Educational use of Maplein Engineering
M athematics

Hardd Pleym
Telemark University College, Department of Technology
Kjolnes Ring 56, 3914 Porsgrunn, Norway
harald.pleym@hit.no

Abstract

The main objective of this paper isto show how the computer agebra system Maple can

be integrated as a valuable and powerful tool into the learning process of engineering

mathematics. Maple can be used in severa ways.

- Only asasolving engine. That means, you enter a mathematica expresson which Maple
subsequently execute, and you are freed from tedious computations

- To present amethod as a sequence of stepsin much the same way asin a textbook.
The primary purposethen is to present intermediate steps to show how to solve the
problem. Thisisrelevant in most of a sudent's homework solutions

In this paper these methods of usng Maple will be demonstrated with selected examples

from caculus, differentid equations, integra transforms and linear dgebra. One of the

beautiful qudities of Maple is that much can be done with relatively few commands and

without involving forma programming with Maple. But when intermediiste Sepsin solving

aproblemisclear, and especidly if the focusis to demonstrate what happensto a solution

when parameters are changed, it is often desirable and also an easy task to put the

commands in question between "proc” and "end" to make a procedure. Examples of mixing

seps together in thisway will be shown.

I ntroduction

At Telemark College, Department of Technology in Porsgrunn, Norway, we have since
1995 incorporated the computer dgebra system Maple as an integrated part of the learning
process in egineering mathemeatics. | have developed interactive worksheets to present
worked examples throughout al the subjectsin the curriculum. They are designed to be
used in conjunction with the textbook the students use in order to show how the computer
agebra sysem Maple can be integrated as a valuable and powerful tool into the learning
process of the materia. These sample worksheets are aso intended to be used as guides
when the students prepare their own worksheets solutions to exercises and problemsin
mathematics or other homework where Maple is used. The main objective in this paper is
therefore only to show afew examples on how Maple can be used both as an "ingdructor”
and aso to replace the use of pen and paper to present for instance a students homework
as alive interactive Maple worksheet instead of a"dead" paper.



| ntegration by partials fractions
The firgt problem students often have before they can make use of the method of partia
fractionsis that they don't know how to find the factors of Q(x) in the integrand of the

form % where P(x) and Q(x) are polynomiasin x and the degree of P(x) isless
than the degree of Q(x ). Secondly, they have to write down the integrand as a sum of
smpler fractions corresponding to the factors of Q(x) before they can find the constants
by adding up the fractions in the decomposition, and then equating coefficients of like
powersof x inthe numerator of the sum with thosein P(x). Heretheam isto illugtrate
how we first can make direct use of Maple to find the factors and the sum of smpler
fractions, before we proceed to present the method where al steps are shown. Thisis
usudly required in a student's homework solution. To illusirate how the decompodtion is
effected, we condder an integra where Q(x) can be written as a combination of linear
factors and irreducible quadratic factors.

Example 1

9 xX-4x-1 o y
Find § 2 3 5 dx using partid fraction decomposition.
X -2X +2x°-2x+1
0

Solution
We define the integrand as the function
> 1:=X->(XN 3-4% X-1)/ (XN 4-2% XN 3+2% XN 2-2* X+1).
R(X)=r (x);
X2- 4x-1

x4- 2x3+2x2- 2x+1

R(x) =

> factor (%);

X2-4x-1
R(x) = 5 5
(x*+1)(x- 1)
> Rf:=rhg(%):
Therationd function R(x) may be decomposed into the sum of smple fractions of the type
> convert(% % ,parfrac,x);
3

1 . 2 1-5+x
(x- 17 X-1 2x%41
In the same way we could us Maple as an ingructor to show us how the decompostionis
effected when Q(x) congstsof 1) linear factors, none of which are repested, 2) linear
factors, dl of which are the same, 3) Irreducible quadratic factors, none of which are
repeated, 4) Irreducible quadratic factors, dl of which are the same.
Now we decompose R(x) into the sum of the ample fractions of the type
> eq: =Rf=A/(x-1)" 2+B/(x-1)+(C*x+D)/(x" 2+1):%;

x*-4x-1 A B Cx+D
= + -+
C+1)(x-1)° (x-17° Xx-1 x4+1

R(x)=-2




We smplify the right-hand sde
> amplify(%);
- 4x-1 B
(X*+1)(x- 1)°
AxX2+A+Bx- BX*+Bx- B+Cx’- 2Cx*+Cx+Dx%- 2Dx+D
(x*+1) (x- 1)

pick up the numerators
> map(numer,%);
X2- 4x- 1=

AX°+A+Bx - BX*+Bx- B+Cx’- 2CxX°+Cx+Dx*- 2Dx+D
and collect the coefficients of like powers.
> eqa:=collect(%,x):%:;
X2- 4x- 1=

