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Abstract 
The technology that we use to present a topic to our students, and the technology that we expect our 
students to use in class, can have profound effects on what is taught and the way in which it is 
taught.  Sometimes this does not happen for a number of reasons, including concerns as to how 
much the students will "understand" using the new technology, and the development of new 
curriculum and new methods can be slowed or stopped altogether.  One way to work through these 
difficulties is to present blocks of "imaginary curriculum" as a basis for discussion among teachers 
and authorities, working through the sorts of understanding we would expect students to develop 
and identifying points where something might be gained or lost.  A specimen topic is developed in 
this paper. 
 
In Australia in the middle years of secondary school students typically learn to work algebraically 
with quadratic functions, first multiplying out products of terms and then reversing the process to 
factorize quadratics.  Later this is extended into completing the square and solving quadratic 
equations by factorizing, by completing the square or by use of the standard formula.  Later again 
students use these algebraic skills in constructing graphs of quadratic functions. 
In this paper the author demonstrates how the process can be completely reversed, using modern 
hand-held graphing calculators, by studying graphs first and then deducing all the standard 
algebraic processes.  Examination of the underlying processes suggests that this method is at least 
as easy to understand, if not clearer; that students will "understand" at least as much as they do by 
learning the traditional processes; and that they will be more able to extend their skills into more 
advanced problems.  In an ideal curriculum students would probably learn both approaches and the 
connections between them, to enable them to check their work and reinforce their understanding in 
multiple ways. 
 
 
Introduction 
Over the last three decades there has been a technological revolution in the teaching and learning of 
mathematics centred on computers and various hand-held calculators.  Typically the arrival of new 
technologies has been driven by the manufacturers somewhat in advance of the bulk of the teaching 
community, which has then had to react to each new object retrospectively.  Often this leads to 
situations of conflict between those keen to exploit new possibilities and those anxious to preserve 
existing standards and practices.  The most common outcome is that old curriculum is preserved 
either intact or modified slightly, with the uses of new technology limited by being retro-fitted to 
the old requirements (Jones, 2000). 
 
In Australia and elsewhere much current discussion is centred on the new possibilities of algebraic 
processing.  Computer algebra systems have been available for more than a decade but have made 



 

 

very little impression on the school curriculum, rather like the earliest computer-based graphing 
packages.  More recently hand-held devices that provide full algebraic processing have been 
available, and a number of initiatives are under way that attempt to address the issues that follow.  
How should such devices be used in teaching?  What changes should be made to the curriculum?  
What are the key skills and knowledge that we want students to acquire?  Should the device be 
available to students without restriction, or should its use be limited in some way?  What should our 
students be able to do with the technology, and what without it?  Good current examples with 
extensive further bibliographies can be found at Stacey et al (2000) and Kutzler (1999); and a recent 
local discussion focussing on alleged "understanding" is reported in Tobin (1999). 
 
 
One element of the discussion has been individuals or groups listing items of curriculum or test 
items according to whether they should be done with or without technology (example: Herget et al 
(2000)).  It is not always clear what methodology is being applied here, or how the essential skills 
are to be identified, except by the expression of opinion of one or more writers making essentially 
ad hoc decisions item by item. 
 
To take an example, "should" a senior secondary student be able to factorize the trinomial  x2  + 5x 
+ 6  without technology?  Consider the following imaginary students: 
A is well-trained in traditional methods, and immediately knows "I need two factors of 6 that add 
up to 5"; quickly chooses 2 and 3, and writes  (x + 2)(x + 3). 
B is well-trained in graphical methods: he or she takes a graphical calculator, graphs the function, 
observes the roots at �2 and �3 and then deduces the factorization. 
C takes an algebraic processor and uses the factorization command to obtain the answer directly. 
Which students "understand" the process?  Which "understands" it best?  To say that A exhibits the 
greatest "understanding" simply because he or she has produced the answer without technology is 
far too simplistic: a trick has been performed, but what meaning the student attributes to it has not 
been established.  Student B, I would argue, clearly "understands" the relationship between factors 
and roots, and the nature of quadratic functions; what has not been established is whether the 
student could have found the roots unassisted by technology (e.g. by trial substitutions and 
calculation).  What student C understands is impossible to say! 
 
