On the Inversion of Vandermonde Matrices

Shui-Hung Hou
Department of Applied Mathematics
Hong Kong Polytechnic University
mahoush@polyu.edu.hk

Abstract
A novel and simple recursive algorithm for inverting Vandermonde matrix and its generalized form is presented. The algorithm is suitable for classroom use in both numerical as well as symbolic computation.

1 Introduction

The importance of the Vandermonde matrix is well known. Inversion of this matrix is necessary in many areas of applications such as polynomial interpolation [4, 10], digital signal processing [2], and control theory [6], to mention a few. See also for example Klinger [8], Kalman [7]. However, an explicit recursive formula for the inversion of Vandermonde matrices seems unavailable in most linear algebra textbooks.

The purpose of this paper is to present a novel and simple recursive algorithm for inverting Vandermonde matrix, as well as its generalized (or confluent) form, in a way more readily accessible for use in classroom and suitable for both numerical as well as symbolic computation.

2 Preliminaries and notations

Let \(m \) be a nonnegative integer. For the sequence \(1, (s - \lambda), \ldots, (s - \lambda)^{m-1} \) of polynomials we write \(s(\lambda, m) = [1, (s - \lambda), \ldots, (s - \lambda)^{m-1}]^T \). In particular, \(s(0, m) = [1, s, \ldots, s^{m-1}]^T \).

Let \(\lambda_1, \lambda_2, \ldots, \lambda_r \) be given distinct zeros of the polynomial

\[
p(s) = (s - \lambda_1)^{n_1} \cdots (s - \lambda_r)^{n_r}
\]
with \(n_1 + \ldots + n_r = n \). The generalized (or confluent) Vandermonde matrix related to the zeros of \(p(s) \) is known to be

\[
V = [V_1 V_2 \cdots V_r],
\]

where the block matrix \(V_k = V(\lambda_k, n_k) \) is of order \(n \times n_k \), having elements \(V(\lambda_k, n_k)_{ij} = \binom{i-1}{j-1} \lambda_k^{i-j} \) for \(i \geq j \) and zero otherwise \((k = 1, 2, \ldots, r; i = 1, 2, \ldots, n; j = 1, 2, \ldots, n_k)\). More specifically, \(V_k \) is the \(n \times n_k \) matrix of coefficients that appears in the truncated Taylor expansion at \(\lambda_k \), modulo \((s - \lambda_k)^{n_k}\), of \(s(0, n) \). That is,

\[
s(0, n) = V(\lambda_k, n_k) s(\lambda_k, n_k) \mod (s - \lambda_k)^{n_k}.
\]

In the case the zeros \(\lambda_1, \ldots, \lambda_r \) of \(p(s) \) are simple, we have the usual Vandermonde matrix, namely,

\[
V = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
\lambda_1 & \lambda_2 & \cdots & \lambda_r \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_r^{n-1}
\end{bmatrix}.
\]

It will be shown that the inverse of the generalized Vandermonde matrix \(V \) in (1) has a form

\[
V^{-1} = \begin{bmatrix}
W_1 \\
W_2 \\
\vdots \\
W_r
\end{bmatrix},
\]

where each block matrix \(W_k \) is of order \(n_k \times n \) and may be computed by means of a recursive procedure.

Generally, the inverse of the usual Vandermonde matrix [3], as well as the inverse of the generalized Vandermonde matrix [9] are based on using interpolation polynomials.

