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Abstract

We propose a method for visualizing homology, cohomology, cup products and cup—¢
products of three-dimensional objects represented as simplicial complexes obtained from
cubical decompositions. In order to compute the (co)homology of a given object, we
first thin the simplicial complex topologically. We then compute the invariants using the
resulting skeleton. Finally, we present a small prototype for visualizing this method and
some examples concerning topological thinning and the computation of the cohomology
ring and the cochain operations cup— products.

1 Notions from Algebraic Topology

We give a brief summary of concepts and notations used in the following sections. Our
terminology follows Munkres [Mun84].

In R", a g—simplex (where ¢ < n) is the convex hull of ¢ + 1 affinely independent points.
A O-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3—simplex is a
tetrahedron, and so on. A simplex o with vertices {vo, ..., v,} is denoted by (vy, ..., v,). An
orientation is a class of vertex orderings, which have the property that any two orderings in
the class differ by an even number of transpositions. The boundary of ¢ is the formal sum:

q .
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where the hat means that v; is omitted. The simplices (vo,v1,- .., 0, ..., v,) are the (¢ — 1)
faces of 0. In general, if ¢+ < ¢, an 1—face of ¢ is a simplex of dimension 7 whose vertices are in
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the set {vg,...,v,}. A simplex is shared if it is a face of more than one simplex. Otherwise
the simplex is free if it belongs to one higher-dimensional simplex, and mazimal if it does not
belong to any. A simplicial complex K is a collection of simplices in which the intersection
of any two is also a simplex of K or empty. Then, a simplicial complex K can be given by
the set of its maximal simplices. The set of all the ¢g-simplices of K is denoted by K,. The
largest dimension of any simplex in K is the dimension of K. The number of simplices in K is
denoted by |K|. A subset K’ C K is a subcomplez of K if it is a simplicial complex itself. All
simplices in this paper have finite dimension and all simplicial complexes are finite collections.
From now on, K denotes a finite simplicial complex.
A g—chain a is a formal sum of g—simplices

Ao+ Ao + -+ Ao

where each ); is chosen from some abelian group GG. The ¢—chains form a group with respect to
the component-wise addition; this group is the gth chain group of K, denoted by C,(K). By
linearity, the boundary operator d, can be extended to ¢g—chains, where it is a homomorphism

9: Cy(K) — Cyy(K).

It can be readily shown that for any chain a, 00a = 0. A ¢—chain a is called a ¢—cycle if da = 0.
If a = 0a’ for some @' € Cyy1(K) then a is called a g—boundary. We denote the groups of ¢—
cycles and ¢g-boundaries by Z,(K) and B,(K) respectively, and define Zy(K) = Cy(K). Since
B,(K) C Z,(K), we can define the gth homology group to be the quotient group Z,(K)/B,(K),
denoted by H,(K). Given that elements of this group are cosets of the form a+ B,(K), where
a € Zy(K), we say that the coset a + B,(K) is the homology class in H,(K) determined by a.
We denote this class by [a].

Dual concepts to the previous ones can also be defined. The cochain complex of K, denoted
by C*(K), is defined in each dimension ¢ by

CYUK) =Hom(Cy(K);G) ={c: Cy(K) = G : c¢is a homomorphism }
and 67 : CY(K) — C(K) called codifferential is given by

59(¢) () = ¢(3y410)

where ¢ € C9(K) and a € Cyy1(K). Note that a ¢g—cochain can be defined on K, and it is
naturally extended by linearity on C,(K). Z?%(K) and B?(K) are the kernel of §¢ and the
image of 771, respectively. The elements in Z(K) are called g—cocycles and those in B?(K)
are called g—coboundaries. It is also true that §909~! = 0, so the gth cohomology group

HY(K) = Z*(K)/B'(K)

can be defined for each integer q.

In this paper, we use a special type of homotopy equivalence between two simplicial com-
plexes K and K'. A contraction [EM53] r from a simplicial complex K onto another simplicial
complex K' is a set of three homomorphisms (f, g, ¢), where f : CY(K) — C(K') (projection)
and g : CY(K') — CY(K) (inclusion) have good behaviour with respect to the codifferentials
and satisfy that fg = 1; and ¢ : C9(K) — C9"(K) (homotopy operator) satisfies

1—gf = 66+ 66.



Moreover, ¢pg = 0, f¢ =0 and ¢¢ = 0. An important poperty is that if there exists such a
contraction, then |K'| < |K|, and the homology and the cohomology ring of K are isomorphic
to those of K.

2 Representation of 3D objects

To begin with, we need an appropriate discrete representation of 3D objects. Typical types
of representation for 3D digital images are the voxel representation [Ros81|, the tetrahedral
representation [Boi88], and the surface representation [KRW91], corresponding to the partition
of the 3D space into unit cubes, tetrahedra, and closed and bounded surfaces, respectively.
We use a representation which is defined by a special finite simplicial complex. The key idea
is the following: first, let us consider a 3D cube grid. Next, let us decompose each cube into
six tetrahedra as in Figure 1. The tetrahedra in the figure may be listed using their vertices:

{(1,2,4,6), (4,5,6,8),(3,5,7,8), (1,3,4,5), (3,4,5,8), (1,4, 5,6)}.