(B+C)x’+(-B+A+D- 2C)x*+(B- 2D+C)x+A+D- B
Equating the coefficients of x>, X, x and the constant term on both sides gives
> seq(map(coeff,eqa,x,i),i=0..3):%;

-1=A+D-B,-4=B- 2D+C,0=-B+A+D-2C,1=B+C

Thus we have four equationsin A, B, C and D, which may be solved to give
> solve({%},{A,B,C,D});

Then we have
> subs(%,eq);

X - 4x- 1 1
2 ;=2 2t T
(xX*+1)(x- 1) (x- 1) x-1 x+1
Now integration gives

> map(Int,% X);

; 8] 3 1 5
0 5 Q = - =X+~
Q x'-4x-1 Q 1 2 2 2
0 ~dx=8-2 >+ + dx
X + X - X - - X +
§ 1 1 8 1 x-1 1
0

> |hg(% )=value(rhs(%))+C;

Q 3

8 X -4x-1 _
8 5 2dX—Z 1
0(x +1)(x- 1) X

To check the reault, we differentiate both sides
> diff(%,x);

3 1 5
+§In(x- 1)- Zln(x +1)+Earctan(x)+C



3

5
- 4x- 1 1 2 1 X 2
+

=-2 + - = +
(xX*+1) (x- 1) (x- 17 x-1 2x%°+1 x*+1
> amplify(%);

x3-4x-1 x3-4x-1

(C+1)(x- 17 (C+1) (x- 1)

Newton's Method
Newton-Raphson's iterative method for generating a sequence X, X,, X, ...of
approximationsto asolution of f(x) = 0 isgiven by the formula
f(x,)

1
. f(x,)
The formula permits us to go from the nth approximation X, to the next approximation
X, +1- Theformulaisvery easy to set up and gpply repeatedly. When iterating for the roat,
it is often usua to present the caculation in tabular form. This can be done using the Maple
poreadshet, or caculate the vaues using a for-loop and present the result in a sequence
of vduesorinan array . So, the god hereisto demondrate that when the intermediate
sepsin solving the problem is understood, we put the individua commands between "proc
" and "end" to make a procedure and make use of this to execute Newtons method on a
routine basis.

Example 2

Find the root of f(x):4x3— 42 x* + 60 X + 15 = 0 which liesbetween x = 1 and x = 2

Solution

> fi=X->4* XN 3-42* X" 2+60* x+15: 'f(X)'=f(X);
f(x)=4x>- 42x°+60x + 15

We define Newtons formula

> N:=x->x-f(X)/D(f)(X);

f(x)
N=x® X-
D(f)(x)

Satingwith x = 1.1, we get
>N(1.1); N(%); N(%); N(%);

3.085682327

2.117484062

1.988066154

1.983255914
If we use afor |oop, we can represent the calculations as a sequence of vaues.

> x[0]:=1.1:
>for nfrom 1to6do
x[n]:=evalf(x[n-1]-f(x[n-1])/D(f)(x[n-1]));



od:
The sequence of values become
> S:=seq([n,x[n]],n=0..6):%:;
[0, 1.1],[1, 3.085682327], [ 2, 2.117484062], [ 3, 1.988066154],

[4, 1.983255914], [ 5, 1.983248839], [ 6, 1.983248839]
We can dso show the valuesin an array

>['n'x[n]']; array([S]);

[n x,]
é() 1.1 H
gl 3.085682327H
82 2.11748406ZH
83 1.9880661MH
34 1.983255914H
85 1.9832488396
€ 1.983248839u
If we use Maplée's spreadsheet, we can present the various stepsin the calculations.
A B C D E
n X f(x f(x
; (X,) 1) )
1 Tix n,
—f(x
e 1O0)
2| 0 | 1.10000000 | 35.50400000 | -17.88000000 1.98568232
3| 1 | 3.08568232 |-82.23884820 |-84.94009040 -.96819826
4| 2 | 211748406 | -8.29100250 |-64.06379620 -.12941790
5| 3 | 198806615 | -.28653960 |-59.56867250 -.00481023
6| 4 | 198325591 | -.00042020 |-59.39384860| - 70748067 10°
7| 5 | 198324883 | 0.00000000 |-59.39359100 0.00000000
8 1.98324883 | 0.00000000 |-59.39359100 0.00000000

It is more convenient to make a smal procedure for finding approximations by Newton's
method on aroutine bas's, when the intermediate steps are known.
> Newton:=proc(f,xO,N)
X[0]:=x0;
for nfrom 1toN do
X[n]:=evalf(x[n-1]-f(x[n-1])/D(f)(x[n-1]));
od:
[seq(x[n],n=0..N)];
end:
> Newton(f,1.1,5);
[1.1, 3.085682327, 2.117484062, 1.988066154, 1.983255914, 1.983248839]



First order linear differential equation - use of an integrating

factor

Mapl€e's dsolve command for solving differentid equation, and in this context a first-order
linear equation, usudly gives us the answer promptly. But from an educationa point of view
it isimportant to use sandard techniques and go through the solution process step by step
as the textbooks do. When we use Maple, this step-by-step solution can be presented in a
dynamic and interactive form. The following example shows this gpproach.