In the real world curricula are established by fairly cumbersome processes and become very 
difficult to change.  When a new technology appears we seem to be trapped in an inevitable cycle of 
initial suspicion or rejection (apart from a few enthusiasts), followed by gradual acceptance in 
limited contexts, followed by eventual concession, often without any real rethinking of what is 
being taught or why; the new technology is limited by the old and inflexible curriculum.  Radical 
experimentation is rarely possible except in very limited contexts, so that we rarely see the full 
potential of the new technology to transform and enrich the material we teach. 
As a way forward, I want to suggest that one way of furthering the debate is to produce specimens 
of imaginary curriculum, in which we imagine how a new or traditional topic might be taught 
using available technology and try to follow through the understandings and thought processes that 
students so taught would be expected to develop.  Informed discussion can then follow as to what 
might be gained and what lost, and value judgements made as to the worth or otherwise of the new 
approach versus the old.  If consensus emerges, the imaginary curriculum can then be trialed on real 
students and tested thoroughly.  In the balance of this paper I give a specimen of this approach, in 
the middle secondary topic of the factorization and algebraic manipulations of quadratic functions.  



 

 

While other authors and teachers have certainly used a graphical approach to illuminate the 
standard algebra (such as Brown, 1998), I am proposing a rather more radical reworking. 
 
 
QUADRATIC FUNCTIONS: A TRADITIONAL APPROACH 
1.  Local students typically begin their study of this topic with the algebraic task of multiplying out 
products of the forms (x + a)(x + b), (ax + c)(bx + d) etc, and collecting like terms to obtain a 
trinomial.  This is taught initially as a purely mechanical process, but students may begin to observe 
patterns in their results. 
A special study is usually made of perfect squares. 
 
2. A little later students meet the reverse process of factorization: 
(a) All positive terms x2  + ax + b = (x + A)(x + B) 
Students must find two factors A and B of b adding to a.  Results are only expected for integers a, b 
with two integer factors A, B. 
(b) Negative middle term x2  � ax + b = (x � A)(x � B) 
Essentially this is the same process. 
(c) Negative constant term x2  ± ax � b = (x + A)(x � B) 
Students must find two factors of b with difference a, and then work out which term in the factors 
has which sign.  Generally this is found to be "harder", but only expected with simple integers. 
(d) Recognition of special type: perfect squares. 
(e) Recognition of special type: difference of two squares. 
Here it is customary to introduce a new complication of irrational roots, e.g. 
 x2  � 5 = (x + 5 ) (x � 5 ) 
(f) Hardest types: non-monic (a ≠ 1)  ax2  + bx + c = (Ax + B) (Cx + D) 
These are normally solved by repeated trial-and-error through possible combinations of (integer) 
factors of a and c balancing to give a middle term of b.  Good students pick up the "trick" fairly 
easily but are not often able to explain it well. 
 
Throughout this sequence of lessons the objects of the study are treated as abstract algebraic forms.  
The only "checking" possible is for the student to remultiply the terms obtained to recover the 
original expression, which is unlikely to clarify misunderstandings for struggling students.  It is rare 
for the expressions to be related to functions (e.g. by substituting values for x and comparing values 
in factored and unfactored forms), and practically unknown for them to be graphed � a much later 
part of the curriculum. 
 
3. The process of completing the square is a separate study, with a quite unrelated process ("trick").  
Students who master the idea simply follow the rules; many find it a perpetual puzzle. 
 
4. Solving quadratic equations  ax2  + bx + c = 0 : 
The order of precedence here has hardly changed in decades.  First, the student attempts a 
factorization and then reads off the roots by setting each term to zero.  If factors cannot be found an 
attempt will be made to solve by completing the square (in many cases with little success or 
understanding); then the quadratic equation formula will be developed and presented as an 
alternative.  Students will rapidly fall into the habit of first attempting a factorization, and then, if 
that does not succeed, using the formula.  In the state of Victoria the formula has been provided in 



 

 

most examinations since 1970.  If the formula leads to integer or simple rational solutions some 
students will then be able to reconstruct a factorization; in other problems the formula leads to 
irrational expressions which most students evaluate on electronic calculators.  In Victoria it is 
unusual for emphasis to be placed on the difference between the exact (irrational) and approximate 
(numerical) values obtained, which raises the question as to why numerical values are not found by 
other methods such as the calculator's solving functions. 
 
