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One of the key aspects in a successful integration of technology in the secondary mathematics 
classroom is the inclusion of the classroom teacher in the process. Ideally this process should involve 
teachers in all stages, including planning, writing, and implementation. This paper describes the initial 
stages of a research project where a group of four committed and mostly experienced teachers in a 
secondary school are being mentored by a research team as they begin a year long programme to 
integrate the use of calculators (TI–89) with a computer algebra system (CAS) into their year 13 (age 
17/18 years) mathematics curriculum. The students were given a procedural and conceptual test on 
differentiation prior to, and after completion of, the school module on differentiation. This module 
was taught using the calculators and the students had access to the calculators at all times during their 
learning. An analysis of the results of the test, discussion with the teachers, and observation of lessons 
suggest that while there appear to be some benefits from the use of the technology, the construction of 
an integrated approach to learning using a CAS which will assist inter-representational conceptual 
learning is not straightforward. 

Background 
In order to think about the constructs of mathematics we need some cognitive mechanism 

with which to examine them. The role of mathematical representations, both internal and external, 
is taking on increasing importance in mathematics education research. However, the idea of 
representation has a number of different uses in the literature. The description which resonates best 
with us is that of Kaput (1987, p. 23) who proposed that “any concept of representation must 
involve two related but functionally separate entities, the representing world and the represented 
world.” In a later paper (Kaput, 1989, p. 169) he refers to a representation system as a 
correspondence between two notation systems (for example equations, graphs and tables of ordered 
pairs) co-ordinating the “syntax of one notation system with the structure of another.”, and later still 
(Kaput, 1998) uses the terms representation system and notation system interchangeably. The 
concept of different representations of mathematical ideas also introduces an important class of 
mathematical activity involving “translations between notation systems, including the coordination 
of action across notation systems.” (Kaput, 1992, p. 524). This involves manipulation of 
mathematical processes and concepts within a representation, and translations between different 
representations. 

It is our contention that understanding of the properties and attributes of mathematical 
constructs, as well as procedures associated with them, are dependant on the form in which they are 
represented, and that student learning may be restricted by taking place within the limited confines 
of a single representation. For example students may fail to appreciate the full significance of 
eigenvectors in the vector field R3 if they only encounter them in the algebraic or matrix 
representations, and never in the geometric one. The implication is that the construction of a full 
perspective of a mathematical concept by a student of mathematics means that they must engage 
with the concept in as many different representations of it as possible, forming links between the 
representations and becoming familiar with the actions that each representation facilitates. In this 
way they can be assisted to build representational versatility, a term we use (Thomas & Hong, 



2001a, b) to encompass the ability to translate conceptual facets across representational boundaries 
(called representational fluency by Lesh, 2000 and similar to the representational competence of 
Shafrir, 1999) as well as the ability to interact with representations in both procedural and 
conceptual ways. For some concepts interaction with their representations in a conceptual way will 
require an object perspective of the concept rather than a process one. This process/object 
dichotomy has been described as involving the distinction between the dynamic process and static 
object view of mathematical concepts, which Sfard (1991), calls an operational and structural 
duality, as well as the manner in which the former is transformed into the latter in the mind of the 
learner. Sfard (1991) proposes that processes are interiorised and then reified into objects, while 
Dubinsky and his colleagues (Dubinsky, 1991, Cottrill, Dubinsky, Nichols, Schwingendorf, 
Thomas, & Vidakovic, 1996) prefer to talk about processes being encapsulated as objects 
imbedding this in a theory of Action-Process-Object-Schema or APOS, for the construction of 
conceptual mathematical schemas. The algebraic symbolisation of a concept which can be 
perceived as either a process or an object has been termed a procept by Gray & Tall (1994). 

