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Abstract

A novel and simple recursive algorithm for inverting Vandermonde

matrix and its generalized form is presented. The algorithm is suitable

for classroom use in both numerical as well as symbolic computation.

1 Introduction

The importance of the Vandermonde matrix is well known. Inversion of
this matrix is necessary in many areas of applications such as polynomial
interpolation [4, 10], digital signal processing [2], and control theory [6], to
mention a few. See also for example Klinger [8], Kalman [7]. However, an
explicit recursive formula for the inversion of Vandermonde matrices seems
unavailable in most linear algebra textbooks.

The purpose of this paper is to present a novel and simple recursive algorithm
for inverting Vandermonde matrix, as well as its generalized (or conuent)
form, in a way more readily accessible for use in classroom and suitable for
both numerical as well as symbolic computation.

2 Preliminaries and notations

Let m be a nonnegative integer. For the sequence 1; (s� �); : : : ; (s� �)m�1

of polynomials we write s(�;m) = [1; (s��); : : : ; (s��)m�1]T . In particular,

s(0; m) = [1; s; : : : ; sm�1]T :

Let �1; �2; : : : ; �r be given distinct zeros of the polynomial

p(s) = (s� �1)
n1 � � � (s� �r)

nr



with n1 + : : :+ nr = n. The generalized (or conuent) Vandermonde matrix
related to the zeros of p(s) is known to be

V = [V1V2 � � �Vr] ; (1)

where the block matrix Vk = V (�k; nk) is of order n � nk, having elements

V (�k; nk)ij =
�
i�1
j�1

�
�i�jk for i � j and zero otherwise (k = 1; 2; : : : ; r; i =

1; 2; : : : ; n; j = 1; 2; : : : ; nk). More speci�cally, Vk is the n � nk matrix of
coe�cients that appears in the truncated Taylor expansion at �k, modulo
(s� �k)

nk , of s(0; n). That is,

s(0; n) = V (�k; nk)s(�k; nk) mod (s� �k)
nk :

In the case the zeros �1; : : : ; �r of p(s) are simple, we have the usual Vander-
monde matrix, namely,

V =

2
66664

1 1 � � � 1
�1 �2 � � � �r
...

...
...

�n1�11 �n2�12 � � � �nr�1r

3
77775 :

It will be shown that the inverse of the generalized Vandermonde matrix V
in (1) has a form

V �1 =

2
66664
W1

W2
...
Wr

3
77775 ;

where each block matrix Wk is of order nk � n, and may be computed by
means of a recursive procedure.

Generally, the inverse of the usual Vandermonde matrix [3], as well as the
inverse of the generalized Vandermonde matrix [9] are based on using inter-
polation polynomials.

Our approach is based on using the Leverrier-Faddeev algorithm [1, 5, 10],
which states that the resolvent of a given n� n matrix A is given by

(sI � A)�1 =
B1s

n�1 +B2s
n�2 + � � �+Bn

sn + a1sn�1 + � � �+ an
; (2)

where det(sI � A) = sn + a1s
n�1 + � � �+ an is the characteristic polynomial



of the matrix A, and all the Bj matrices are of order n� n, satisfying

B1 = I; a1 = �1
1
tr(AB1);

B2 = AB1 + a1I; a2 = �1
2
tr(AB2);

...
...

Bn = ABn�1 + an�1I; an = � 1
n
tr(ABn)

(3)

with 0 = ABn + anI terminating as a check of computation. Here tr stands
for the trace of a matrix.

3 Main result

Let J = diag(J1; : : : ; Jr) be the block diagonal matrix, where

Jk = J(�k; nk) =

2
666666664

�k 1 0 � � � 0

0 �k 1
...

0
. . . . . . 0

... �k 1
0 � � � 0 0 �k

3
777777775

is the nk � nk Jordan block with eigenvalue �k. Then J has characteristic
polynomial det(sI � J) = (s� �1)

n1 � � � (s� �r)
nr = p(s).

Substituting A = J in equations (2) and (3) of the Leverrier-Faddeev algo-
rithm, we see immediately that

p(s)(sI � J)�1 = B1s
n�1 +B2s

n�2 + � � �+Bn; (4)

where
B1 = I;
B2 = JB1 + a1I;

� � �
Bn = JBn�1 + an�1I;
0 = JBn + anI:

J = diag(J1; : : : ; Jr) being block diagonal, so are all the Bj matrices. In fact,

Bj = diag(Bj;1; Bj;2; : : : ; Bj;r); j = 1; 2; : : : ; n;

and each block matrix Bj;k is of order nk � nk, satisfying

B1;k = Ik;
B2;k = JkB1;k + a1Ik;

� � �
Bn;k = JkBn�1;k + an�1Ik;
0 = JkBn;k + anIk;

(5)



where Ik is the nk � nk identity matrix.

