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Abstract
This study discussed the roles of old technology and new technology in the teaching

of mathematical modeling.  In this paper, a crank mechanism made of LEGO was
used for teaching mathematical modeling.  This paper, as the third phase of the
research (Isoda, Matuzaki, Nakajima, 1998), discussed the changing roles of LEGO
and a Graphic Calculator if we added the activity of making linkage (Matuzaki, 1999).
From the case study, this paper distinguished the four cognitive phases through
mathematical modeling: reasoning with the visual image in real world, reasoning with
the mechanical structure, reasoning with the mathematical model without the
mechanical structure and reasoning with the mathematical model and the mechanical
structure.  With comparing our results with Rose Mary Zbiek’s research (1998)
which discussed the role of new technology in formulation of the model, this research
discussed following:  the real world activity should be distinguished before and after
knowing the mechanical structure, and the mathematical activity with the model
should be distinguished before and after synchronizing the parameters of the model
and the parts of the mechanics.  In this paper, graphic calculator as a piece of new
technology helped mathematical works in the process of the mathematical modeling
and LEGO as a piece of old technology helped the activity in real world.  The
synchronization of the model with the mechanics was supported by both technologies.
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1  Introduction

The innovative use of new technology has influenced education. In mathematics education
Computer Algebra System, Graphing Tools and Dynamic Geometry Software (DGS) have
influenced high school curriculums.  Many kinds of alternative teaching programs have
been developed in the US.  In addition, the Internet has been changing the idea of
mathematics teaching.  From the perspective of Marshall McLuhan’s Media Revolution
(1962) with the well known example of the printing technology of Gutenberg in the 15th
century, the changing media from manuscript to type printing influenced the Scientific
Revolution and we could not avoid the Media Revolution like medieval could not [1].
But does new technology alternate old technology?  For example if we use DGS in
geometry, can we discard a ruler and a compass?  Of course we cannot, but we have to
consider how the roles of a ruler and a compass should be changed.  Descartes changed
their roles from exclusive mathematical tool for geometry to one of mechanical tools which
was used for representing mathematics.  His view enhanced exploration of mechanics and
influenced the technological and mechanical sciences and cognition.
This paper explores the roles of old technology and new technology in the research context
of mathematical modeling: a process described by Tatsuro Miwa (1983) as Formulation of
Model, Mathematical Works Based on Model and Interpretation of Result [2].  Rose
Mary Zbiek (1998) discussed the relation between new technology and prospective
teachers’ strategies for mathematical modeling [3].  In this paper, we focus on mechanics
in order to explore the changing role of old technology in the context of mathematical
modeling and show an example of modeling by students.  Our results will be compared
with Zbiek’s research and the roles of old and new technologies will be clarified.

2  Mechanics and the Mathematical Model

Mechanics has been developed along with mathematics.  Before ENIAC, mathematicians
tried to design physical mechanics for the calculation of calculus [4].  20 years ago, some
kinds of mechanics like figure 1 and 2 still have roles as mathematical instruments and we
could find many kinds of the catalogs of mathematical instruments for classroom use [5].
Some of them were made by plastic, newest material but now in Japan, such instruments
have been alternated computers.  It is difficult to find such catalogs and instruments in
classroom.  Maria G. Bartolini Bussi discussed the historical instruments for using it in
today’s classroom [6].  Following, the diversity of the mathematical model of mechanics
are analyzed in order to show how its nature should be discussed .
2.1 Mechanics Designed by Geometric, Algebraic or Analytic Structure
Until the 17th century, mechanics like those in figure 1 and 2 were usually developed using
the representation of Geometry.  On the other hand, since the beginning of the
development of algebra in West Asia, algebra has been connected with geometry.  After
Descartes, D’Alembert designed the theoretical machine which could draw the graph of
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any polynomial function [6][7].  A physical copy of it made by Jean M. Laborde, Cabri
group in Grenoble, only worked lower degree by physical problem.  But we know that the
virtural copy by DGS enable to work.  We could see another physical copy by Franco
Conti [8].  Herman H. Goldstine distinguished between the arithmetical-digital type
machine like abacus and continuous-measuring-analogue type machine like planimeter [5].
Analogue type one is represented by Algebra or Analysis.  Today, in the age of mecha-
toronics, analogue mechanics is controlled by digital computer.