One avenue which we consider holds considerable promise for encouraging students' 
representational versatility is the integration in learning schemes of graphic calculators, including 
those with built-in computer algebra systems (CAS). The value of these calculators is that they 
employ a number of linked mathematical representation systems, such as tables, algebraic symbols, 
graphs and ordered pairs, doing so in a way that provides a dynamic environment with instant 
feedback. The graphic calculator (GC), has already been shown to be capable of supporting the 
construction of mathematical meanings across representations (Kaput, 1989). Asp, Dowsey, and 
Stacey (1993), for example, reported a significant improvement in graphical interpretation and the 
matching of shapes with symbolic algebraic forms following the use of GCs for quadratic function 
graphing. Ruthven (1990) too has demonstrated how using the multi-representational features of 
GCs can help students link graphic and algebraic representations. They were assisted to recognise 
when a given graph came from a family of curves, and to build enriched problem solving strategies. 
Similarly a study by Harskamp, Shure, & Van Streun (2000) showed that access to GCs improved 
students function graphing approaches. However the research of Gray and Thomas (2001) reported 
little benefit from their attempts to employ GCs to help students link different representational 
forms. 

One of the key discussions taking place around the use of GCs and other technology in the 
classroom is the way in which they might best be employed. Kissane et al. (1996) argue strongly 
that to be effective, GCs need to be fully integrated into all aspects of the mathematics curriculum, 
including assessment. Similarly, Leigh-Lancaster (2000) maintains that what he describes as the 
congruency between curriculum, pedagogy, assessment and values is critical in the effective use of 
computer algebra systems (CAS) in mathematics education. It has been suggested that such 
integration is the best way to open up the possibility of novel approaches to old topics, 
improvements in the order of presentation of topics, and a shift towards a better use of visualisation 
in the teaching some mathematical concepts (Ruthven, 1996, Kissane, 2000). However, while these 
may seem good arguments for curriculum reform (Harskamp et al., 2000) there is an essential 
element in the process that must not be overlooked. Without the support and input of teachers any 
such changes are doomed to fail, along with other curriculum initiatives imposed without 
consultation. This research study recognises the crucial role of teachers and seeks to engage them in 
the process of investigating ways in which to integrate the CAS calculators into the curriculum and 
to analyse the potential benefits and difficulties of doing so. 



Method 
The Mathematics Education Unit at the University of Auckland has developed good relations 

with the teachers at a high performing Auckland girls' school over a number of years and we were 
asked to assist in the process of integrating the use of CAS calculators (TI-89s) into the year 13 
curriculum. The roles of each group were made clear during our initial meetings with the teachers at 
the school. While we would be researching the implementation and were available as mentors who 
would make suggestions, the decisions on the actual implementation of the technology rested with 
the school. The group of teachers involved were experienced and committed, and included the 
deputy principal (an ex-head of the department), the current head of the department, another ex-
head of the department, and a fourth teacher. Each of the teachers had around thirty years 
experience in the teaching of mathematics and two of them had substantial experience of teaching 
with both computers and calculators. Only the teacher who had not been the head of the department 
had not previously used calculators much in her teaching. Thus this research used a single group 
case study methodology, which has the disadvantage of not controlling for variables such as teacher 
input, etc. 

 
1. Differentiate each of the following functions with respect to x: 

a) y = 5 x5
−

14
x 3  b)  f ( = 2 xx ) −1  

2. Differentiate y=1
2 x 2  from first principles. 

4. Find the value of the following limits: 

a) lim
x→2

x2 +x−6
x 2 −4

 b) lim
x→∞

2x 3 −3x+1
5−x 3  

5. Where is the function, whose graph is shown below, differentiable? 

  2  x

 y

 
6. For the function  , find f (x ) = x

3
− 3x

2
− 9x +1

a)  and . ′ f (x) ′ ′ f (x )
 b) the values of x for which the function has a maximum or minimum, distinguishing 

between them. 

8. Let f (x ) =
x 2

x2 −1
. For what values of x is  increasing? f (x )

9. Find 
dy
dx

 if . What is the gradient of the line perpendicular to the curve at the 

point (–1,1)? 

x 2
− xy + y 2

= 1

 

Figure 1. Examples of the section A post-test questions.  