Our approach is based on using the Leverrier-Faddeev algorithm [1, 5, 10], which states that the resolvent of a given \(n \times n \) matrix \(A \) is given by

\[
(sI - A)^{-1} = \frac{B_1 s^{n-1} + B_2 s^{n-2} + \cdots + B_n}{s^n + a_1 s^{n-1} + \cdots + a_n},
\]

where \(\det(sI - A) = s^n + a_1 s^{n-1} + \cdots + a_n \) is the characteristic polynomial
of the matrix A, and all the B_j matrices are of order $n \times n$, satisfying
\[
B_1 = I, \quad a_1 = -\frac{1}{n} \text{tr}(AB_1),
\]
\[
B_2 = AB_1 + a_1 I, \quad a_2 = -\frac{1}{2} \text{tr}(AB_2),
\]
\[
\vdots
\]
\[
B_n = AB_{n-1} + a_{n-1} I, \quad a_n = -\frac{1}{n} \text{tr}(AB_n)
\]
with $0 = AB_n + a_n I$ terminating as a check of computation. Here tr stands for the trace of a matrix.

3 Main result

Let $J = \text{diag}(J_1, \ldots, J_r)$ be the block diagonal matrix, where
\[
J_k = J(\lambda_k, n_k) = \begin{bmatrix}
\lambda_k & 1 & 0 & \cdots & 0 \\
0 & \lambda_k & 1 & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & \lambda_k & 1 \\
0 & \cdots & 0 & 0 & \lambda_k
\end{bmatrix}
\]
is the $n_k \times n_k$ Jordan block with eigenvalue λ_k. Then J has characteristic polynomial $\det(sI - J) = (s - \lambda_1)^{n_1} \cdots (s - \lambda_r)^{n_r} = p(s)$.

Substituting $A = J$ in equations (2) and (3) of the Leverrier-Faddeev algorithm, we see immediately that
\[
p(s)(sI - J)^{-1} = B_1 s^{n-1} + B_2 s^{n-2} + \cdots + B_n,
\]
where
\[
B_1 = I,
B_2 = J B_1 + a_1 I,
\]
\[
\vdots
\]
\[
B_n = J B_{n-1} + a_{n-1} I,
0 = J B_n + a_n I.
\]
$J = \text{diag}(J_1, \ldots, J_r)$ being block diagonal, so are all the B_j matrices. In fact,
\[
B_j = \text{diag}(B_{j,1}, B_{j,2}, \ldots, B_{j,r}), \quad j = 1, 2, \ldots, n,
\]
and each block matrix $B_{j,k}$ is of order $n_k \times n_k$, satisfying
\[
B_{1,k} = I_k,
B_{2,k} = J_k B_{1,k} + a_1 I_k,
\]
\[
\vdots
\]
\[
B_{n,k} = J_k B_{n-1,k} + a_{n-1} I_k,
0 = J_k B_{n,k} + a_n I_k.
\]
where \(I_k \) is the \(n_k \times n_k \) identity matrix.

Let us now put

\[
p_k(s) = \frac{p(s)}{(s - \lambda_k)^{n_k}}, \quad k = 1, \ldots, r.
\]

Define also the \(n_k \)-dimensional column vector \(\theta_k = [0, \ldots, 0, 1]^T \), and write \(\theta = [\theta_1^T, \ldots, \theta_r^T]^T \).

If we postmultiply both sides of equation (4) by the column vector \(\theta \), we easily get

\[
\begin{bmatrix}
p_1(s) s(\lambda_1, n_1) \\
\vdots \\
p_r(s) s(\lambda_r, n_r)
\end{bmatrix} = \begin{bmatrix}
H_1 \\
\vdots \\
H_r
\end{bmatrix} s(0, n).
\]

Each \(H_k \) is of the form

\[
H_k = \begin{bmatrix}
B_{n,k} \theta_k & \cdots & B_{1,k} \theta_k
\end{bmatrix}
\]

and has order \(n_k \times n \).

Comparing in turn for \(k = 1, 2, \ldots, r \) the truncated Taylor expansions at \(\lambda_k \), modulo \((s - \lambda_k)^{n_k} \), of both sides in (6) and putting these results together, we get

\[
\text{diag}(P_1, \ldots, P_r) = \begin{bmatrix}
H_1 \\
\vdots \\
H_r
\end{bmatrix} \begin{bmatrix}
V_1 & \cdots & V_r
\end{bmatrix},
\]

where each block \(P_k \) is a \(n_k \times n_k \) upper triangular matrix given by

\[
P_k = p_k(J_k) = \sum_{j=0}^{n_k-1} \frac{p_k^{(j)}(\lambda_k)}{j!} (N_k)^j.
\]

It is noted here that \(N_k = J(0, n_k) = J_k - \lambda_k I_k \) is nilpotent of order \(n_k \).