5. Graphing quadratic functions  y = ax2  + bx + c : 
In Australia graphing comes relatively late, and all of the above algebra is used to assist it.  Once 
the general parabolic shape is established students predict the steepness and orientation from the 
value of a, the y-intercept from c, the x-intercepts (if any) from the solutions of the equation y = 0, 
and the location of the vertex (A, B) by completing the square into  y = a (x � A)2  + B .  The graph 
is then drawn to incorporate all these expectations. 
 
 
SOME QUESTIONS CONCERNING PRECEDENCE OF IDEAS 
The first question I would like to pose is why detailed graphing is postponed as long as it is in the 
traditional syllabus.  Students meet the idea of graphing a simple function near the beginning of 
secondary education, but rarely go beyond linear functions.  They then learn a great deal of algebra 
and even calculus which is ultimately used as the basis for drawing detailed graphs of more 
complicated functions: always the algebra or calculus precedes the graphing and is used to justify or 
clarify it.  Why? 
There is nothing intellectually difficult about the idea of graphing a function, once the actual 
calculation of values is possible: we calculate paired values of x and y and plot the points, and join 
them into a smooth curve.  In theory any points of confusion can be clarified by calculating further 
points, at least in the case of the functions graphed in the traditional secondary syllabus.  For 
example, what would a student unfamiliar with the traditional algebra just described make of the 
function  y = 3x2  � 8x + 1 ? 
Before modern technology was available we first calculated (mentally) some integer values: 
 x 0 1 2 3 4  
 y 1 �4 �3 4 17 
and then plotted these on graph paper (an old technology).  We can see the y-intercept exactly, we 
can see there must be x-intercepts between 0 and 1 and between 2 and 3, and with some experience 
of the general shape we can see roughly where the vertex will come. 
To refine these details all we need is to calculate further values, but it is here that we really start to 
appreciate modern calculators!  With a lot of patience we could explore the lower root by 
calculating: 
 x   y x    y x     y 
 0.0 1 .10 .2300 .130 .010700 
 0.1 0.23 .11 .1563 .131 .003483 
 0.2 �0.48 .12 .0832 .132 �.003728 
   .13 .0107 
   .14 �.0612 
and so far we have almost found the root to three decimal places, but at the cost of no little 
calculating time.  Under these circumstances it would be greatly more efficient to use the formula 

to obtain x = 
8 � 52

6   = 
4 � 13

3   , which requires only a simple table of square roots to give us a 



 

 

numerical value of 0.1315.  Similarly, to find the vertex by calculating alone would require more 
messy and boring work: 
   x   y   x    y    x       y 
 1.0 �4 1.30 �4.3300 1.330 �4.333300 
 1.1 �4.17 1.31 �4.3317 1.331 �4.333317 
 1.2 �4.28 1.32 �4.3328 1.332 �4.333328 
 1.3 �4.33 1.33 �4.3333 1.333 �4.333333 
 1.4 �4.32 1.34 �4.3332 1.334 �4.333332 

It is much easier to "know" that the vertex occurs at x = � 
b
2a  = 

4
3  ! 

So in the old technological context, where calculating beyond mental and integer arithmetic is 
cumbersome and tedious, algebra and (later) calculus are powerful weapons for reaching important 
information precisely and efficiently.  But there have been not one but two important advances 
since those days: simple machines to do computations vastly more efficiently (calculators, 
spreadsheets), and slightly more advanced machines or programs to graph the results (graphical 
calculators and packages).  In this not exactly new circumstance, is it not time to ask whether the 
algebraic and calculus approaches have not lost some of their importance? 
 
Of course I produced all of the above calculations on a machine: in fact using the tabulation 
functions of a graphical calculator.  Students could have been doing this with ordinary pocket 
calculators, or with spreadsheets on a computer, for more than twenty years, and in many cases 
have been, but only as an adjunct to the traditional approach.  For the last ten years or more we have 
had the additional option of producing instant graphs, which allows the function to be visualized in 
detail as never before.  All these machines or packages are doing is bulk calculation followed by a 
joining-the-dots process: there is no higher mathematics involved, and no circular reasoning if we 
use this technology to develop and explain the algebra or calculus.  This is essentially what I am 
proposing in the specimen of imaginary curriculum that follows. 
 
A GRAPHICAL APPROACH TO QUADRATIC FUNCTIONS 
Assume a group of students comfortable with graphing calculators and beginning to explore the 
world of functions and their graphs.  We introduce the squaring function  y = x2  and note the new 
shape, and then explore the effect of altering it, adding or multiplying by constants, or adding a 
linear function, noting how robust the fundamental shape is. 
 
