On the Inversion of Vandermonde Matrices

Shui-Hung Hou
Department of Applied Mathematics
Hong Kong Polytechnic University
mahoush@polyu.edu.hk

Abstract

A novel and simple recursive algorithm for inverting Vandermonde matrix and its generalized form is presented. The algorithm is suitable for classroom use in both numerical as well as symbolic computation.

1 Introduction

The importance of the Vandermonde matrix is well known. Inversion of this matrix is necessary in many areas of applications such as polynomial interpolation [4, 10], digital signal processing [2], and control theory [6], to mention a few. See also for example Klinger [8], Kalman [7]. However, an explicit recursive formula for the inversion of Vandermonde matrices seems unavailable in most linear algebra textbooks.
The purpose of this paper is to present a novel and simple recursive algorithm for inverting Vandermonde matrix, as well as its generalized (or confluent) form, in a way more readily accessible for use in classroom and suitable for both numerical as well as symbolic computation.

2 Preliminaries and notations

Let m be a nonnegative integer. For the sequence $1,(s-\lambda), \ldots,(s-\lambda)^{m-1}$ of polynomials we write $\mathbf{s}(\lambda, m)=\left[1,(s-\lambda), \ldots,(s-\lambda)^{m-1}\right]^{T}$. In particular,

$$
\mathbf{s}(0, m)=\left[1, s, \ldots, s^{m-1}\right]^{T} .
$$

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be given distinct zeros of the polynomial

$$
p(s)=\left(s-\lambda_{1}\right)^{n_{1}} \cdots\left(s-\lambda_{r}\right)^{n_{r}}
$$

with $n_{1}+\ldots+n_{r}=n$. The generalized (or confluent) Vandermonde matrix related to the zeros of $p(s)$ is known to be

$$
\begin{equation*}
V=\left[V_{1} V_{2} \cdots V_{r}\right] \tag{1}
\end{equation*}
$$

where the block matrix $V_{k}=V\left(\lambda_{k}, n_{k}\right)$ is of order $n \times n_{k}$, having elements $V\left(\lambda_{k}, n_{k}\right)_{i j}=\binom{i-1}{j-1} \lambda_{k}^{i-j}$ for $i \geq j$ and zero otherwise $(k=1,2, \ldots, r ; i=$ $\left.1,2, \ldots, n ; j=1,2, \ldots, n_{k}\right)$. More specifically, V_{k} is the $n \times n_{k}$ matrix of coefficients that appears in the truncated Taylor expansion at λ_{k}, modulo $\left(s-\lambda_{k}\right)^{n_{k}}$, of $\mathrm{s}(0, n)$. That is,

$$
\mathbf{s}(0, n)=V\left(\lambda_{k}, n_{k}\right) \mathbf{s}\left(\lambda_{k}, n_{k}\right) \bmod \left(s-\lambda_{k}\right)^{n_{k}}
$$

In the case the zeros $\lambda_{1}, \ldots, \lambda_{r}$ of $p(s)$ are simple, we have the usual Vandermonde matrix, namely,

$$
V=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{r} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n_{1}-1} & \lambda_{2}^{n_{2}-1} & \cdots & \lambda_{r}^{n_{r}-1}
\end{array}\right] .
$$

It will be shown that the inverse of the generalized Vandermonde matrix V in (1) has a form

$$
V^{-1}=\left[\begin{array}{c}
W_{1} \\
W_{2} \\
\vdots \\
W_{r}
\end{array}\right]
$$

where each block matrix W_{k} is of order $n_{k} \times n$, and may be computed by means of a recursive procedure.
Generally, the inverse of the usual Vandermonde matrix [3], as well as the inverse of the generalized Vandermonde matrix [9] are based on using interpolation polynomials.
Our approach is based on using the Leverrier-Faddeev algorithm [1, 5, 10], which states that the resolvent of a given $n \times n$ matrix A is given by