In this way we can see a cube as a simplicial complex. Two adjacent cubes present in their
shared boundary vertices, edges and triangles that are simplices in both. Now, the initial 3D
cubic grid is converted into a 3D simplicial complex. A simplicial representation is a finite
subcomplex of this infinite complex obtained from the cube grid. It is clear that every 3D
object represented by voxels also has a simplicial representation. On the other hand, our
simplicial representation in which only tetrahedra appear can be seen as a special tetrahedral
representation. We use simplicial representations as they are adequate for computing the
cohomology ring and cup— products and, at the same, they lend themselves to convenient
visualization of 3D objects.
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Figure 1: A cube decomposed in six tetrahedra.



3 Topological Thinning

Topological thinning is an important preprocessing operation in image processing [DP81].
The aim is to shrink a digital image to a smaller, simpler image which retains a lot of the
significant information of the original. Then, further processing or analysis can be performed
on the shrunken image.

In our approach, a given 3D digital image is converted into a simplicial complex using a
simplicial representation. There is a process for thinning a simplicial complexes using simplicial
collapses [Bjo95]. Suppose K is a simplicial complex, o € K is a maximal g—simplex and o’
is a free (¢ — 1)—face of 0. Then, K simplicially collapses onto K — {0, 0'}. More generally, a
simplicial collapse is any sequence of such operations (see Figure 2). An important property
of this process is that there exists an explicit contraction from C*(K) onto C*(K — {o,0'})
[For99]. A thinned simplicial complex M;,(K) is a subcomplex of K with the condition
that all the faces of the maximal simplices of M;,,(K) are shared. Then, it is obvious that
it is no longer possible to collapse. There is also an explicit contraction from C*(K) onto
C*(Miop(K)). Therefore, we can apply our process to compute topological invariants on the
thinned simplicial complex M;,,(K), and the results can be easily visualized in the original
simplicial complex K. The following algorithm computes M;.,(K). Suppose that K is given
by the set of its maximal simplices.

Initially, M;p(K)=K

while there exists a maximal simplex o with a free face o' do
Miop(K) = Myop(K) — {0,0'}

end while

We have implemented an alternate algorithm based in the results given in [SDR98|. That
paper deals with the tetrahedral representation and the thinning consists in deleting tetrahedra
if they do not change the topology of their neighbors. This procedure can be seen as a
particular case of that of Forman’s, as a tetrahedron o is simplicially collapsed if the result is
a collection of shared faces of o.
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Figure 2: Simplicial collapse of a 2-simplex onto a vertex.




4 Algebraic Thinning

Having obtained the thinned complex M;,,(K), we next compute the (co)homology. The
computation of a contraction (f,g,¢) from C*(M,.,(K)) onto its cohomology is essential
for us because we use it in order to compute the cohomology ring and the cup— products.
By interpreting the well-known classical “reduction” algorithm for computing (co)homology
groups [Mun84], in terms of homotopy equivalences, we construct an algebraic minimal model
of a given finite simplicial complex K, inductively. That is, we compute a minimal cochain
compler Mag(K) (a finitely generated free abelian group such that the Smith normal form
of the matrix corresponding to the codifferential in each degree has all the elements different
to one) together with a contraction from C*(K) onto My (K). Indeed, there is an algebraic
minimal model for every finite simplicial complex K, and any two algebraic minimal models
of K are isomorphic. Whenever G is a field or the cohomology of K is free, My, (K) is
isomorphic to the cohomology of K and, therefore, we can construct a contraction from C*(K)
onto H*(K). All this procedure can be interpreted as an algebraic thinning of the cochain
complex of K. We compose the contraction from C*(K) onto C*(Mep(K)), described in the
last section, with that from C*(M,ep(K)) onto H*(Myop(K)). Then, we have a description of
the generators of the cohomology groups of K in terms of cochains. Details can be found in
[GR].

5 Cohomology ring and Cup— Products

After applying topological and algebraic thinning to the starting simplicial complex K in order,
we are able to compute the cohomology ring. Actually, we will first calculate the cohomology
ring on M., (K). We then translate the results for K via the first contraction from C*(K)
onto C*(Miep(K)).

If G is a ring, then the cohomology of K is a ring with the cup product

—: HY(K)® H’(K) — H"V(K)

defined at a cocycle level by ¢ — c'(0) = p(c(vo, ..., v;) ® ¢ (vi,...,vi+5)), where ¢ and ¢
are an i—cocycle and a j—cocycle, respectively, o = (v, v1,...,viy;) € K;y; is such that
vy < v < --- < Vg4, and p is the product on G.

Using the contraction (f, g, ¢) from C*(M,,,(K)) onto H*(K), we can compute the coho-
mology ring of K in the following way:

Take « and 3, cohomology classes of K
Compute f(g(c) — g(8))

The resulting cohomology class is determined by the cocycle ¢ = g(a) — g(8). If the coho-
mology class is zero, then c is also a coboundary. In order to compute a cochain ¢’ such that
¢ = dc/, we use the relation

c—gfc= ¢ddc+ dopc.