1.  We propose a group of quadratic functions of the form  y = ax2  + bx + c. 
We note the "obvious" features of the graphs: all are vertically symmetric parabolas, with the 
orientation determined by the coefficient a; all cut the y-axis exactly once (at y = c); all have a 
vertex; there may be one, two or no x-axis intercepts.  It should be clear and understood that the 
function is pairing values of x and y, with the graph somehow illustrating the connections. 
 
2.  We note the effect on the shape of some simple transformations: 
(a) y = ax2  changes the apparent steepness and the orientation, depending on the value of a.  [In 
fact the shape does not change, only the portion of it viewed.] 
(b) y = ax2  + c moves the shape vertically. 
(c) y = a (x � B)2  moves the shape horizontally. 



 

 

In some graphics-based courses the concepts of horizontal and vertical translation are introduced 
earlier on, with linear functions, but unfortunately we cannot distinguish visually between vertical 
and horizontal movements with lines.  Parabolas provide the simplest examples where these 
concepts can be clearly illustrated and distinguished. 
 
3.  From this we deduce that a parabola with vertex (A, B) must have the equation 
  y = a (x � A)2  + B 
for some value of a. 
Completing the square can thus be accomplished purely graphically: given the form y = ax2  + bx + 
c, we obtain the graph, locate the vertex using the calculator's minimum or maximum functions, 
and write out the squared form, using the same value of a.  The reverse process should probably be 
done algebraically by multiplying out, but can instantly be checked by comparing the graphs of the 
two forms. 
[Students who appreciate the relative inaccuracy of the maximum and minimum functions can 
exploit the symmetry properties of the parabola.  If there are two x-axis intercepts they can be found 
from the graph to high accuracy, and the average of these two x-values is the x-value of the vertex.  
If there are no x-axis intercepts we can draw some appropriate line y = d that cuts the parabola 
twice and use the two intersection points instead.] 
 
4.  A parabola that cuts the x-axis twice at x = A, B must have the equation 
  y = a (x � A) (x � B) 
for some value of a. 
Factorizing, when possible, can thus be accomplished purely graphically: given the form y = ax2  + 
bx + c, we obtain the graph, locate the intercepts using the calculator's zero or root functions, and 
write out the factorized form, using the same value of a.  The reverse process can again be done 
algebraically by multiplying out, and can instantly be checked by comparing the graphs of the two 
forms. 
When this is understood it is a simple extension to note that a parabola that touches the axis at x = 
A must have the equation  y = a (x � A)2 , and there is no particular mystery as to why some 
quadratics have no real roots at all, and hence no real factors. 
 
5.  Students who are used to the idea of the quadratic function (rather than the rather more abstract 
algebraic trinomial) can then exhibit and check the factorization in a sort of spreadsheet, for 
example: 
  x2  + 5x + 6 = (x + 2)(x + 3). 
x x2  5x x2  + 5x x2  + 5x + 6 x + 2 x + 3 (x + 2) (x + 3) 
0 0 0 0 6 2 3 6 
1 1 5 6 12 3 4 12 
2 4 10 14 20 4 5 20 
3 9 15 24 30 5 6 30 
4 16 20 36 42 6 7 42 
This provides a sometimes fascinating alternative to the other possibilities of graphical and 
algebraic checking. 
 
6.  The process of solving quadratic equations is essentially the same as factorizing, when done 
graphically.  Given an equation to solve, a student might go directly to the calculator's (numerical) 
equation solver, or read the numerical roots from the graph.  Some calculators at least can recover 



 

 

non-integer rational roots in exact rather than decimal notation (such as with the Texas Instruments 
fraction converter).  Given some experience and some algebraic insight, advanced students can also 
recover the exact form of irrational roots for equations with rational coefficients if desired.  The 
algebraic form of the quadratic equation formula remains, of course, a piece of algebraic work, but 
it can be easily illustrated and more readily digested when the graphical approach is understood. 
 