Fig. 1  Descartes (1637)   Fig. 2  M. Bion (1709)

2.2 Parts Used in Mechanics and Parameters for Using Mechanics
All Mechanics have a mechanical structure which could be also represented in
mathematically.  In the case of the pantograph, like figure 2, similarity is kept by the
geometric structure which is based on the parallelogram and the line through the fulcrum,
the force point and the influence point.  If students know the structure of the pantograph,
they must change the ratio of similarity as parameters.  If not, they could explore the
pantograph by changing parts and discover the conditions which keep the similarity.
Cognitive structures must be strictly difference before and after knowing the structure.
Before knowing the structure they enjoyed changing parts but after knowing the structure
there were parameters which should be changed.  In the case of D’Alembert’s machine,
we can manipulate the parameters of the coefficients in the polynomial without knowing
the hidden mechanical structure which might be represented by the geometric structure.  
We should also know that same mechanics can be manipulated according to one’s
intuitions which depends upon user’s knowledge of mathematics.  And we should not
forget that mechanics helps to develop mathematics.  For example, Descartes’ intuition
about curves could not easily sheared with us without using his instruments which are also
represented by DGS [7].
2.3 Diversity of the Mathematical Model in the Kinematics Context
The mathematical model of mechanics is not restricted to one structure in the kinematics
context.  For example, geometric representation can describe the motion of mechanics as
locus but DGS shows its motion.  Analytic (functional) representation can describe the
changing of acceleration.  Even if we set the context for mechanics, we can select many
kinds of mathematical representations.  In some cases, geometric representations fit the
real situations better than algebraic representations.  In other cases, algebraic
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representations are preferable.
Against such diversity, we should also consider the feature that the mathematical model of
mechanics usually explains its own kinematics as a theoretically causal relation.  In the
case of the social sciences and some parts of engineering, we can discuss the mathematical
model only by selecting the fittest function which correspond to the data but cannot explain
the meaning of the functional representation as a theoretically causal relation.  Thus,
mechanics are preferred for teaching mathematical modeling.

3  A Case Study in a Secondary Classroom

In order to explore the changing role of old technology in the context of mathematical
modeling, we selected a crank mechanism and taught mathematical modeling to high
school students for four hours [9].  The mathematical modeling problem was the same as
in our previous research [10] but the making mechanics with LEGO was added in order to
focus on the changing of the role.  Nine female eleventh grade students who had never
studied a crank before were selected.  For collaborative exploration and for taking data of
their communication, students were divided in groups which have two or three students in
each.  During class, students’ activities were recorded and student’s worksheets were
gathered for qualitative analysis.  Students had studied trigonometric functions previously
but they needed help to formulate an equation for the mathematical model.
3.1 Mechanics Embedded in a Daily Context
The session began with the question, “How does the wooden-horse of merry-go-round
move?”  Students engaged the question for two hours in the context of making marry-go-
round.

   Fig. 3 (by students) Fig. 4 (by students)  Fig. 5 (by students and teacher)