Since ¢ is a cocycle, then dc = 0, and it is also a coboundary, then f(c) = 0. Therefore, we
have
c=0 ¢c.



More complicated examples can be done with the cochain operations cup—i products [Ste47]
—i: CP°(K) ® C1(K) — CPT(K)

using the combinatorial formulae obtained in [GR99]. We give an example of these operations,
in the next section.

6 Graphical User Interface

In this section we show a small prototype developed for manipulating higher abstract notion
such as cohomology of simplicial complexes.

We use the free 3D graphic library Morfit (www.morfit.com) for development. This is a
free program for building 3D worlds. In our case, a world is a 3D simplicial complex. In order
to create a new world, the user introduces the number of rows, columns and “levels” of depths.
For example, in Figure 3 we create a 3D world, called Prueba, with 4 rows, 3 columns, and 2
levels.

x|
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Figure 3: Creating a 3D simplicial complex.

Initially, the world is empty. There are several processes in the program to create a
simplicial representation in the world. One method is to manually select the simplices using
“Editar matriz” command, as shown in Figure 4. On the left, there is a menu in which we
select the simplices that we want to render. The selected simplices are shown in the window
above. The simplicial representation that we are creating in the world Prueba appears in
the window on the right. The yellow square in the window represents the selected cube.
By selecting “Movimiento” command and using the cursors, we can move in any direction.
Another method is to create a simplicial complex by hand in a cube, and afterwards to
use “Repetir patrén” command. With this command, the rendered simplices in the cube
are rendered in the rest of the cubes of the world. In Figure 5, we can observe that only
maximal simplices are rendered in the tessellation. Finally, it is possible to create simplicial
representations randomly using “Generar aleatoria” command.

A way to distinguish the different maximal simplices of the simplicial complex associated
with a simplicial representation is by using different colors: red for tetrahedra, green for
triangles, blue for edges, and black for vertices. In this way, we can distinguish a tetrahedron
from four triangles joined by their edges. There is a red voxel into each rendered tetrahedron
indicating whether we are inside or outside the tetrahedron.
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Figure 4: Creating a simplicial representation by hand.

Figure 5: Rendered simplices in a cube and a tessellated (2 x 2 x 2)—world with it.

“Adelgazar” command thins a simplicial complex, following the procedure given in
[SDR98]. We show an example of this process in Figure 6.

For visualizing cochains, the simplices on which a given cochain is non—null, are lighted in
yellow color. As an example, using the combinatorial description of M., (K) from Figure 7, let
us define on M, (K) the cochains ¢ : Co(Miop(K)) — Z and ¢ C3(Myop(K)) = Z,
where

c(6,7,22) = —10 (7,8,12,28) = 3
¢(5,6,10) = 5 (5,6,10,26) = 2
c(11,12,32) = —2 and d(11,12,16,32) = —11
c(16,31,32) = 1 (16,31, 32,36) = —3

¢(16,31,36) = 3

and they are zero over the rest of the simplices. Then we obtain that

¢y C3(Miop(K)) = Z



Figure 6: A simplicial complex K and M,,(K) using [SD98g].

is determined by
c—5d(5,6,10,26) = 10
c—y d(11,12,16,32) = —22
¢ —y (16,31,32,36) =6

and it is zero elsewhere.

Let us consider now the following simplicial complexes: the torus (the space X) and
the wedge of two topological circles and a topological 2-sphere (the space Y). Simplicial
representations of these spaces are shown in Figure 7.

Figure 7: Our simplicial description of the spaces X and Y

We will distinguish these spaces using cup products (this example is showed in [Mun84], pag.
295-297). It is clear that the cohomology groups of the torus are isomorphic to those of Y.
They are Z, Z & Z and Z in dimension 0,1 and 2, respectively. However, the cup product on
cohomology allows us to distinguish these simplicial complexes.

In Figure 8 we show two representative cocycles u,v : Cy(X) — Z generating H'(X) =
Z & Z, obtained using the process explained in Section 4. The cup product v — v is a 2-
cocycle that is non-null only for a 2-simplex and it is a representative cocycle w of H?(X)
(see Figure 9). Let us recall that our algorithm for computing cohomology gives us not only



the cohomology groups but also an explicit contraction from C*(X) to H*(X) (the minimal
cochain complex in this case), allowing us to determine both a representative cocycle for each
cohomology class and the cohomology class for each cocycle. An analogous computation shows
that [u] — [u] = [v] — [v] = 0 and [v] — [u] = —[w] (the cup product is anticommutative in
cohomology).

126}
(1027}
(11231
(1127}

026271

Figure 9: The cup product u — v (in green).

If we consider now two representative cocycles u' and v’ generating H'(Y'), the result of
u' — v' is null. Analogous computations show that [u'] — [u'] = [v'] — [V'] = [v'] — [v/] = 0.
Therefore, it is immediate to conclude that X and Y are not homeomorphic.



Figure 10: On the left, the visualization of the cocycles v’ (in blue) and ' (in yellow), and,
on the right, the answer the cup product v’ — v’ is null.
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