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Abstract

We extend a Mathematica command PolynomialExtendedGCD to

the case that the coe�cients of polynomials contain indeterminates.

By virtue of such an extension of the command, one can solve the

Sylvester (matrix) equation AX�XB = C explicitly even in the case

that the square m �m matrix A and n � n matrix B have common

eigenvalues, where C is an m � n matrix, X an (unknown) m � n

matrix.

The asymptotic behavior (t! 0) of the solution of perturbed (non-

degenarate) Sylvester Equation (A+ t)X�XB = C plays an essential

role in our argument.

1 Notation

Throughout the present paper we let k be a �eld. We denote by kn the
k-vector space of column vectors of size n. If E and F are k-vector spaces,
we denote by Homk(E; F ) the vector space of k-linear maps from E to F .
We also denote by Endk(E) the space of k-linear transformations of E, that
is, Endk(E) = Homk(E;E). Let us denote the k-vector space of m � n
matrices in k by Matm�n(k). An m � n matrix X gives rise to a k-linear
map LX : kn ! km by the rule kn 3 v 7�! Xv 2 km. By this correspondence
Matm�n(k) 3 X 7�! LX 2 Homk(k

n; km) we identify two k-vector spaces
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Matm�n(k) and Homk(k
n; km). We also denote by Matn(k) the space of

square n� n matrices in k, that is, Matn(k) = Matn�n(k).
Let A 2 Matm(k), B 2 Matn(k), and C 2 Matm�n(k), we call the

equality
AX �XB = C

the Sylvester Equation with an unknown matrix X 2Matm�n(k).
For A 2 Matm(k), B 2 Matn(k), we de�ne a k-linear map �A;B 2

Endk(Matn�n(k)) as follows:

�A;B : Matm�n(k) 3 X 7�! AX �XB 2Matm�n(k):

Then the Sylvester Equation AX �XB = C has another form

�A;B(X) = C:

2 Non-degenerate Sylvester Equations

If the two square matrices A 2 Matm(k) and B 2 Matn(k) of the co-
e�cients of Sylvester Equation AX � XB = C, have disjoint spectrum,
that is, �(A) \ �(B) = ;, the linear transformation �A;B is an automor-
phism of Matm�n(k). This is well-known and is also proved by represen-
tation theoretic argument in [10]. In such a case, the Sylvester Equation
AX � XB = C is called non-degenerate. For a non-degenerate Sylvester
Equation, we can construct the explicit polynomial formula for the inverse
map ��1A;B : Matm�n(k) 3 C 7�!the upper o�-diagonal block of a certain

polynomial of the block diagonal matrix T =
�
A C
0 B

�
.

For a precise statement we quote a theorem in [10].

Theorem 2.1 Let A be a square m�m matrix, B a square n�n matrix, and
C an m � n matrix. Let PA(�) and PB(�) be the characteristic polynomials
of A and B, respectively. We assume that PA(�) and PB(�) are relatively
prime. Let QA(�) and QB(�) be polynomials satisfying

PA(�)QA(�) + PB(�)QB(�) = 1:

Then the unique solution X of the Sylvester Equation AX�XB = C is equal
to the upper o�-diagonal block of the block triangular matrix PB(T )QB(T ),
that is,



PB(T )QB(T ) =
�
Im X
0 0

�
;

where Im is the identity matrix of size m and T is a block diagonal matrix

T =
�
A C
0 B

�
:

3 Mathematica programming for the inver-

sion formula of �A;B (non-degenerate case)

Let A be a square m�m matrix, B a square n� n matrix, and C an m� n
matrix. We assume the characteristic polynomials PA(�) and PB(�) of A
and B, respectively, are relatively prime. A computing system Mathematica
contains a package PolynomialExtendedGCD which gives a pair of polyno-
mials QA(�) and QB(�) such that PA(�)QA(�) + PB(�)QB(�) = 1 as a list
of length 2 for an input fPA(�); PB(�)g. By virtue of the package Polynomi-
alExtendedGCD, we can translate Theorem 2.1 into Mathematica language.

The �nal output of the following programming is equal to ��1A;B(C).

------------------programming-----------------

<<Algebra` PolynomialExtendedGCD`

T=Join[Transpose[Join[Transpose[A],Transpose[Const]]],

Transpose[

Join[Transpose[Table[Table[0,{Length[A]}],{Length[B]}]],

Transpose[B]]]]

Coef=CoefficientList[

Det[\[Lambda] MatrixPower[B,0] -B]

PolynomialExtendedGCD[Det[\[Lambda] MatrixPower[A,0] -A],

Det[\[Lambda] MatrixPower[B,0] -B]][[2]][[2]],\[Lambda]];

TT:=Coef.Table[MatrixPower[T,n],{n,0,Length[Coef]-1}]//Simplify



Transpose[

Table[Transpose[Table[TT[[i]],{i,Length[A]}]][[Length[A]+j]],

{j,Length[B]}]]

--------------------END----------------------

According to the above script of Mathematica whose essential parts are
polynomial operations and calculations, we de�ne a new command Sylvester[fA;B;Cg]
which gives a unique solution X of a non-degenerate Sylvester Equation
AX�XB = C. We may reconstruct PolynomialExtendedGCD by Euclidean
mutual division algorithm using built-in commands PolynomialQuotient and
PolynomialRemainder recursively, in which we can specify the indeterminate
of polynomials. Such a modi�cation or generalization of PolynomialExtend-
edGCD enable us to treat a �eld extension of coe�cients of Sylvester Equa-
tions.