Most students answered from their experience that the motion was only up-and-down and
the structure of the merry-go-round was unknown.  Then, they watched the motion of
wooden-horse on a video and were asked the same question once again. They answered
that the up-and-down motion was provided by some mechanical structure similar to that of
figure 3.  The teacher, Akio Matuzaki, explained that a mechanical structure of crank
hidden in merry-go-round but they feel strange and do not understand how the circle
motion produces an up-and-down motion. This conflict was a result of the difference
between the wooden-horse’s up-and-down motion on the turntable of marry-go-round
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Upper Bottom

which students had experienced while riding and the circle motion which also included the
backward and forward motion.  This result implies that students do not always have an
appropriate image concerning the motion of mechanics even if they experience the motion
frequently in daily life.
3.2 The Structure of Mechanics Beyond Visualized Materials
In order to confirm the motion, teacher asked students to make the mechanics by LEGO
which could represent the motion of wooden-horse.  The teacher expected that students
would make a mechanics using a crank but this task was difficult for students.  For
example, one group began by constructing the wooden-horse itself (figure 4) but then
couldn’t reproduce the mechanism, they could construct only the separate parts.  This
result implies that students were reasoning with visual material but could not reasoning with
the structure of mechanics.
All groups tried to make but failed. Then the teacher gave students an incomplete sample to
complete.  The mechanism made by students represented the piston crank mechanism
(figure 5) but many students imaged that the locus of wooden-horse must be circle (e.g. like
enlargements of figure 6).  This result implies that students were still reasoning using their
visual images and could not reason using the mechanical structure even if they made the
mechanics.

Fig. 6 Enlargement/No Crank Fig. 7 Crank Motion Fig. 8 Oval

3.3 Conflict between Students’ Visual Image and the Locus by the Mechanics
In order to confirm the motion is circle or not, students drew loci like figure 7 using the
crank (figure 5) by adding the pencil lead to the hole of LEGO rod.  Contradictory to
many students’ images, the loci were not circles (figure 9).  Some students thought the loci
were not drawn correctly because their hands moved when they were drawing, hence the
circle did not appear as they supposed it would.  This upset cognition implies that these
students did not recognize the crank as an appropriate model for the wooden-horse motion
and still did not reason with the mechanical structure.  Many students discussed how the
motion might be related with the structure as follows.
  2182YM: The horse isn’t round on the upper side.
  2183TT: Why can’t the horse connect with the upper side?
  2185YM: Because?
  2186TT: It could be round on the upper side.  What

do you think?
  2187NY: I agree.

2188YM: Why?  Fig.9
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The cogwheel is coiled around the horse!   
2189All: Right! It’s funny (laughing).

In the descriptions on the worksheet, students wrote the following, “I wonder that upper
side is circle, but bottom side is a pressed oval (figure 8) and the height is same (figure 9).
The locus is an elliptic or a semicircle (!?).”
Two hours approach to the first question, students overcame their misunderstandings
resulting from the visual images and became accustomed to the mechanical structure.  We
would like to note that almost all these activities were conducted as real world activities and
that a few students can explain their finding about the mechanical structure with
mathematical representations.
3.4 Formation of the Mathematical Model and Interpretations
During the 3rd hour class, students were asked to represent mathematically the up-and-
down motion of the crank’s piston (figure 10), endpoint, as an extreme case of the locus as
the pressed ovals (figure 8 & 9).  Students were allowed to use the LEGO crank and
graphic calculator but all of them did not.  

  Fig. 10 The Piston Motion of Crank Fig. 11 The Graph of the Function

Students couldn’t solve the problem by the paper and pencil approach.  The teacher helped
them to solve the problem theoretically and then they derived the equation of the function