Example 3

a) Find the particular solution of the RL dircuit given by 20% +40i=2009gn(t) and
satisfying theinitid condition i(0) = 0.
Solution
>restart:
> 20*diff(i(t),t)+40*i(t)=200*sin(t): %;

& 6

20 Eﬁ I(t);+a+ 40i(t) =200 9n(t)

Divison of both sdes of the equation by 20 gives
> deq:=%/20:%;

giti(t)% 2i(t) = 10 sin(t)

Multiplication both Sdes by the integrating factor
> rho=exp(Int(2t));

(§2 dt)
r=e
> value(%); rho:=rhg(%):
(21)
r=e
gives
> amplify(expand(deg*rho));

2ty . O 21) (21)
2! ﬁl(t)g+2e( "ity=10¢e"" sn(t)

Here we see that the left-hand Sde of this equation may be written as the derivative of the

product e(Zt) I(t). Thuswe have
> eq.=Diff(rho*i(t),t)=rhs(%):%;
%e‘” ity=10€e"" sn(t)
Y ou should aways check your work at this point by differentiating the left-hand side of the

above equation.
> |hs(% )=value(lhs(%));
1 (2
—e
1t
Weintegrate both sides of eq to obtain
> map(Int,eq,t);

) &l

i(t)=e" i i(t)%+ 262t



(21) . Q (21 .
e i(t)dt=§10e " dn(t)dt
0

oaOOO
= |=a

> map(int,eq,t)+(0=C);

2
e it)=-2e

> smplify(isolate(%i(t))):%:

. (21) (21) . (-
i(t)=(-2e cos(t)+4e dgn(t)+C)e
> egl:=expand(% ,power):%:;

(21) (21) .
cos(t)+4e "gan(t)+C

21)

i(t)=-2cos(t) +4d9n(t) + .

t
e
Subgtituting the initid conditions ©)
> t=0,i(0)=0;
t=0,i(0)=0
gives
> subs(%,eql);
0=-2cos(0)+44n(0) + 5
(e))
> isolate(%,C);
C=2
Then we have the particular solution
> subs(% ,eql);
i(t)=-2cos(t) +49n(t) + .
(e

> |hg(% )=map(simplify,rhg(%),power);

. . (-21)
i(t)=-2cos(t)+4dn(t) +2e

It is recommended to check the answer.
> subg(% ,Ihs(deq)-rhs(deq)=0);
21)

ol , (-21) 0 . (-
gﬁ(-Zcos(t)+4sn(t)+2e )B- 4 coy(t)- 29n(t) +4e =0

>0p:
0=0

The Laplace transform

Laplace trandforms are used frequently in the analysis and design of engineering systems.
The usefulness of the transform isthat a differentid equation can be transformed into an
agebraic equation which involves no derivatives at dl. And o it reduces the problem of
solving aninitid value problem to the ingpection of atable of transfoms. But without the use
of acomputer dgebra sysem (CAS), the method is practicdly only if a sufficient large
table of transformsis available. The use of Maple enable usif necessary to add our own
functionsto Laplacesinterna |ookup table by using the addtable functionus. And we are
aso freed from tedious manua partid fraction decomposition and other adgebraic



manipulations. The following step by step solution shows that Mapl€'s Laplace transforms
package is very useful for degant and quick caculations of transforms, suitable for usein
the classroom from a pedagogical point of view. It is convenient to sart the solution
process by defining the Laplace transform and the inverse Laplace transform by functions.
The purpose of the dias facility isto dlow usto state abbreviations for the longer names
that Maple uses.
> with(inttrans):
> L:=f->laplace(f,t,9):invL :=F->invlaplace(F, s, t): alias(X(s)=L (x(1)),Y (s)=L (y(t)),

F(9)=L (F(1))):
Example 4
Solve the system
2X" = -6X + 2y,
y'=2x-2y+40s8n(3t)
x(0)=0,x'(0)=0,y(0)=0,y(0)=0
Solution
> sys:=2*diff(x(t),t,t)=-6*x(t)+2*y(t), diff (y(t),t,t)=2*x(t)-2*y(t)+4*sSin(3*t):%;

g 0 T
2 éFx(t)%: -6 x(t) +2y(t), %y(t) =2x(t)- 2y(t) +4sn(3t)

Initial conditions are
> inits:=x(0)=0,D(x)(0)=0,y(0)=0,D(y)(0)=0:%:;
x(0) =0, D(x)(0) =0,y(0) =0, D(y)(0) =0