4 Perturbation of Sylvester Equations

In this section we consider a degenerate Sylvester Equation AX �XB = C,
that is, �(A) \ �(B) 6= ;. The main idea of our treatment is as follows. We
introduce an indeterminate t and perturb linearly the degenerate Sylvester
Equation AX � XB = C such as (A + t)X � XB = C. For almost
all ( that is, at most �nitely many exceptions) scalar value of t in k the
Sylvester Equation (A + t)X � XB = C is non-degenerate, so we have the
unique solution ��1A+t;B(C) = Sylvester[fA + t; B; Cg] by matrix operations
and polynomial calculations. Then we observe the asymptotic behavior of
Sylvester[fA+ t; B; Cg] (t! 0) or the principal part of Laurent expansion
of Sylvester[fA+ t; B; Cg] with respect to the center 0

Sylvester[fA+ t; B; Cg]==Series[#; ft; 0; 0g]&:

In general degenerate Sylvester Equations may be inconsistent or indeter-
minate. Inconsistency and indeterminacy of the equations are closely related
to the singularity of Sylvester[fA+ t; B; Cg] at t = 0.

The following theorem is a corollary of the general theory of linear equa-
tions, which describes a beautiful connection between solvability of the equa-



tion and removability of singularity in the case of at most simple pole singu-
larity. The relation between solvability of the equation and removability of
perturbation singularity is much more complicated in the higher singularity
case.

Theorem 4.1 Let A be a square m �m matrix, B a square n � n matrix.
Let X(t; C) be a unique solution of the perturbed Sylvester Equation (A +
t)X � XB = C, for an arbitrary m � n matrix C and a scalar t 2 k (at
most �nite number of exception of values). We assume that there exist a
non-zero linear functional 
 on the space of m�n matrices Matm�n(k) and
a non-zero matrix Y 2Matm�n(k) such that the di�erence

Z(t; C) = X(t; C)�

(C)

t
Y

is a rational function of t whose denominator does not vanish at t = 0. Then
we have the following;

1. The Sylvester Equation AX � XB = C has a solution if and only if

(C) = 0.

2. For each matrix C satisfying 
(C) = 0, the solution space of the
Sylvester Equation AX�XB = C is equal to the line f�Y+Z(0; C) j� 2
kg.

5 A numerical example of perturbation and

asymptotics

In this section we give a simple and nontrivial numerical example of degen-
erate Sylvester Equation.

Let At =
�
1 + t 2
2 4 + t

�
with an indeterminate t, B =

�
3 4
6 8

�
, and

C =
�
p q
r s

�
.

We consider the following perturbed Sylvester Equation

AtX �XB = C;



where X is an unknown 2� 2 matrix and t is the indeterminate.
Then the characteristic polynomials PAt

(�) of At and PB(�) of B are the
following;

PAt
(�) = 5t+ t2 � 5�� 2t�+ �2

PB(�) = �11�+ �2

Generalized PolynomialExtendedGCD gives us two polynomials QA(�) and
QB(�) satisfying PAt

(�)QA(�) + PB(�)QB(�) = 1.

QA(�) =
66� 17t+ t2 � 6�+ 2t�

t(330� 19t� 12t2 + t3)

QB(�) =
3t2 + 6(�5 + �)� t(7 + 2�)

t(330� 19t� 12t2 + t3)

The solution Xt(C) of AtX � XB = C has the following asymptotic
expansion t tends to 0;

Xt(C) =



t
Y + Z(t; C);

where 
(C) = 1
55
(8p� 6q � 4r + 3s), Y =

�
4 �2
�2 1

�
, and

Z(t; C) =

 
p�482q+302r�364s

6050
+O(t) �482p�601q�364r�2s

9075
+O(t)

151p�182q+227r�514s
3025

+O(t) �2(182p+q+514r+302s)
9075

+O(t)

!
:

Applying Theorem 4.1 to the above, we have the solution of the degen-
erate Sylvester Equation

A0X �XB = C:

6 Concluding remark

In the present paper we consider the polynomial solution of a non-degenerate
Sylvester Equation AX �XB = C and a perturbation approach to a degen-
erate Sylvester Equation. The solution of a perturbed Sylvester Equation



is explicitly described by virtue of a generalization of a Mathematica pack-
age PolynomialExtendedGCD which permits indeterminates in coe�cients
of polynomials.

We can read solvability of the degenerate Sylvester Equation in the asymp-
totic behavior of such a computing system solution of the associated per-
turbed equation.

In the case of simple pole singularity the relation between solvability and
removability of singularity is revealed. If the asymptotic expansion contains
a higher singularity, the solvability condition and the solution space of the
degenerate equation may be determined the principal part of singularity.
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