$$
\begin{equation*}
(s I-A)^{-1}=\frac{B_{1} s^{n-1}+B_{2} s^{n-2}+\cdots+B_{n}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n}}, \tag{2}
\end{equation*}
$$

where $\operatorname{det}(s I-A)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$ is the characteristic polynomial
of the matrix A, and all the B_{j} matrices are of order $n \times n$, satisfying

$$
\begin{array}{rlrl}
B_{1} & =I, & a_{1} & =-\frac{1}{1} \operatorname{tr}\left(A B_{1}\right) \\
B_{2} & =A B_{1}+a_{1} I, & a_{2} & =-\frac{1}{2} \operatorname{tr}\left(A B_{2}\right), \tag{3}\\
\quad \vdots & \vdots \\
B_{n} & =A B_{n-1}+a_{n-1} I, & a_{n} & =-\frac{1}{n} \operatorname{tr}\left(A B_{n}\right)
\end{array}
$$

with $0=A B_{n}+a_{n} I$ terminating as a check of computation. Here tr stands for the trace of a matrix.

3 Main result

Let $J=\operatorname{diag}\left(J_{1}, \ldots, J_{r}\right)$ be the block diagonal matrix, where

$$
J_{k}=J\left(\lambda_{k}, n_{k}\right)=\left[\begin{array}{ccccc}
\lambda_{k} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{k} & 1 & & \vdots \\
0 & & \ddots & \ddots & 0 \\
\vdots & & & \lambda_{k} & 1 \\
0 & \cdots & 0 & 0 & \lambda_{k}
\end{array}\right]
$$

is the $n_{k} \times n_{k}$ Jordan block with eigenvalue λ_{k}. Then J has characteristic polynomial $\operatorname{det}(s I-J)=\left(s-\lambda_{1}\right)^{n_{1}} \cdots\left(s-\lambda_{r}\right)^{n_{r}}=p(s)$.
Substituting $A=J$ in equations (2) and (3) of the Leverrier-Faddeev algorithm, we see immediately that

$$
\begin{equation*}
p(s)(s I-J)^{-1}=B_{1} s^{n-1}+B_{2} s^{n-2}+\cdots+B_{n} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{1} & =I, \\
B_{2} & =J B_{1}+a_{1} I, \\
& \cdots \\
B_{n} & =J B_{n-1}+a_{n-1} I, \\
0 & =J B_{n}+a_{n} I .
\end{aligned}
$$

$J=\operatorname{diag}\left(J_{1}, \ldots, J_{r}\right)$ being block diagonal, so are all the B_{j} matrices. In fact,

$$
B_{j}=\operatorname{diag}\left(B_{j, 1}, B_{j, 2}, \ldots, B_{j, r}\right), \quad j=1,2, \ldots, n,
$$

and each block matrix $B_{j, k}$ is of order $n_{k} \times n_{k}$, satisfying

$$
\begin{align*}
B_{1, k} & =I_{k}, \\
B_{2, k} & =J_{k} B_{1, k}+a_{1} I_{k}, \\
& \cdots \tag{5}\\
B_{n, k} & =J_{k} B_{n-1, k}+a_{n-1} I_{k}, \\
0 & =J_{k} B_{n, k}+a_{n} I_{k},
\end{align*}
$$

where I_{k} is the $n_{k} \times n_{k}$ identity matrix.
Let us now put

$$
p_{k}(s)=\frac{p(s)}{\left(s-\lambda_{k}\right)^{n_{k}}}, \quad k=1, \ldots, r
$$

Define also the n_{k}-dimensional column vector $\theta_{k}=[0, \cdots, 0,1]^{T}$, and write $\theta=\left[\theta_{1}^{T}, \cdots, \theta_{r}^{T}\right]^{T}$.
If we postmultiply both sides of equation (4) by the column vector θ, we easily get

$$
\left[\begin{array}{c}
p_{1}(s) \mathbf{s}\left(\lambda_{1}, n_{1}\right) \tag{6}\\
\vdots \\
p_{r}(s) \mathbf{s}\left(\lambda_{r}, n_{r}\right)
\end{array}\right]=\left[\begin{array}{c}
H_{1} \\
\vdots \\
H_{r}
\end{array}\right] \mathbf{s}(0, n)
$$