If we can show that each \(P_k \) is invertible, then

\[
V^{-1} = \begin{bmatrix}
P_1^{-1} H_1 \\
\vdots \\
P_r^{-1} H_r
\end{bmatrix}.
\]

To this end we require the following lemma which is an easy consequence of the partial fraction expansion of \(1/p(s) \) and the fact that \(N_k \) is nilpotent.
Lemma 1 Let there be given the partial fraction expansion
\[
\frac{1}{p(s)} = \sum_{k=1}^{r} \left(\frac{K_{k,n_k}}{(s - \lambda_k)^{n_k}} + \frac{K_{k,n_k-1}}{(s - \lambda_k)^{n_k-1}} + \cdots + \frac{K_{k,1}}{s - \lambda_k} \right).
\]

Then for \(k = 1, 2, \ldots, r \)
\[
P_k^{-1} = \sum_{j=0}^{n_k-1} K_{k,j} (N_k)^j = K_k(J_k),
\]
where the polynomial \(K_k(s) \) is given by
\[
K_k(s) = K_{k,n_k} + K_{k,n_k-1}(s - \lambda_k) + \cdots + K_{k,1}(s - \lambda_k)^{n_k-1}.
\]

Putting the above results together with equations (7) and (8), we are now ready to state our main result:

Theorem 1 The inverse of \(V = [V_1 V_2 \ldots V_r] \) related to the distinct zeros \(\lambda_1, \ldots, \lambda_r \) of \(p(s) \) is given by
\[
V^{-1} = \begin{bmatrix}
W_1 \\
W_2 \\
\vdots \\
W_r
\end{bmatrix},
\]
where each block matrix
\[
W_k = W(\lambda_k, n_k) = \begin{bmatrix}
K_k(J_k)B_{n,k}\theta_k & K_k(J_k)B_{n-1,k}\theta_k & \cdots & K_k(J_k)B_{1,k}\theta_k
\end{bmatrix}
\]
is of order \(n_k \times n \).

Taking into account of (5), we find that \(K_k(J_k)B_{j,k} = B_{j,k}K_k(J_k), j = 1, 2, \ldots, n, \) so that \(B_{1,k}K_k(J_k) = K_k(J_k), \) and for \(j = 2, \ldots, n \)
\[
B_{j,k}K_k(J_k) = J_kB_{j-1,k}K_k(J_k) + a_{j-1}K_k(J_k)
= (\lambda_k I_k + N_k)B_{j-1,k}K_k(J_k) + a_{j-1}K_k(J_k).
\]
Moreover, \((\lambda_k I_k + N_k)B_{n,k}K_k(J_k) + a_nK_k(J_k) = 0. \)
4 The Algorithm

Based on the results obtained in the last section, we are now ready to give a recursive algorithm for inverting generalized Vandermonde matrix.

The Algorithm:

Let \(\lambda_1, \lambda_2, \ldots, \lambda_r \) be distinct zeros of the polynomial
\[
p(s) = (s - \lambda_1)^{n_1} \cdots (s - \lambda_r)^{n_r} = s^n + a_1 s^{n-1} + \cdots + a_n,
\]
given together with the partial fraction expansion of
\[
\frac{1}{p(s)} = \sum_{k=1}^{r} \left(\frac{K_{k,n_k}}{(s - \lambda_k)^{n_k}} + \frac{K_{k,n_k-1}}{(s - \lambda_k)^{n_k-1}} + \cdots + \frac{K_{k,1}}{s - \lambda_k} \right).
\]

