Mathematica Notebooks

Paul Abbott
Department of Physics
University of Western Australia
Nedlands WA 6907, Australia
paul@physics.uwa.edu.au
physics.uwa.edu.au/~paul

The Notebook front end is the standard graphical user interface (GUI) to Mathematica. It is very powerful but, although the documentation for the front end is good, a new user can easily find the range of capabilities overwhelming. This tutorial, following on from the "Overview of Mathematica" tutorial, is designed to help you make more effective use of the Notebook front end by highlighting its most important features.

1. Introduction

Mathematica stores information in a kind of document called a Notebook which can contain text and graphics. The document you are now reading is itself a Mathematica Notebook. Notebooks are usually divided into sections consisting of groups of cells. When a group is closed, only the first cell in the group is displayed, and the group bracket is shown with a triangular flag at the bottom:

- An Introduction

```1]
```

To open a group of cells, double-click on a closed group's cell bracket. For more information on the structure of Notebooks have a look at Notebooks and Cells.

2. Notebook Design: Defining and Using Styles

Building a Notebook is straightforward because the Notebook front end is similar in many respects to a word processor. The GUI includes a number of features to make it easy to build structured Notebooks. For example, the automatic grouping of cells is something that the user does not have to worry about.

Many Mathematica users just use the program to do mathematics. However, for teaching and research, it is helpful to document what a series of commands is doing. The preparation of a Notebook is greatly assisted by the use of styles. For documentation, one can use Text cells. And it makes sense to structure Notebooks by breaking it into a number of sections using Section cells. Mathematica is capable of producing complex documents, such as scientific papers or books, and provides precise control over the appearance of the text and mathematics using options, styles, and style sheets.

2.1. Options

Options are used to control the appearance and behavior of everything in the front end.

1. Open a new Notebook. Use the menu command Format \triangleright Style \triangleright Text or, alternatively, use Format \triangleright Show Toolbar, and select Text, to create a new text cell. Type in some text.
2. Select a single word in the text cell and change its FontSize to 18 point using the menu command Format \triangleright Size. You should get something like:

3. Now, selecting the cell bracket, and changing the size of the text in the entire cell to 9 point.
You should get something like:

\triangle Options can be set at different levels. In the example above, options were set at two levels: character and cell.

2.2. Styles and Style Sheets

To change the size of all text in a document it is not a good idea to select all text cells and change their size. Instead, one should edit the document's style sheet. Style sheets are actually notebook documents containing special style definition cells. Style sheets can be shared among notebooks, or a notebook can have a private collection of style definitions stored within the same file as the rest of the notebook.
To redefine the "Text" style:
4. Go to the Format menu and choose Edit Style Sheet..., resulting in this dialog box:

This Notebook is using a shared style sheet. You can either edit the shared style sheet, or import a private copy into this Notebook.

Cancel
Help

Import Private Copy

Edit Shared Style Sheet

To make a global style change for our Notebook, select Import Private Copy.

Here is the section of the style sheet containing the text style:

Styles for Body Text

5. Select the innermost cell bracket for "Text" style:

Prototype for style: "Text":
Text
6. Go to the Format \triangleright Size menu, choose 14 point and then go to the Format \triangleright Face menu and select Italic. The entry in the style sheet should now look like:

```
Prototype for style: "Text":
Text
```

and your Notebook should now look like:

\triangle It is clear that the global style change has made the text italic but our choice of font size does not override the local options.
Alternatively, selecting the innermost cell bracket for "Text" style, you can use Format \triangleright Show Expression to view the underlying Cell expression:

■ Styles for Body Text

```
Cell[StyleData["Text"],
    CellMargins->{{12, 10}, {7, 7}},
    Hyphenation->True,
    LineSpacing ->{1, 3},
    CounterIncrements->"Text",
    FontSize->14.
    FontSlant->"Italic"]
```

This cell expression can be edited directly - and this is often the quickest way of editing a style.

