An Overview of Mathematica

Paul Abbott

Department of Physics University of Western Australia Nedlands WA 6907, Australia paul@physics.uwa.edu.au physics.uwa.edu.au/~paul

Mathematica is an integrated problem-solving environment that is powerful, general, consistent, and easy to use. It includes exact and arbitrary precision numerical computation, graphics, symbolic or algebraic manipulation, a high-level problem-oriented programming language, and interprocess communication. This hands-on tutorial is designed to get you started using Mathematica by highlighting its most important features.

1. Getting Started

□ 1.1 Books on Mathematica

An up to date list of books about *Mathematica* is available at http://www.wolfram.com/bookstore. The following resources are particularly useful:

- The Mathematica Book: on-line
- Mathematica Standard Add-on Packages: on-line
- The Mathematica Journal: http://www.mathematica-journal.com
- Eric Weisstein's World of Mathematics: http://mathworld.wolfram.com

□ 1.2 Help Browser

To learn more about *Mathematica* The Help Browser is the primary reference. Choosing **Help...** from the **Help** menu at any time gives you access to *Mathematica*'s on-line documentation. An overview of the capabilities of *Mathematica* is presented in the Tour of *Mathematica* section, and it is also suggested that you browse through the Practical Introduction section.

□ 1.3 Exercises

All exercises in this hands-on tutorial look like

1. What is your name?

There are two ways in which you will asked to supply answers to questions. Sometimes I will leave an answer field for you to write your solutions directly into the Notebook, *e.g.*,

Answer: Paul Abbott.

You just need to position your cursor after the : and start typing. Much of the time though you will just enter a *Mathematica* command in the appropriate place and the output will be automatically recorded in the Notebook.

□ 1.4 On-line Help

To find out what a particular command does, you can use the on-line help system. Choosing **Help...** from the **Help** menu at any time accesses *Mathematica*'s on-line documentation.

2. Use **Help...** to find out what **FactorInteger** does.

3. Alternatively, enter ? Factor Integer. Also try ? Factor and ? * Factor*.

□ 1.5 Command Completion

The long names can be difficult to enter, especially if you are a slow typist. Command completion increases the speed, correctness, and convenience of Notebooks.

Enter Bess, then select **Complete Selection** under the **Input** menu. The completions window,

will pop up and you can select which command you desire using the mouse, here **BesselJ**. This is advantageous for long commands.

4. In a new cell, enter your own name with no spaces, e.g. **PaulAbbott** and evaluate the input. In a blank cell, enter the first two letters of your name and use command completion.

See, Mathematica knows a bit about you already.

□ 1.6 Templates

Templates work much like command completion. The **Make Template** command is also found under the **Input** menu.

5. Use **Make Template** on **Plot3D** and produce a 3D plot of sin(x y) over $[0, \pi] \times [0, \pi]$.

▲ Remember to create an *insertion point* in your Notebook *before* you enter an expression or use a palette.

Alternatively, you can use the Basic Calculations palette to find out more about how to use a function.

2. Basic Calculations

Read the *Mathematica* as a Calculator section of the Tour of *Mathematica* and then attempt the following exercises. If it is not already open, you may find the Basic Input palette helpful. For more information on palettes see Using Palettes.

2.1 Getting Started

You can use *Mathematica* as an enhanced scientific calculator. Let's start with a simple example.

45 + 78

123 The first line here is what you type in. The second line is the result.

6. Use the Basic Input palette to type in the expression 3^{100} below this cell. Hit she to evaluate this expression. Note that you should get the *exact* answer.

▲ You can position the cursor *anywhere* on the line for expression evaluation to work. Alternatively you can select the cell-bracket (or a range of cell brackets) that contains an expression (s) and select **Evaluate Cells** under the **Kernel/Evaluation** menu.

7. Select your input line above (either by selecting its cell bracket or by scrolling over the expression with the mouse clicked) and make a copy using **Copy** under the **Edit** menu. **Paste** your expression below this box. Change the 100 to 1000 and evaluate the result.

You should have just evaluated 3^{1000} .

An easy way to select an expression is to click on it as many times as is necessary to select the entire expression (this is a type of *scoping*).

8. To get the result in the form you might get on a calculator, try N[%].

9. Enter pi = $N[\pi, 200]$ below this cell and evaluate it.

You should get the value of π to two hundred decimal places.

10. Enter $e^{\frac{\sqrt{163} \text{ pi}}{3}}$ below this cell and evaluate it. What is special about this number?

Answer:

11. π has a run of six consecutive 9's in the first 1000 digits. Can you see where they are located? (One way to find the location is to convert the number to a string [using **ToString**], drop the leading **3.** [using **StringDrop**] and locating the position of the string "**999999**" [using **StringPosition**]).

Answer:

□ 2.2 More Functions

Mathematica knows about a big collection of mathematical functions — nearly all those you will find in any book of mathematical tables.

12. Compute $sin(13\pi)$, log(2.1), and $e^{i\pi}$ by copying these expressions below this cell and entering them.

△ Note that *e* denotes the exponential *e* and *i* denotes $\sqrt{-1}$. You can these objects using the Basic Input palette.