For each \(k \in \{1, 2, \ldots, r\} \), compute recursively polynomials \(h_1, h_2, \ldots, h_n \) of degree at most \(n_k - 1 \) by means of the following scheme:
\[
h_1(s) = K_{k,n_k} + sK_{k,n_k-1} + \cdots + s^{n_k-1}K_{k,1},
\]
\[
h_2(s) = (\lambda_k + s)h_1(s) + a_1 h_1(s) \mod s^{n_k},
\]
\[
h_3(s) = (\lambda_k + s)h_2(s) + a_2 h_1(s) \mod s^{n_k},
\]
\[\vdots\]
\[
h_n(s) = (\lambda_k + s)h_{n-1}(s) + a_{n-1} h_1(s) \mod s^{n_k},
\]
terminating at
\[0 = (\lambda_k + s)h_n(s) + a_n h_1(s) \mod s^{n_k}.\]

Obtain a block matrix \(W_k = W(\lambda_k, n_k) \) of order \(n_k \times n \) via the equality
\[
\begin{bmatrix}
s^{n_k-1} & s^{n_k-2} & \cdots & 1 \\
\end{bmatrix} W(\lambda_k, n_k) = \begin{bmatrix} h_n & h_{n-1} & \cdots & h_1 \end{bmatrix}.
\]

The inverse of the generalized Vandermonde matrix \(V \) related to the distinct zeros \(\lambda_1, \lambda_2, \ldots, \lambda_r \) of \(p(s) \) may then be given by
\[
V^{-1} = [V(\lambda_1, n_1)V(\lambda_2, n_2) \cdots V(\lambda_r, n_r)]^{-1} = \begin{bmatrix} W(\lambda_1, n_1) \\
W(\lambda_2, n_2) \\
\vdots \\
W(\lambda_r, n_r) \end{bmatrix}.
\]
Let us now give some supplementary remarks on the above algorithm.

(i) A check on the accuracy of the computation of polynomials h_1, \ldots, h_n is provided by the last polynomial $(\lambda_k + s)h_n(s) + a_n h_1(s)$, which should result identically in the zero polynomial 0 when modulo s^{n_k} is performed.

(ii) The coefficients a_1, a_2, \ldots, a_n of the polynomial $p(s)$ may be recursively computed using (3) with $A = \text{diag}(\lambda_1, \ldots, \lambda_{r_1}, \ldots, \lambda_{r_r})$.

(iii) The partial fraction coefficients $K_{k,n_k}, K_{k,n_k-1}, \ldots, K_{k,1}$ used in the construction of the starting polynomial $h_1(s)$ may be obtained by expanding

$$\frac{1}{p_k(s)} = \sum_{j=0}^{n_k-1} K_{k,n_k-j} (s - \lambda_k)^j + \cdots$$

in powers of $(s - \lambda_k)$. They may also be recursively computed using the following scheme:

$$K_{k,n_k} = 1/p_{k,0},$$

$$K_{k,n_k-j} = -\frac{\sum_{i=1}^{j} p_{k,i} K_{k,n_k-j+i}}{p_{k,0}} \quad (j = 1, \ldots, n_k - 1),$$

where $p_k(s) = \sum_{j=0}^{n-n_k} p_{k,j} (s - \lambda_k)^j$.

5 Illustrative example

The following example will serve to illustrate the recursive algorithm presented above. Let the generalized Vandermonde matrix V in (1) be given by

$$V = \begin{bmatrix} 1 & 0 & 0 & 1 \\ \lambda_1 & 1 & 0 & \lambda_2 \\ \lambda_1^2 & 2\lambda_1 & 1 & \lambda_2^2 \\ \lambda_1^3 & 3\lambda_1^2 & 3\lambda_1 & \lambda_2^3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 3 \\ 4 & -4 & 1 & 9 \\ -8 & 12 & -6 & 27 \end{bmatrix},$$