    f ( ) = OA = rcos + L2 − 4sin2 as the mathematical model (the mathematical

structure).  In order to explore the meaning of this model, teacher asked students to
measure the radius r and the arm L of figure 5, in this case, r = 2cm and L = 8cm. Next, the
teacher asked students to explore the meaning of the function with graphic calculator.
Students compared the up-and-down motion of the piston via the LEGO crank with the
graph of the function (figure 11).  Students wrote in their worksheet how the graph was
related with the motion, “If the piston moves up, the cogwheel rotate right.  And if the
piston moves down, bar moves also down.”
Through these interpretations students could interpret the mathematical model,
mathematical structure, of motion with the crank motion. They could discuss that they
enable to connect the up-and-down feeling on merry-go-round with the mathematical
structure.  It appears as if the new technology helped students to understand the structure
of old technology.  Even so, the teacher discovered in the next session that at this
understanding was still weak.
3.5 The Parts of the Mechanics and the Parameters of the Mathematical Structure
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The 4th hour class was started from the mathematical structure, and compared the
mathematical structure with the mechanical structure.
The teacher asked students to explore the mathematical model with graphic calculator
through making a lot of problems via changing the parameters of function.  Each student
made three or four problems, most of the problems were related to the ratio of r to L.
Problems can be classified as follows: 1)  r < L,  2)  r = L,  3)  r > L.  Graphs of each
case were shown on the following figure 12.

Ratio 1)  e.g.  r : L = 1 : 3 2)  e.g.  r : L = 1 : 1 3)  e.g.  r : L = 3 : 1

Graphs

Fig. 12

Students easily understood the case of 1) because this result is similar to the original ratio of
the figure 11.  But they couldn’t understand the case of 2) and 3) because they could not
interpret the meaning of non-continuous graphs as follows.
  4112TM: I don’t understand.
  4113TT: Let’s try to demonstrait with LEGO.  What do you think about the

meaning of r = 2cm and L = 2cm in the mechanism?
  4114TM: (laughing)
  4115TT: Let’s think this problem together, MR.
  4116TT: What does r = 2cm and L = 2cm mean in the mechanism?
  4117MR: Aha, both lengths are equal.
This protocol implies that students couldn’t easily to interpret the mechanical structure from
mathematical structure.  During the 3rd hour class, students were able to interpret the
graph from the motion of the mechanics and this 4th hour, they were able to change the
parameters of the mathematical structure.  But for students, changing the parameters did
not mean changing the parts of mechanics which corresponded to the changing parameters.
In this case the mathematical model meant the each function and the result of mathematical
work by graphic calculator meant the each graph.  Students couldn’t interpret the
mathematical results by new technology into the real world situations.
Students reassembled the crank to the specified lengths of r and L are 2cm (figure 13). Then
they confirmed the phenomenon of the non-continuous graph on the context of making
mechanics.  Students described on their worksheets. “If we apply the conditions of 2) or 3)
to the wooden-horse will hit the cogwheel.  These conditions are not appropriate for the
crank mechanism.  The length of L should be longer than of r for the crank (?)”  
This result implies that students understand that these linkages can not work as mechanism.
Especially, the following protocol implies that students were able to realize that these
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linkages are inappropriate mechanics.
4121TT: (Using LEGO of figure 11) The problem in this condition means this

assembly, doesn’t it?  What do you think about this linkage?  What
if we rotate the cogwheel ….

4122MR: Rotate?
4123TM: In this condition?
4124TT: TM, you made.
4125TM and MR: What is a strange ! (laughing)
4126TT: Write your findings on the sheet.
4127TM: In this condition, I can’t draw the graph.

Fig. 13  r : L = 1 : 1
We should note here that by finding the linkages that could not be assembled as the
mechanism, the students could relate the parameters on mathematical structure and the parts
of the mechanical structure.  Hence, the students were able to translate the parameters of
the mathematical structure as visualized on the graph into the parts of the mechanical
structure with LEGO.  They were able to substantially connect the mathematical structure
with the mechanical structure.