Each H_{k} is of the form

$$
H_{k}=\left[\begin{array}{lll}
B_{n, k} \theta_{k} & \cdots & B_{1, k} \theta_{k} \tag{7}
\end{array}\right]
$$

and has order $n_{k} \times n$.
Comparing in turn for $k=1,2, \ldots, r$ the truncated Taylor expansions at λ_{k}, modulo $\left(s-\lambda_{k}\right)^{n_{k}}$, of both sides in (6) and putting these results together, we get

$$
\operatorname{diag}\left(P_{1}, \ldots, P_{r}\right)=\left[\begin{array}{c}
H_{1} \\
\vdots \\
H_{r}
\end{array}\right]\left[\begin{array}{lll}
V_{1} & \cdots & V_{r}
\end{array}\right]
$$

where each block P_{k} is a $n_{k} \times n_{k}$ upper triangular matrix given by

$$
P_{k}=p_{k}\left(J_{k}\right)=\sum_{j=0}^{n_{k}-1} \frac{p_{k}^{(j)}\left(\lambda_{k}\right)}{j!}\left(N_{k}\right)^{j} .
$$

It is noted here that $N_{k}=J\left(0, n_{k}\right)=J_{k}-\lambda_{k} I_{k}$ is nilpotent of order n_{k}.
If we can show that each P_{k} is invertible, then

$$
V^{-1}=\left[\begin{array}{c}
P_{1}^{-1} H_{1} \tag{8}\\
\vdots \\
P_{r}^{-1} H_{r}
\end{array}\right]
$$

To this end we require the following lemma which is an easy consequence of the partial fraction expansion of $1 / p(s)$ and the fact that N_{k} is nilpotent.

Lemma 1 Let there be given the partial fraction expansion

$$
\frac{1}{p(s)}=\sum_{k=1}^{r}\left(\frac{K_{k, n_{k}}}{\left(s-\lambda_{k}\right)^{n_{k}}}+\frac{K_{k, n_{k}-1}}{\left(s-\lambda_{k}\right)^{n_{k}-1}}+\cdots+\frac{K_{k, 1}}{s-\lambda_{k}}\right) .
$$

Then for $k=1,2, \ldots, r$

$$
P_{k}^{-1}=\sum_{j=0}^{n_{k}-1} K_{k, j}\left(N_{k}\right)^{j}=\mathcal{K}_{k}\left(J_{k}\right)
$$

where the polynomial $\mathcal{K}_{k}(s)$ is given by

$$
\mathcal{K}_{k}(s)=K_{k, n_{k}}+K_{k, n_{k}-1}\left(s-\lambda_{k}\right)+\cdots+K_{k, 1}\left(s-\lambda_{k}\right)^{n_{k}-1} .
$$

Putting the above results together with equations (7) and (8), we are now ready to state our main result:

Theorem 1 The inverse of $V=\left[V_{1} V_{2} \ldots V_{r}\right]$ related to the distinct zeros $\lambda_{1}, \ldots, \lambda_{r}$ of $p(s)$ is given by

$$
V^{-1}=\left[\begin{array}{c}
W_{1} \\
W_{2} \\
\vdots \\
W_{r}
\end{array}\right]
$$

where each block matrix

$$
W_{k}=W\left(\lambda_{k}, n_{k}\right)=\left[\begin{array}{llll}
\mathcal{K}_{k}\left(J_{k}\right) B_{n, k} \theta_{k} & \mathcal{K}_{k}\left(J_{k}\right) B_{n-1, k} \theta_{k} & \cdots & \mathcal{K}_{k}\left(J_{k}\right) B_{1, k} \theta_{k}
\end{array}\right]
$$