2.3. Style Environments

Usually, one prepares documents for printing. However, it would be nice if you could simply transform the format of a document so that it is easy to edit (a "Working" environment) and also for the use in lecture presentations (a "Presentation" environment). Such a capability is provided through the use of style environments:

Style Environment	Main uses
Working	Normal editing
Printout	Printing
Presentation	Overhead presentations (large fonts)

7. Open the cell group for the "Text" style. Select Text/Presentation and change this cell style to Plain. The style sheet should look like

and, after selecting Format \triangleright Screen Style Environment \triangleright Presentation, your Notebook should look like:

3. Integrating Mathematica and Typeset Mathematics

3.1. Two-dimensional Input

See The Mathematica Book, Sections 1.10.2 and 1.10.3. Consider
$y=\operatorname{Limit}\left[\operatorname{Sum}\left[1 / i^{\wedge} 2,\{i, 1, n\}\right], n \rightarrow \mathbf{I n f i n i t y}\right]$
8. Select and use Cell \triangleright Convert To \triangleright TraditionalForm on the above cell.

3.2. Inline and Display Mathematics

- Producing formatted two-dimensional equations

Consider the following text:
Use the identity, Integrate[x $\operatorname{Sin}[\mathrm{x}], \mathrm{x}]=$ Integrate $[\mathrm{x} \operatorname{Sin}[\mathrm{x}], \mathrm{x}]$.
To convert the formula to two-dimensional form:
9. Select the formula and use Edit \triangleright Expression Input \triangleright Start Inline Cell.
10. Select the expression on the left-hand side of the $=$ sign and use Cell \triangleright Convert To \triangleright TraditionalForm.

1. Select the expression on the right-hand side of the $=$ sign and use Kernel \triangleright Evaluation \triangleright Evaluate In Place.

- Showing the steps in computing an integral

12. Copy the expression $\int x^{2}(x+1)^{3} d x$ and paste it twice into a new cell (say in DisplayFormula style), separated by an = sign.
\qquad
13. Use the Algebraic Manipulation palette to do an expand in-place of $(x+1)^{3}$ on the right-hand side;
\qquad
14. Copy and paste the whole right-hand side and do an expand in-place of the whole integrand;
15. Next, copy and paste the integral and do an in-place evaluation of the integral (using Kernel \triangleright Evaluation \triangleright Evaluate In Place);
16. Align on the $=$ sign using the option inspector (Format \triangleright Option Inspector...).

3.3 Palettes

17. Add definitions for vector operators by entering the following commands:
$\nabla /: \nabla \times\left\{\mathbf{f x}_{-}, \mathrm{fy}_{-}, \mathrm{fz}_{-}\right\}:=\left\{\frac{\partial \mathrm{fz}}{\partial y}-\frac{\partial \mathrm{fy}}{\partial z}, \frac{\partial \mathrm{fx}}{\partial z}-\frac{\partial \mathrm{fz}}{\partial x}, \frac{\partial \mathrm{fy}}{\partial x}-\frac{\partial \mathrm{fx}}{\partial y}\right\}$
$\nabla /: \nabla \cdot\left\{\mathbf{f x}_{-}, \mathrm{fy}_{-}, \mathrm{fz}_{-}\right\}:=\operatorname{Simplify}\left[\frac{\partial \mathbf{f x}}{\partial x}+\frac{\partial \mathbf{f y}}{\partial y}+\frac{\partial \mathrm{fz}}{\partial z}\right]$
$\nabla /: \nabla\left(\mathbf{f}_{-}\right):=\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\}$
18. Use the palette,
to prove that $\nabla \times(\nabla \times \mathbb{A})==\nabla(\nabla \cdot \mathbb{A})-\nabla \cdot \nabla(\mathbb{A})$ for an arbitrary (differentiable) vector field, $\mathbb{A}=\{f(x, y, z), g(x, y, z), h(x, y, z)\}$.