4  Discussion; the Role of Technology in Mathematical Modeling

Now, we discuss the question, “Does new technology alternate old technology in the case
of mathematical modeling?”  First, we need to know that how new technology helps
mathematical modeling.  Rose Mary Zbiek found that, in the case of prospective teachers,
four strategies can be used to develop and validate functions as mathematical models with
computers [3].  The first strategy is Fitted-Function Selector which is a way of finding the
fittest function for the data based on a goodness-of-fit value.  And the other strategies are
called Potential function, Scatter Plot/Graphing and Unneeded/Unused.  From Zbiek’s
discussion, we could know that technology helps the process of the formulation of
mathematical model but in any strategies, prospective teachers were not success to get
better interpretation between the mathematical model and the real world situations.  Thus,
if we alternate the formulation process with new technology, we will meet the crisis to lose
the chance to connect between the mathematical model and the real world situation.  But
how can we help to connect the mathematical model and the situation.  Our case study
implies us the cognitive task which we need to overcome for lost connection.  It shows
that there are cognitive phases that needed to occur in connection between the mathematical
model and the mechanics and that were originally discussed by Masami Isoda in 1993.
Cognitive Phase 1: Reasoning with Visual Image Based on One’s Experience
If students have images based on their experience in the real world, the images are usually
too far from the cognitive structure to formulate the mathematical model.
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Cognitive Phase 2: Reasoning with the (Non Mathematical) Structure

Students can over come misunderstanding through reasoning with the structure which will
connect mathematical modeling.  But they do not yet know the mathematical
representation of it, they can reason with the structure and visual image, but they can not
reason mathematically.
Cognitive Phase 3: Reasoning with the Mathematical Model without the Structure.

After the formulation of mathematical model as the mathematical structure of the structure
in the real world, students are able to reason mathematically.  But they still cannot
compare the results with the structures in the real world if we change the parameters of the
mathematical model.
Cognitive Phase 4: Reasoning with the Mathematical Model and the Structure.

Students become accustomed to the correspondence between the parameters of the
mathematical model and the parts of the structure in real world.
Theoretically, these phases must be mutually related and not restricted this order.  In this
case, the transitions were done by this order.  In the transition from cognitive phase 1 to 2,
the teacher set the making activity with old technology for focusing on the mechanical
structure from the non-distinctive visual images.  In the transition from phase 2 to 3, the
teacher helped the formation of function from the structure and connected the model via the
graphic representation, new technology, with the motion of mechanics. In the transition
from phase 3 to 4, the teacher asked students to change parameters using the new
technology and compare the results with the mechanical structure using the old technology.
These transitions of phases will continue recursively in mathematical modeling.
We know that the new technology alternates many parts of mathematical-algorithmic work
in the process of mathematical modeling and enable to visualize the result.  Human
reasoning enables us to formulate the model and interpret the result.  Zbiek, who focused
on the formulation strategy, reported that very few students could overcome only selecting
undesirable strategy, Fitted-Function Selector [3]. The real world activity was out of Zbiek’s
research setting but she also discussed the importance of the understanding of the real world
situation as same as the reliance on tool, the relative roles of mathematics and the frequency
of tool use.  The difference between phases 1 and 2 shows that students are living in the
real world but their images of the situation are usually far from the structure needed for
mathematical modeling.  If students do not have appropriate images in the real world, they
could not formulate the mathematical model and could not determine appropriate or not.
In our example, linkage of mechanics as an old technology has a role to transit from phase 1
to 2.  Our study also shows that two cognitive phases 3 and 4 should be distinguish in the
interpretation.  Linkage enables one to change the structure by changing parts.  Changing
both the parameter in the mathematical model and the parts of the mechanics enables one to
synchronize between the real world and the mathematical model.

5  Result
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As stated in the introduction, new technology, computer, do not alternate old technology but
also change the role of old technology.  Before the computer, mathematicians or engineers
tried to synchronize their mathematical theory with mechanics.  Since the computer, we
can say that users of mathematics try to synchronize their work on the computer with
structures of the real world, in some cases mechanical structures.　 The four cognitive
phases themselves must not be changed before and since the computer.  It implies that the
recognition of the real world structure and the variability of the structure are important for
synchronization.  As computer tools used as new technologies take part in the
mathematical work, linkage mechanics made of LEGO as an example of old technology
take part in the recognition and variability of structure in the real world.  The case study
shows that the importance of the synchronization between the mechanical structure and the
mathematical structure, old technology and new technology.
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