is of order $n_{k} \times n$.
Taking into account of (5), we find that $\mathcal{K}_{k}\left(J_{k}\right) B_{j, k}=B_{j, k} \mathcal{K}_{k}\left(J_{k}\right), j=$ $1,2, \ldots, n$, so that $B_{1, k} \mathcal{K}_{k}\left(J_{k}\right)=\mathcal{K}_{k}\left(J_{k}\right)$, and for $j=2, \ldots, n$

$$
\begin{aligned}
B_{j, k} \mathcal{K}_{k}\left(J_{k}\right) & =J_{k} B_{j-1, k} \mathcal{K}_{k}\left(J_{k}\right)+a_{j-1} \mathcal{K}_{k}\left(J_{k}\right) \\
& =\left(\lambda_{k} I_{k}+N_{k}\right) B_{j-1, k} \mathcal{K}_{k}\left(J_{k}\right)+a_{j-1} \mathcal{K}_{k}\left(J_{k}\right) .
\end{aligned}
$$

Moreover, $\left(\lambda_{k} I_{k}+N_{k}\right) B_{n, k} \mathcal{K}_{k}\left(J_{k}\right)+a_{n} \mathcal{K}_{k}\left(J_{k}\right)=0$.

4 The Algorithm

Based on the results obtained in the last section, we are now ready to give a recursive algorithm for inverting generalized Vandermonde matrix.

The Algorithm:

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be distinct zeros of the polynomial

$$
\begin{aligned}
p(s) & =\left(s-\lambda_{1}\right)^{n_{1}} \cdots\left(s-\lambda_{r}\right)^{n_{r}} \\
& =s^{n}+a_{1} s^{n-1}+\cdots+a_{n}
\end{aligned}
$$

given together with the partial fraction expansion of

$$
\frac{1}{p(s)}=\sum_{k=1}^{r}\left(\frac{K_{k, n_{k}}}{\left(s-\lambda_{k}\right)^{n_{k}}}+\frac{K_{k, n_{k}-1}}{\left(s-\lambda_{k}\right)^{n_{k}-1}}+\cdots+\frac{K_{k, 1}}{s-\lambda_{k}}\right) .
$$

For each $k \in\{1,2, \ldots, r\}$, compute recursively polynomials $h_{1}, h_{2}, \ldots, h_{n}$ of degree at most $n_{k}-1$ by means of the following scheme:

$$
\begin{aligned}
h_{1}(s) & =K_{k, n_{k}}+s K_{k, n_{k}-1}+\cdots+s^{n_{k}-1} K_{k, 1} \\
h_{2}(s) & =\left(\lambda_{k}+s\right) h_{1}(s)+a_{1} h_{1}(s) \bmod s^{n_{k}} \\
h_{3}(s) & =\left(\lambda_{k}+s\right) h_{2}(s)+a_{2} h_{1}(s) \bmod s^{n_{k}} \\
& \vdots \\
h_{n}(s) & =\left(\lambda_{k}+s\right) h_{n-1}(s)+a_{n-1} h_{1}(s) \bmod s^{n_{k}}
\end{aligned}
$$

terminating at

$$
0=\left(\lambda_{k}+s\right) h_{n}(s)+a_{n} h_{1}(s) \bmod s^{n_{k}}
$$

Obtain a block matrix $W_{k}=W\left(\lambda_{k}, n_{k}\right)$ of order $n_{k} \times n$ via the equality

$$
\left[\begin{array}{llll}
s^{n_{k}-1} & s^{n_{k}-2} & \cdots & 1
\end{array}\right] W\left(\lambda_{k}, n_{k}\right)=\left[\begin{array}{llll}
h_{n} & h_{n-1} & \cdots & h_{1}
\end{array}\right] .
$$