The students were all girls aged 16 or 17 years and were in their last year of high school, with 
a university entrance examination at the end of the year. This is clearly a vital year of schooling for 
the students and often it is very difficult to get permission from schools to engage in research with 
such students. However, in this case since the school was driving the changes the problem did not 



arise. The students had all taken a basic introductory course in differentiation techniques in their 
year 12 classes and so had some familiarity with the concept of a derivative. The school had a set of 
35 TI-89 calculators on loan and so each of the students was given their personal calculator to use 
for the year. They were thus able to use it at home as well as in lesson time.  

 
1. Which of the following are polynomial functions? Give a reason. 

y = 3 − x   
Yes/No Reason_______________ 
___________________________ 

f (x ) = 2 x
4

− 3x
3
2 + x  

Yes/No Reason______________________ 
 __________________________________ 

2. For the function shown below, . Where is  ′ f (2 )=0 ′ ′ f ( x)<0?�
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dy

dx
= p2 dy

dx
(x ) f (x)

′ f (a) = −3 ′ (a)

y= f (x ), ′ f (2)=−2. = f (x ) x = 2 y=mx+c

lim
x→0

2+h − 2
h
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4.  On the axes below draw the graph of a function that is continuous everywhere and differentiable 
everywhere except x=2. 

5. If  and x=f(p), where p is a parameter linking x and y, write down an expression for . 

7. The graph of g  is obtained by translating the graph of  2 units downward, i.e. parallel to the y-
axis. If , what is g ? Explain your answer. 

8.  Sketch the graph of a single function y=f(x) where 
1. f(x)≥0 for all x<0 and f(x)<0  for all x≥0. 
2. f(x) is not continuous at –1 but does have a limit. 
3. f(x) is continuous at x = 1 but does not have a derivative. 
4. f(0) = 0. 

9.   For  If the equation of the tangent to the graph of y at  is , 
what is the value of m? 

10. If a given rate of change = , then: 

a) What is the function that we are calculating the rate of change of? 
 b)  At what point is the rate of change being calculated? 
 11. For what values of x is the function, whose graph is shown below, increasing? �

 
 

Figure 2. Examples of conceptual questions from section B of the post-test. 
The school has a set scheme of work to cover and the research described in this paper is based 

on the second topic of the year, a five week long module called Calculus 1 – Differentiation. The 
scheme is very general in its scope and lists the university entrance examination prescription, the 
key skills to be covered (for example "find equations of tangents and normals"), textbook chapter 
references and suggested learning activities, one of which was "Use the TI 89 to investigate the 



rules of differentiation." While all the teachers had agreed to make substantial use of the calculators 
in their teaching there was considerable scope left for each teacher to integrate the use of the 
calculator into their normal teaching style. While this involved the students sitting in formal rows in 
the classrooms, the teacher circulated a lot and actively encouraged considerable classroom 
interaction. 

Prior to the calculus teaching the students were given a test in two parts, A and B. The section 
A questions (see the examples in Figure 1) involved traditional skills such as differentiation 
techniques, finding limits, normals and tangents. It also included a question on the concepts of 
differentiability and increasing functions and, at the school's request since they used the results of 
this section for their internal grading, two application questions (these are not shown). These 
algorithmic questions were intended to give some idea of the influence of the use of the GCs on 
skills. In contrast section B (see Figure 2) was more concerned with questions aimed at conceptual 
understanding, to check whether the students were gaining an appreciation of the principles and not 
just algorithmic skills. The concepts addressed were: polynomials; increasing/decreasing; 
continuity; differentiability; parameter; conservation of gradient under translation; differentiation by 
first principles. The questions in section B also addressed the question of representational 
versatility. For example questions 2, 6, 7, 8, 9 and 10 all required the linking of algebraic and 
graphical forms, starting with one and converting to the other, while question 4 involved the 
graphical linking of two concepts. In addition section A question 8 and section B question 11 were 
deliberately linked in order to give some indication of representational versatility. The two 
questions are identical in content but differ in form, namely the representation used, with the section 
A question given algebraically with no graph and the section B graphically with no algebraic 
function. The students were able to use GCs during the test. 