for which $\lambda_1 = -2, n_1 = 3$, and $\lambda_2 = 3, n_2 = 1$. The coefficients of the polynomial $p(s) = (s + 2)^3(s - 3)$ are given by $a_1 = 3, a_2 = -6, a_3 = -28,$
and \(a_4 = -24\). It is easy to determine the partial fraction expansion of \(1 / p(s)\) to be
\[
\frac{1}{(s + 2)^3(s - 3)} = \frac{-1}{5} \left(\frac{1}{s + 2}\right)^3 + \frac{-1}{25} \left(\frac{1}{s + 2}\right)^2 + \frac{-1}{125} \frac{1}{s + 2} + \frac{1}{125} \frac{1}{s - 3}.
\]
Let us consider first the case \(\lambda_1 = -2\). Clearly
\[
h_1(s) = -\frac{1}{5} - \frac{s}{25} - \frac{s^2}{125}.
\]
Then
\[
h_2(s) = (-2 + s)h_1(s) + 3h_1(s) \mod s^3
\]
\[
= \frac{1}{5} - \frac{6s}{25} - \frac{6s^2}{125},
\]
\[
h_3(s) = (-2 + s)h_2(s) - 6h_1(s) \mod s^3
\]
\[
= \frac{8}{5} + \frac{13s}{25} - \frac{12s^2}{125},
\]
\[
h_4(s) = (-2 + s)h_3(s) - 28h_1(s) \mod s^3
\]
\[
= \frac{12}{5} + \frac{42s}{25} + \frac{117s^2}{125}.
\]
As a check of computation, we verify that
\[
(-2 + s)h_4(s) - 24h_1(s) \mod s^3 = \frac{117s^3}{125} \mod s^3 = 0.
\]
Thus it follows from \([s^2 \ s \ 1 \ 1 \ W_1 = \begin{bmatrix} h_4 & h_3 & h_2 & h_1 \end{bmatrix} \] that
\[
W_1 = \begin{bmatrix} \frac{117}{125} & \frac{-12}{125} & \frac{-6}{125} & \frac{-1}{125} \\ \frac{42}{25} & \frac{13}{25} & \frac{-6}{25} & \frac{-1}{25} \\ \frac{12}{5} & \frac{8}{5} & \frac{-1}{5} & \frac{-1}{5} \end{bmatrix}.
\]
Similarly, for \(\lambda_2 = 3\) we find that
\[
h_1(s) = \frac{1}{125},
\]
\[
h_2(s) = (3 + s)h_1(s) + 3h_1(s) \mod s = \frac{6}{125},
\]
\[
h_3(s) = (3 + s)h_2(s) - 6h_1(s) \mod s = \frac{12}{125},
\]
\[
h_4(s) = (3 + s)h_3(s) - 28h_1(s) \mod s = \frac{8}{125}.
\]
and
\[(3 + s)h_4(s) - 24h_1(s) \mod s = 3 \cdot \frac{8}{125} - \frac{24}{125} = 0.\]

Then \[
\begin{bmatrix}
1 \\
W_2
\end{bmatrix}
= \begin{bmatrix}
h_4 & h_3 & h_2 & h_1
\end{bmatrix}
gives
\[
W_2 = \begin{bmatrix}
\frac{8}{125} & \frac{12}{125} & \frac{6}{125} & \frac{1}{125}
\end{bmatrix}.
\]

Finally, we have
\[
V^{-1} = \begin{bmatrix}
W_1 \\
W_2
\end{bmatrix} = \begin{bmatrix}
\frac{117}{125} & \frac{12}{125} & \frac{6}{125} & \frac{1}{125} \\
\frac{42}{25} & \frac{13}{25} & -\frac{6}{25} & -\frac{1}{25} \\
\frac{12}{5} & \frac{8}{5} & -\frac{1}{5} & -\frac{1}{5} \\
\frac{8}{125} & \frac{12}{125} & \frac{6}{125} & \frac{1}{125}
\end{bmatrix}.
\]

Acknowledgment

This work was supported by the Research Committee of The Hong Kong Polytechnic University (Grant No. G-S744).

References