Laplace transformation gives
>L({sysh);
{2s(sX(s)- x(0))- 2D(x)(0) =-6X(s) +2Y(s),
12
s(sY(s)- ¥(0))- D(y)(0)=2X(s)- 2Y(s) + 2 }
+9

> subg(inits,%);

2
—— 25 X(s) =- 6 X(s) +2Y(s)}
s +9

{SY(s)=2X(s)- 2Y(s)+

> solve(%,{X(),Y (9});

+3
148" +495 +36+¢
The partid fraction decomposition gives
> convert(% parfrac,s);

{Y(s)=12 , X(s) =12

148 +498 +36+¢

i : f
iX( | 3 1 4 1 2 Y(s) 4 1 9 1 1 f/
S)="_ - + , s)=— - = +
! 10°+9 58+4 S+1 55+4 55+9 sz+1l)
Theinverse Laplace transform yields the solution
>invL (%),

1 2 1. 2 . 3.
{x(t)—losn(Bt)— 5sn(2t)+an(t),y(t)—Ssn(Zt)+sn(t)- 5sn(3t)}
We can aso check this result by direct solution.



> dsolve({sys,inits} {x(t),y(t)},method=laplace);
1

{x(t) = dn(31) - és’n(Zt) +%s'n(t), y(t) :§sin(2t) +8n(t) - gsin(st)}

Eigenvalues and Eigenvectors

Eigenvaue problems are among the most important problems in connection with matrices
and engineering gpplications, and they provide criticd information in engineering design.
The advantage of using Maple is that the method described in textbooks and used by
instructors on the blackboard can be reproduced on the computer in the classroom.
Eigenvaues are the roots of the characterigtic equation || | - A| = 0. Solving this equation
isamost aways easer said than done on ablackboard. And for large matrices we may
not be able able to solve the characterigtic equation exactly. And in this case anumerica
gpproach may be the only possibility, which can be done interactively in the classroom
using the power of Maple. The example here shows the sequences of cal culations of
elgenvalues and the corresponding eigenvectors using the "blackboard" method.

Example5
Find the eilgenva ues and associated eigenvectors of the matrix
g2 o o :
A= 8— 4 6 2 H and display thefactorization A = PDP
€l6 -15 -5u
Solution
> with(linalg):
> A:=matrix(3,3,[3,0,0,-4,6,2,16,-15,-5]);
g 3 0 08
A= 3-4 6 2&
€6 -15 -5u

> 'det'(charmat(A,|lambda))=char poly(A,lambda);
& -3 0 0 ud
detgg 4 1-6 -2 ggza S3)(12-1)
e -16 15 | +5u0g
The characteristic equation of A is
> rhg(%)=0;
(1-3)1%-1)=0
> lambda: =solve(% ,|lambda);
| :=0,1,3
Withl , =0 we get
> Ac.=charmat(A,lambda[1]): X:=Vector([x,y,z]): b:=Vector([0,0,0]):
> evalm(Ac)* X=b;

g2 0 dexn e
g 4 -6 -2ugyu=g O
el6 15 5uezu € 0u

The augmented coefficient matrix of the sysem s
> augment(Ac,b);



-3 0 O 08

4 -6 -2 oh'
el6 15 5 Ou
Gauss-Jordan dimination with back subgtitution gives
> gausgord(%);

MXDDD

DDDDDDDD
o o =
= o
O Wik o
o o
creccocc,

o
o

> evalm(X)=backsub(%);

X, ,Z O, t y t

3
The elgenvector

> v[1]=subg(_t[1]=-3,convert(rhs(%),matrix));

e Ou

_e u

v, = g 1y

u

e-3u

isassociated with | | to within a constant multiple. The eigenvectors for the remaining two
elgenvalues can be produced in the same manner. Two show the complete solution, we use
the eigenvector command.

> ev:=eigenvectors(A):%;

[0,1,{[0, 1, -3]}],§1, 1,{§o, 1;%}@[3, 1,{[1,0 2]}]

Thematrix P with the eigenvectors as columnsis
> P:=augment(seq(ev[i,3,1],i=1..3));

80 0 18
el 1 ou
P::e u
€ -5 u
g3 — 24
e 2 u
> unprotect(D):
Thediagond entriesof D are eigenvaduesof A.
> D:=diag(seq(ev[i,1],i=1..3));
© 0o
D::so 1 OH
e 0 3u
> A=evalm(P)& *evalm(D)& *inver se(P);
€0 0 1 éooo‘g <4 5
€1 1 o V-
A= T L H&*go 1 oﬂj&*§4 6 2U
- u: u
E-3 — 24 e 0 30z €1 0 OO
e 2 u [}
> evalm(%);
83 0 08 83 0 OB
3-4 6 2&23-4 6 Zﬁ
€l6 -15 -5u €6 -15 -5u
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