13. Lookup cos in the on-line help and determine closed-form expressions for $\cos(\frac{\pi}{5})$.

Answer:

Mathematica can do many kinds of exact computations with integers.

14. Evaluate FactorInteger[70612139395722186]. What is the meaning of this output?

Answer: FactorInteger produces a set of pairs of numbers which are ...

15. Recombine the numbers in the above output to show how they form 70612139395722186.

□ 2.3 Simple Expressions

Mathematica can deal with mathematical formulas in algebraic form.

16. Enter the expression $(x^2 + 2x + 1)^{20}$. Expand this expression using **Expand[%]**. Factor the expanded result.

17. Re-do the steps in the above computation using the Basic Calculations palette.

18. Evaluate **TrigReduce**[sin(x) cos(y) - cos(x) sin(y)] and apply **TrigExpand** to the result. What can you say about the relationship between these functions?

Answer:

2.4 Basic Plots

The above sections have guided you through each calculation. Now you are expected to use palettes such as the Basic Calculations palette or on-line help to work out how to achieve each of the following tasks.

19. Produce a plot of $sin(x^2)$ over $x \in [0, 5]$.

20. Produce a phase-space plot of cos(x) versus sin(3x) for over $x \in [0, 2\pi]$. *Hint*: lookup **ParametricPlot**. Do you recognise this figure?

Answer:

21. Produce a contour plot and density plot of $x e^{-x^2 - y^2}$ for $-1 \le x \le 1$ and $-1 \le y \le 1$.

□ 2.5 Calculus

You can do calculus. Try a simple integral:

22. Compute $\int \frac{x}{x^3-1} dx$. Check by differentiating the resulting expression with respect to x and then using **Simplify**.

You can also get exact solutions to many definite integrals.

23. Compute $\int_0^\infty \frac{\sin^2(x)\cos^3(x)}{x} dx.$

Many integrals do not have a simple closed form. If you try such a definite integral it will be returned unevaluated. You can still use N to get a numerical answer.

24. Try $\int_0^1 \sin(\sin(x)) dx$. Compute the numerical value of this expression using N[%].

 \triangle Note that *Mathematica* can find a closed form for $\int_0^{\pi} \sin(\sin(x)) dx$. Try it.

□ 2.6 Solving Equations

25. Use **Solve** to obtain the roots of the quadratic equation $a x^2 + b x + c = 0$, and call the set of solutions *s*. Check the solutions by back-substitution using the syntax $a x^2 + b x + c / . s$. You will need to **Simplify** the result.

 \triangle Note that == denotes *equality*, not assignment (which is =).

26. Solve the cubic equation $x^3 - x + 1 == 0$. Evaluate this expression numerically using *N*. Does your answer satisfy the requirement that roots of equations with real coefficients must come in *conjugate pairs* (a conjugate pair is a set of two numbers of the form $a \pm b i$)?

Answer:

□ 2.7 Matrices

Entering matrices

Matrices can be entered using List brackets ({}). Alternatively, they can be entered using the Basic Input palette or from the **Create Table/Matrix/Palette...** entry under the **Input** menu.

27. In a new cell, enter the 2×2 matrix, $mat = \begin{pmatrix} 3.5 & 7.2 \\ -2.4 & 6.4 \end{pmatrix}$. Compute the inverse and eigenvalues of mat — you should be able to guess the names of the appropriate *Mathematica* commands.

Linear algebra

Mathematica also does linear algebra on symbolic matrices.

28. Enter mat = $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. This overwrites your previous value for the matrix mat. Compute the inverse of mat and assign (using =) the result to minv. Compute minv.mat and simplify the result.

 \triangle The . (*i.e.*, **Dot**) in *a.b* indicates that the usual dot product and is used both for vectors *and* matrices. This makes sense because each element in the resulting matrix is formed by dot product multiplication of rows of *a* with columns of *b*. Without the **Dot** one gets the direct (*i.e.*, element-by-element) product. The direct product is useful for general matrix operations such as *masking* and *convolution*.

29. Generate a random real 3×3 matrix and call it **rand** (*Hint*: use **Random** and **Table**). Replace the {2, 2} entry of **rand** with the symbolic parameter *x* (*Hint*: look-up **Part**). Compute the (symbolic) inverse of **rand** and determine the numerical value of the inverse when $x \to 1$.

□ 2.8 Curve Fitting

30. Use the command **Table** $[i!, \{i, 1, 10\}$] to compute the first 10 values of the factorial function and assign the answer to the variable called **is**.

We could plot this table but the dynamic range is so large that it would be difficult to produce a meaningful plot. Let us take the logarithm of these values.

31. Take the log of values using **log(is)** and numerically evaluate the result. Save this result as a named variable called **data**.

Now that we have a table of values we can plot it using the ListPlot command.

32. Use **ListPlot** to plot **data** and save your graphic as a named variable called, e.g., p_1 .

33. Compute the best (least-squares) third-order polynomial fit to this data using **Fit**. Obtain a plot of this fit and call it p_2 . You need to choose and appropriate range for the **Plot** command (see **PlotRange**). Show p_1 and p_2 superimposed using **Show**.

▲ You can, in fact, do fits using any linear combination of functions but Fit presently does not allow exponent optimization — you need to use the Statistics`NonlinearFit` package for this.