3.4 Notation

19. Define a special notation using the Notation package:
<< Utilities' Notation';
SetOptions[Notation, WorkingForm \rightarrow TraditionalForm];
Notation[$f_{-}: x_{-} \mapsto y_{-} \Longrightarrow f_{-}:=$Function[x_, Evaluate[y_]]
Enter the mapping $h: x \mapsto x \cos \left(x^{2}\right)$ in a new input cell, and evaluate $h(y)$.

4. GridBox, StyleBox, and DisplayForm

GridBox, StyleBox, and DisplayForm are powerful tools for automatically generating and formatting quite general typeset structures.

4.1. Typeset Objects

Typesetting is completely integrated with Mathematica's functional programming capabilitie. You can use Nest or NestList to iterate a typeset box structure and then use DisplayForm to display the result. The Sierpinski triangle can be generated using a SubsuperscriptBox object,

Nest[SubsuperscriptBox[\#, \#, \#] \&, $\Omega, 4]$ // DisplayForm

and the Sierpinski gasket by iterating a simple GridBox matrix.
StyleBox[Nest[GridBox $\left.\left[\left(\begin{array}{ccc}\# & \# & \# \\ \# & " " & \# \\ \# & \# & \#\end{array}\right)\right] \&, ~ ■, 3\right]$, GridBoxOptions \rightarrow
$\{$ RowMinHeight $\rightarrow \mathbf{0}$, RowSpacings $\rightarrow \mathbf{0}$, ColumnSpacings $\rightarrow-0.12\}$]// DisplayForm

Note that these results are not graphics, but are typeset objects. Here is another example of a typeset figure:

4.2. Formatted Tables

To summarise a set of results, it is useful to display them in a (nicely formatted) table.
Example: The Euclidean Lie algebra $e(3)$ has the Lie subalgebras $\left\{R_{1}, R_{2}, R_{3}\right\}$ and $\left\{P_{1}, P_{2}, P_{3}\right\}$ known as $\operatorname{so(3)}$ and $e(3)$ which generate rotations and translations respectively. In terms of infinitesimal generators we have

$$
R_{1}=x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}}, R_{2}=x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}, R_{3}=x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}},
$$

and

$$
P_{1}=\frac{\partial}{\partial x_{1}}, P_{2}=\frac{\partial}{\partial x_{2}}, P_{3}=\frac{\partial}{\partial x_{3}} .
$$

Mathematica Implementation is straightforward.

$$
\begin{aligned}
& R /: R_{1}:=x_{2} \frac{\partial \#}{\partial x_{3}}-x_{3} \frac{\partial \#}{\partial x_{2}} \& \\
& R /: R_{2}:=x_{3} \frac{\partial \#}{\partial x_{1}}-x_{1} \frac{\partial \#}{\partial x_{3}} \& \\
& R /: R_{3}:=x_{1} \frac{\partial \#}{\partial x_{2}}-x_{2} \frac{\partial \#}{\partial x_{1}} \& \\
& P /: P_{1}:=\frac{\partial \#}{\partial x_{1}} \& \\
& P /: P_{2}:=\frac{\partial \#}{\partial x_{2}} \& \\
& P /: P_{3}:=\frac{\partial \#}{\partial x_{3}} \&
\end{aligned}
$$

Here is the table of commutators.

CommutatorTable $\left(\left\{R_{1}, R_{2}, R_{3}, P_{1}, P_{2}, P_{3}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}\right)$

	R_{1}	R_{2}	R_{3}	P_{1}	P_{2}	P_{3}
R_{1}	0	$-R_{3}$	R_{2}	0	$-P_{3}$	P_{2}
R_{2}	R_{3}	0	$-R_{1}$	P_{3}	0	$-P_{1}$
R_{3}	$-R_{2}$	R_{1}	0	$-P_{2}$	P_{1}	0
P_{1}	0	$-P_{3}$	P_{2}	0	0	0
P_{2}	P_{3}	0	$-P_{1}$	0	0	0
P_{3}	$-P_{2}$	P_{1}	0	0	0	0

- Code

5. Conclusion

This course attempts to give an overview of the Mathematica front end (GUI). A number of Notebook formatting techniques have been presented and these can be used to advantage for courseware development and technical publishing.