Essentially that covers the standard secondary syllabus.  In addition there are a number of purely 
graphical "tricks" which can be developed if desired.  For instance, it is possible to identify the 
equation of a quadratic function entirely from its graph, if the graph can be interrogated: one can 
find intercepts (if they exist) and deduce the form a(x � A)(x � B); or one can find the vertex and 
deduce the form a(x � A)2  + B.  In either case the coefficient "a" is to be determined, probably 
most simply by stepping one unit away from a root or from the vertex and observing the value of y.  
Students can then convert to standard form  y = ax2  + bx + c by algebra and check their work by 
making sure the graphs coincide. 
Another "trick" can find the complex roots of a quadratic with negative discriminant.  Locate the 
vertex of the graph at (A, B) and draw the line y = 2B; then find the intersection points of the 
parabola and the line.  If half the horizontal difference between them is b, the complex roots are A ± 
ib. 
 
EXTENSIONS AND OBJECTIONS 
One of the really exciting features of the graphical approach is the way it generalizes easily to 
polynomials of higher degree.  A student who has mastered the above points will have no difficulty 
in working with polynomials of degree n that have n distinct roots, because the factorization will be 
immediately apparent from the graph.  Repeated roots will be identifiable by turning points on the 
axis, and complex root pairs by insufficient real roots.  The process of division to find outstanding 
roots (or quadratic factors) can be done graphically by dividing the equation by the so-far known 
factors; if the result is then a parabola the student can work out its equation from the graph as 
explained above. 
Of course there are occasions when a purely graphical approach will be inadequate.  All graphing 
packages and devices work on the basis of a fairly small number of calculations and pixels, and 
anything that falls into the gaps between the pixels is effectively invisible.  It is very difficult to tell 
the difference between a quadratic that "just" misses the axis and one that touches it, or one that has 
two extremely close roots, but of course these examples are not seen in the conventional syllabus 
either, where typically all coefficients are small integers.  More complicated misleading examples 
can be constructed with polynomials of higher degree, but again this is unfair given that in the 
standard syllabus students deal only with cubics, for instance, that have one small integer root (and 
then deal with the balance by factoring to get a quadratic quotient).  The calculator is not concerned 
if the coefficients of a polynomial are integers or fractions, small or large numbers, as long as 
students gain the skill of selecting an appropriate window each time.  The set of problems that can 
be handled effectively with graphing technology seems to be much more extensive than those 
covered in the current syllabuses. 
I am not proposing an abolition of algebra!  I believe that students understand best when more than 
one approach is used, and the connections are made explicit, and students are encouraged to use 
technology to explore problems and check their work (Barling & Jones, 2000).  What I particularly 
want to challenge is the current primacy of algebra in this basket of topics.  I want to suggest that 
some algebraic topics were introduced initially to facilitate graphing, and that with modern 



 

 

technology some might well be obsolete, or more usefully studied via graphing rather than the 
reverse. 
In addition I believe that, whatever sense we end up making of that much invoked concept 
"understanding", an average student trained through the graphical approach will exhibit a deeper 
and more mature level of it than an average student trained in the traditional way.  The former I 
would expect to have some notion of the polynomial as a shorthand for a function as well as an 
object of pure algebra, and be able to relate this function as well to its graph and to a table of 
selected values; he or she will also have a direct knowledge of the relationship between factors of 
the polynomial, roots of the related equation and intercepts of the matching graph.  The latter, all 
too often, has mastered a series of "tricks" that each belong to a different situation with few obvious 
connections, and it is precisely in the connection between related concepts that the heart of 
"understanding" seems to lie.  While the graphically trained student might also develop this sort of 
segmentation, it seems much less likely.  For this paper I pass over the obvious next stage of what 
happens when the student has access to a computer algebra device that can do all of the required 
tasks directly. 
It may well be that in the current reconsiderations of curriculum we end up requiring students to 
perform certain sorts of bookwork without the use of any electronic technology, to demonstrate 
traditional "understanding".  But even when studying topics and techniques so labelled, students 
should also be permitted and encouraged, outside the very artificial situation of technology-free 
assessment exercises, to use technology to check answers and reinforce their understanding, if not 
also to make preliminary explorations. 
 
In conclusion, I would like to restate my belief that most current secondary algebra can be done 
equally effectively using graphing technology, and in many cases the graphing technology makes 
the task much simpler for students who understand its use.  I suspect that students who use this 
technology well will be found to exhibit at least as much "understanding" as those adept at the 
current box-of-tricks procedures.  Graphing technology enables students to fulfil all current 
expectations of the secondary syllabus, and generalizes much more readily to harder or 
"impossible" situations on which the current syllabus is effectively silent. 
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