they need to draw the graph of the tent, 
what function do they need?  Will the angle of the tent change the shape of the tent?  Will the 
height of the tent change the shape of the tent?  
 
If the students were asked to design a s-shape road for the roller skaters, what function should they 
use?  If this S-shape road is designed for less than 10 years old or older than 10 years old, do you 
think the function should be the same? Why is the design the same or why is it not?  If the students 
were asked to show the demand and supply relationship, what functions should they use?  How are 
the shift, the phase, and the height of the sine functions related to the economical cycles?   
 
If the students were asked to design a postage rate for different types of letters, what function 
should they use to describe these situations.  Do the registered mails differ from the airmails?  
Are the stamps for the registered mails and the airmails the same? Does the weight of the letters 
affect the stamps we put on the letters?   
 
The Fun Parts of Mathematics Functional Graphs 
 
Happy Bear 
If the students were asked to draw the shape of Teddy Bear, what functions do they need to use?  
What do we need to change in order to make the Teddy Bear smile, look astonished or look grouchy?  
In order to see the Teddy Bear in the screen of the calculator, what window setting should be used? 
 
 



 
 
 
The Number Eight 
 

 
 
 

 
Sun Rising and the clown  
 
 
 
 
 
 
Other fun graphs drawn by hand-held technology 

 
 
 
 
 
 
The first eight figures are composed of graphs of functions, and the students should try to 
identify the functions used for various parts of these pictures.  The last two figures, 
well-known in the area of fractals, are of course not graphs of functions, but can be used to 
illustrate the notion of iteration of functions for students who have a more advanced 
understanding of the concept of functions or the ability to design their own programs.  These 
drawings of fun graphs might create a reason for students to pay more interest in learning the 
notion of functions. 
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