After the five weeks of teaching the students were given a parallel test (Figures 1 and 2 show 
post-test questions) comprising questions with minor variations in the content e.g. a translation in 
the y direction rather than the x direction in question B7. Once again they were able to user the GCs 
when taking the test since we were concerned with the influence of the calculators on method as 
well as performance. Of the students who took the module of work, only 28 completed both tests, 
and the results of these students are discussed below. 

Results 
What we were interested in was whether after using the calculators for the five weeks the 

students were better able to tackle the questions, especially those directed at concepts, than they 
were before. While it would appear surprising if they were not any better, especially on skills 
questions, since they had been taught the topics during this period, it has been experienced that 
students taught procedurally often do not learn the underlying concepts. We were also keen to 
discern whether there were any areas where it appeared that the calculators had been of particular 
value in their learning, particularly with regard to representational versatility. A limitation of the 
study was that we were unable to interview the students and so we were left having to infer their 
representational progress from their solutions to the questions in the test. This was not ideal but it 
was not possible to interrupt further the students' lessons. 

After their work the students did better both on the section A questions (Pre-test mean=5.7, 
Post-test mean=14.2, t=10.6, p<0.0001) and the section B questions (Pre-test mean=0.43, Post-test 
mean=5.1, t=5.59, p<0.0001), and overall, than they did before. When looking for evidence of their 
representational versatility we found that in question B5 a number of students showed a preference 



for using 
dx
dp

 rather than  when differentiating . This was probably due to the need to 

use a version of the chain rule in the question, but shows a lack of versatility and the strong role that 
context plays in the selection of representations. 

′ f (p) y = f ( p)

While students gave considerable evidence of visual thinking in their solutions, it was usually 
difficult to attribute this directly to the use of the GCs. Some of the thinking was good, and showed 
representational versatility, but some gave evidence of a limited perspective. For example, several 
students when asked to sketch a function in question B4 and B8 drew a linear or a quadratic graph, 
along the lines of that seen in Figure 3. This could be seen as either a good feature, in that they were 
drawing the simplest solution, or not so good in that they had not considered other, more general, 
possibilities.  

 
Figure 3. An example of a quadratic solution to a general problem. 

Another student, see Figure 4, had the correct link to the graphical representation in question 
B7 but still managed to get the wrong answer. She was unable to infer from the graphs that the 
gradient would stay the same. Thus representational versatility was lacking, even though she had a 
good visual sense. 

 
Figure 4. Using a correct graphical representation without success. 

In contrast, two students (see Figure 5) were highly successful in B7 by this method and were 
able to answer the question by linking the graphical and algebraic representations in a powerful 
way, perceiving the function graphs as objects and being able to operate on them. 

 

 

Figure 5. Good use of graphical representations. 



Evidence of use of the calculator was sparse, and especially positive use, and this was a little 
surprising. One student seemed to have used the GC to check the value of a limit (question 4A) by 
using values of x=1000, and 2000 (Figure 6), while another used the GC to draw a graph to make 
the representational link between the algebraic calculation of maximum and minimum points and 
the picture (question 6A; see Figure 7). 

 
Figure 6. Using the GC to find a limnit. 

 
Figure 7. Using the GC to link graphical and algebraic representations. 

The comparison between question 8 of section A and question 11 in section B proved 
interesting in terms of the representations. In the pre-test the graphical version (Q11) was answered 
significantly better than the symbolically presented version (Q8) (Q8 mean=0.04, Q11 mean=0.48, 
t=4.29, p<0.0005). When the post-test gain scores were analysed they showed that the gain on the 
symbolic question was significantly greater than that on the graphical question (Q8 mean 
gain=1.16, Q11 mean gain=0.68, t=2.17, p<0.05). At first sight this result is slightly surprising 
since it seems to indicate that students have improved more on the algebraic version of the question 
than on the graphical one, where the increasing nature of the function should have been more 
readily apparent. Most of the students had been taught to find where a function is increasing by a 
procedure based in the algebraic representation, namely using , and they learned and 
executed this quite well. However, the fact that they did less well in the graphical question shows, 
surprisingly, that the concept was not established in an inter-representational way. This could have 
been addressed in the teaching of the topic by using the CAS calculators to reinforce the concept 
across the representational boundary. They could have been encouraged to enter functions such as 