The inverse of the generalized Vandermonde matrix V related to the distinct zeros $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of $p(s)$ may then be given by

$$
\begin{aligned}
V^{-1} & =\left[V\left(\lambda_{1}, n_{1}\right) V\left(\lambda_{2}, n_{2}\right) \cdots V\left(\lambda_{r}, n_{r}\right)\right]^{-1} \\
& =\left[\begin{array}{c}
W\left(\lambda_{1}, n_{1}\right) \\
W\left(\lambda_{2}, n_{2}\right) \\
\vdots \\
W\left(\lambda_{r}, n_{r}\right)
\end{array}\right] .
\end{aligned}
$$

Let us now give some supplementary remarks on the above algorithm.
(i) A check on the accuracy of the computation of polynomials h_{1}, \ldots, h_{n} is provided by the last polynomial $\left(\lambda_{k}+s\right) h_{n}(s)+a_{n} h_{1}(s)$, which should result identically in the zero polynomial 0 when modulo $s^{n_{k}}$ is performed.
(ii) The coefficients $a_{1}, a_{2}, \ldots, a_{n}$ of the polynomial $p(s)$ may be recursively computed using (3) with $A=\operatorname{diag}(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{n_{1}}, \ldots, \underbrace{\lambda_{r}, \ldots, \lambda_{r}}_{n_{r}})$.
(iii) The partial fraction coefficients $K_{k, n_{k}}, K_{k, n_{k}-1}, \ldots, K_{k, 1}$ used in the construction of the starting polynomial $h_{1}(s)$ may be obtained by expanding

$$
\frac{1}{p_{k}(s)}=\sum_{j=0}^{n_{k}-1} K_{k, n_{k}-j}\left(s-\lambda_{k}\right)^{j}+\cdots
$$

in powers of $\left(s-\lambda_{k}\right)$. They may also be recursively computed using the following scheme:

$$
\begin{aligned}
K_{k, n_{k}} & =1 / p_{k, 0} \\
K_{k, n_{k}-j} & =-\frac{\sum_{i=1}^{j} p_{k, i} K_{k, n_{k}-j+i}}{p_{k, 0}} \quad\left(j=1, \ldots, n_{k}-1\right),
\end{aligned}
$$

where $p_{k}(s)=\sum_{j=0}^{n-n_{k}} p_{k, j}\left(s-\lambda_{k}\right)^{j}$.

5 Illustrative example

The following example will serve to illustrate the recursive algorithm presented above. Let the generalized Vandermonde matrix V in (1) be given by

$$
V=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\lambda_{1} & 1 & 0 & \lambda_{2} \\
\lambda_{1}^{2} & 2 \lambda_{1} & 1 & \lambda_{2}^{2} \\
\lambda_{1}^{3} & 3 \lambda_{1}^{2} & 3 \lambda_{1} & \lambda_{2}^{3}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
-2 & 1 & 0 & 3 \\
4 & -4 & 1 & 9 \\
-8 & 12 & -6 & 27
\end{array}\right],
$$

for which $\lambda_{1}=-2, n_{1}=3$, and $\lambda_{2}=3, n_{2}=1$. The coefficients of the polynomial $p(s)=(s+2)^{3}(s-3)$ are given by $a_{1}=3, a_{2}=-6, a_{3}=-28$,
and $a_{4}=-24$. It is easy to determine the partial fraction expansion of $1 / p(s)$ to be

$$
\frac{1}{(s+2)^{3}(s-3)}=\frac{-\frac{1}{5}}{(s+2)^{3}}+\frac{-\frac{1}{25}}{(s+2)^{2}}+\frac{-\frac{1}{125}}{s+2}+\frac{\frac{1}{125}}{s-3} .
$$

Let us consider first the case $\lambda_{1}=-2$. Clearly

$$
h_{1}(s)=-\frac{1}{5}-\frac{s}{25}-\frac{s^{2}}{125} .
$$

Then

$$
\begin{aligned}
h_{2}(s) & =(-2+s) h_{1}(s)+3 h_{1}(s) \bmod s^{3} \\
& =-\frac{1}{5}-\frac{6 s}{25}-\frac{6 s^{2}}{125}, \\
h_{3}(s) & =(-2+s) h_{2}(s)-6 h_{1}(s) \bmod s^{3} \\
& =\frac{8}{5}+\frac{13 s}{25}-\frac{12 s^{2}}{125}, \\
h_{4}(s) & =(-2+s) h_{3}(s)-28 h_{1}(s) \bmod s^{3} \\
& =\frac{12}{5}+\frac{42 s}{25}+\frac{117 s^{2}}{125} .
\end{aligned}
$$