Let us now put

pk(s) =
p(s)

(s� �k)nk
; k = 1; : : : ; r:

De�ne also the nk-dimensional column vector �k = [0; � � � ; 0; 1]T , and write
� = [�T1 ; � � � ; �

T
r ]

T .

If we postmultiply both sides of equation (4) by the column vector �, we
easily get 2

664
p1(s)s(�1; n1)

...
pr(s)s(�r; nr)

3
775 =

2
664
H1
...
Hr

3
775 s(0; n): (6)

Each Hk is of the form

Hk =
h
Bn;k�k � � � B1;k�k

i
(7)

and has order nk � n.

Comparing in turn for k = 1; 2; : : : ; r the truncated Taylor expansions at �k,
modulo (s��k)

nk , of both sides in (6) and putting these results together, we
get

diag(P1; : : : ; Pr) =

2
664
H1
...
Hr

3
775 h V1 � � � Vr

i
;

where each block Pk is a nk � nk upper triangular matrix given by

Pk = pk(Jk) =
nk�1X
j=0

p
(j)
k (�k)

j!
(Nk)

j:

It is noted here that Nk = J(0; nk) = Jk � �kIk is nilpotent of order nk.

If we can show that each Pk is invertible, then

V �1 =

2
664
P�11 H1

...
P�1r Hr

3
775 : (8)

To this end we require the following lemma which is an easy consequence of
the partial fraction expansion of 1=p(s) and the fact that Nk is nilpotent.



Lemma 1 Let there be given the partial fraction expansion

1

p(s)
=

rX
k=1

 
Kk;nk

(s� �k)nk
+

Kk;nk�1

(s� �k)nk�1
+ � � �+

Kk;1

s� �k

!
:

Then for k = 1; 2; : : : ; r

P�1k =
nk�1X
j=0

Kk;j(Nk)
j = Kk(Jk);

where the polynomial Kk(s) is given by

Kk(s) = Kk;nk +Kk;nk�1(s� �k) + � � �+Kk;1(s� �k)
nk�1:

Putting the above results together with equations (7) and (8), we are now
ready to state our main result:

Theorem 1 The inverse of V = [V1V2 : : : Vr] related to the distinct zeros

�1; : : : ; �r of p(s) is given by

V �1 =

2
66664
W1

W2
...

Wr

3
77775 ;

where each block matrix

Wk = W (�k; nk) =
h
Kk(Jk)Bn;k�k Kk(Jk)Bn�1;k�k � � � Kk(Jk)B1;k�k

i
is of order nk � n.

Taking into account of (5), we �nd that Kk(Jk)Bj;k = Bj;kKk(Jk); j =
1; 2; : : : ; n, so that B1;kKk(Jk) = Kk(Jk), and for j = 2; : : : ; n

Bj;kKk(Jk) = JkBj�1;kKk(Jk) + aj�1Kk(Jk)

= (�kIk +Nk)Bj�1;kKk(Jk) + aj�1Kk(Jk):

Moreover, (�kIk +Nk)Bn;kKk(Jk) + anKk(Jk) = 0.



4 The Algorithm

Based on the results obtained in the last section, we are now ready to give a
recursive algorithm for inverting generalized Vandermonde matrix.

The Algorithm:

Let �1; �2; : : : ; �r be distinct zeros of the polynomial

p(s) = (s� �1)
n1 � � � (s� �r)

nr

= sn + a1s
n�1 + � � �+ an

given together with the partial fraction expansion of

1

p(s)
=

rX
k=1

 
Kk;nk

(s� �k)nk
+

Kk;nk�1

(s� �k)nk�1
+ � � �+

Kk;1

s� �k

!
:

For each k 2 f1; 2; : : : ; rg, compute recursively polynomials h1; h2; : : : ; hn of
degree at most nk � 1 by means of the following scheme:

h1(s) = Kk;nk + sKk;nk�1 + � � �+ snk�1Kk;1;

h2(s) = (�k + s)h1(s) + a1h1(s) mod snk ;

h3(s) = (�k + s)h2(s) + a2h1(s) mod snk ;

...

hn(s) = (�k + s)hn�1(s) + an�1h1(s) mod snk ;

terminating at

0 = (�k + s)hn(s) + anh1(s) mod snk :

Obtain a block matrix Wk = W (�k; nk) of order nk � n via the equalityh
snk�1 snk�2 � � � 1

i
W (�k; nk) =

h
hn hn�1 � � � h1

i
:

The inverse of the generalized Vandermonde matrix V related to the distinct
zeros �1; �2; : : : ; �r of p(s) may then be given by

V �1 = [V (�1; n1)V (�2; n2) � � �V (�r; nr)]
�1

=

2
66664
W (�1; n1)
W (�2; n2)

...
W (�r; nr)

3
77775 :



Let us now give some supplementary remarks on the above algorithm.