′ f (x) > 0

f (x ) =
x 2

x2 −1
 into the calculator and then use it to draw the graph. Employing the trace facility would 

enable them to look along the curve's branches to see where the values of the function were 
increasing. This would then help them to answer problems like Q11 where although the graph was 
given, no formula for the function was attached to it and so the algebraic method could not be 
utilised. This shows one way in which the calculator could be employed. However, the fact that 
they could not cope as well with the graphical representation is evidence of a lack of 
representational versatility, and thus a weakness in the students' understanding of the concept of an 
increasing function. 

One surprising weakness that had emerged prior to the study and for which we wanted to 
ascertain the influence of the GCs, was the ability of students to link the concept expressed by 
natural language representation ‘polynomial’ with the algebraic representation of this concept. 



Question B1 asked whether f (x) = 2x 4 − 3x
3
2 + x  and  were polynomials, giving reasons 

(see Figure 2). Only two of the students answered either part this question correctly in the pre–test, 
and two in the post test (7.1%). However, the interesting thing was, not that the students did not 
attempt the question because they had no conception of polynomials, but rather that they thought 
they understood it, but were wrong. Among the wrong conceptions were: 

y = 3 − x

Table 1 
Answers to the question B1 on the definition of a polynomial 

Student y = 3 – x f (x ) = 2 x
4

− 3x
3
2 + x  

A No: Does not have a positive integer. Yes: x has the positive integer ie) x4 and x3/2 
B Yes: both are the power of a whole number eg 31–x1. No: Because this is not a power of a whole 

number –3x3/2. 
C No: x is not to a power of more than 1. Yes: x  is to a higher power than 1. 3 
D No: As x doesn’t have power more than 1. Yes:  As x has power > than 1.  2 
E No: There are two variables. Yes: the function is in relation to one variable. 
F No: b/c [because] it is a linear function. Yes: b/c it is a graph. 2 
G No: Only one x term. Yes: more than one x term. 6 
H No: There is [sic] no powers. Yes: There is [sic] powers. 2 
I No: Not all functions of x. Yes: All functions of x. 

It is of some concern that 6 students thought that a polynomial had to have more than one 
term, since this seems to imply that they had been taught this, or certainly had learned it. Five of the 
students thought that a polynomial had to have powers of the variable greater than 1, and one that a 
polynomial could not have a constant term. Their answers also show a misunderstanding of a 
number of concepts related to polynomial in both algebraic and language representations: x has no 
power or no positive power; an integer is any positive number; 3 is a variable; and a linear function 
is not a polynomial. It would appear that the use of the GCs had had little or no effect on 
understanding of this concept. This simple example is a sobering reminder of the importance of 
communication in the classroom, and that we should never take for granted that our students are 
using words, or symbols or other representations in the same way that we as teachers are. 

In summary we can say that there was very little evidence in the tests of successful and 
positive use of the GCs in the students’ working in spite of the emphasis placed on them by the 
teachers. This may be because of a lack of time in the tests or a disinclination on the part of the 
students. There is also a sensitivity on the part of students to the context of a given representation 
which affects the form used and the meaning attributed to it. This does not mean of course that the 
GCs have not been helpful in the construction of the students’ learning, which is altogether a 
different proposition from the assessment presented here. However, it is also clear that there are still 
a number of areas where these students need to build better conceptions and to improve their 
representational versatility (Thomas & Hong, 2001a, b), and further aspects of this study will be 
looking closely at this understanding. It appears that Leigh-Lancaster (2000) is correct in saying 
that a congruency including clear pedagogical direction when integrating the use of GCs into the 
senior school curriculum is essential. To obtain good results with learning, even using well trained 
and enthusiastic teachers is not necessarily an easy task.  
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