As a check of computation, we verify that

$$
(-2+s) h_{4}(s)-24 h_{1}(s) \bmod s^{3}=\frac{117 s^{3}}{125} \bmod s^{3}=0
$$

Thus it follows from $\left[\begin{array}{lll}s^{2} & s & 1\end{array}\right] W_{1}=\left[\begin{array}{llll}h_{4} & h_{3} & h_{2} & h_{1}\end{array}\right]$ that

$$
W_{1}=\left[\begin{array}{cccc}
\frac{117}{125} & -\frac{12}{125} & -\frac{6}{125} & -\frac{1}{125} \\
\frac{42}{25} & \frac{13}{25} & -\frac{6}{25} & -\frac{1}{25} \\
\frac{12}{5} & \frac{8}{5} & -\frac{1}{5} & -\frac{1}{5}
\end{array}\right] .
$$

Similarly, for $\lambda_{2}=3$ we find that

$$
\begin{aligned}
& h_{1}(s)=\frac{1}{125} \\
& h_{2}(s)=(3+s) h_{1}(s)+3 h_{1}(s) \bmod s=\frac{6}{125} \\
& h_{3}(s)=(3+s) h_{2}(s)-6 h_{1}(s) \bmod s=\frac{12}{125} \\
& h_{4}(s)=(3+s) h_{3}(s)-28 h_{1}(s) \bmod s=\frac{8}{125}
\end{aligned}
$$

and

$$
(3+s) h_{4}(s)-24 h_{1}(s) \bmod s=3 \cdot \frac{8}{125}-\frac{24}{125}=0
$$

Then [1] $W_{2}=\left[\begin{array}{llll}h_{4} & h_{3} & h_{2} & h_{1}\end{array}\right]$ gives

$$
W_{2}=\left[\begin{array}{llll}
\frac{8}{125} & \frac{12}{125} & \frac{6}{125} & \frac{1}{125}
\end{array}\right] .
$$

Finally, we have

$$
V^{-1}=\left[\begin{array}{l}
W_{1} \\
W_{2}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{117}{125} & -\frac{12}{125} & -\frac{6}{125} & -\frac{1}{125} \\
\frac{42}{25} & \frac{13}{25} & -\frac{6}{25} & -\frac{1}{25} \\
\frac{12}{5} & \frac{8}{5} & -\frac{1}{5} & -\frac{1}{5} \\
\frac{8}{125} & \frac{12}{125} & \frac{6}{125} & \frac{1}{125}
\end{array}\right]
$$

Acknowledgment

This work was supported by the Research Committee of The Hong Kong Polytechnic University (Grant No. G-S744).

References

[1] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.
[2] H. K. Garg, Digital Signal Processing Algorithms, CRC Press, 1998.
[3] F. A. Graybill, Matrices with Applications to Statistics, second ed., Wadsworth, Belmont, Calif., 1983.
[4] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[5] S. H. Hou, On Leverrier-Faddeev Algorithm, Proceedings of the Third Asian Technology Conference in Mathematics, Yang et al (Eds.), Springer Verlag, 399-403, 1998.
[6] T. Kailath, Linear Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1980.
[7] D. Kalman, The Generalized Vandermonde Matrix, Math. Mag., 57:1521, 1984.
[8] A. Klinger, The Vandermonde Matrix, Amer. Math. Monthly, 74:571574, 1967.
[9] N. Macon and A. Spitzbart, Inverses of Vandermonde Matrices, Amer. Math. Monthly, 65:95-100, 1958.
[10] C. Pozrikidis, Numerical Computation in Science and Engineering, Oxford University Press, 1998.