(i) A check on the accuracy of the computation of polynomials h1; : : : ; hn is
provided by the last polynomial (�k + s)hn(s) + anh1(s), which should
result identically in the zero polynomial 0 when modulo snk is per-
formed.

(ii) The coe�cients a1; a2; : : : ; an of the polynomial p(s) may be recursively
computed using (3) with A = diag(�1; : : : ; �1| {z }

n1

; : : : ; �r; : : : ; �r| {z }
nr

).

(iii) The partial fraction coe�cients Kk;nk ; Kk;nk�1; : : : ; Kk;1 used in the con-
struction of the starting polynomial h1(s) may be obtained by expand-
ing

1

pk(s)
=

nk�1X
j=0

Kk;nk�j(s� �k)
j + � � �

in powers of (s � �k). They may also be recursively computed using
the following scheme:

Kk;nk = 1=pk;0 ;

Kk;nk�j = �

Pj
i=1 pk;iKk;nk�j+i

pk;0
(j = 1; : : : ; nk � 1);

where pk(s) =
n�nkP
j=0

pk;j(s� �k)
j.

5 Illustrative example

The following example will serve to illustrate the recursive algorithm pre-
sented above. Let the generalized Vandermonde matrix V in (1) be given
by

V =

2
666664

1 0 0 1

�1 1 0 �2

�21 2�1 1 �22
�31 3�21 3�1 �32

3
777775 =

2
666664

1 0 0 1

�2 1 0 3

4 �4 1 9

�8 12 �6 27

3
777775 ;

for which �1 = �2; n1 = 3, and �2 = 3; n2 = 1. The coe�cients of the
polynomial p(s) = (s + 2)3(s � 3) are given by a1 = 3; a2 = �6; a3 = �28,



and a4 = �24. It is easy to determine the partial fraction expansion of 1=p(s)
to be

1

(s+ 2)3(s� 3)
=

�1
5

(s+ 2)3
+

� 1
25

(s+ 2)2
+
� 1

125

s+ 2
+

1
125

s� 3
:

Let us consider �rst the case �1 = �2. Clearly

h1(s) = �
1

5
�

s

25
�

s2

125
:

Then

h2(s) = (�2 + s)h1(s) + 3h1(s) mod s3

= �
1

5
�

6s

25
�

6s2

125
;

h3(s) = (�2 + s)h2(s)� 6h1(s) mod s3

=
8

5
+
13s

25
�

12s2

125
;

h4(s) = (�2 + s)h3(s)� 28h1(s) mod s3

=
12

5
+
42s

25
+
117s2

125
:

As a check of computation, we verify that

(�2 + s)h4(s)� 24h1(s) mod s3 =
117s3

125
mod s3 = 0:

Thus it follows from
h
s2 s 1

i
W1 =

h
h4 h3 h2 h1

i
that

W1 =

2
6664

117
125

� 12
125

� 6
125

� 1
125

42
25

13
25

� 6
25

� 1
25

12
5

8
5

�1
5

�1
5

3
7775 :

Similarly, for �2 = 3 we �nd that

h1(s) =
1

125
;

h2(s) = (3 + s)h1(s) + 3h1(s) mod s =
6

125
;

h3(s) = (3 + s)h2(s)� 6h1(s) mod s =
12

125
;

h4(s) = (3 + s)h3(s)� 28h1(s) mod s =
8

125
:



and

(3 + s)h4(s)� 24h1(s) mod s = 3 �
8

125
�

24

125
= 0:

Then
h
1
i
W2 =

h
h4 h3 h2 h1

i
gives

W2 =
h

8
125

12
125

6
125

1
125

i
:

Finally, we have

V �1 =

"
W1

W2

#
=

2
6666664

117
125

� 12
125

� 6
125

� 1
125

42
25

13
25

� 6
25

� 1
25

12
5

8
5

�1
5

�1
5

8
125

12
125

6
125

1
125

3
7777775 :
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