A Fixed-Parameter Algorithm for SET PACKING

ZHANG CHUANLIN1

Department of Mathematics, Jinan University, Guangzhou 510632, People's Rep. of China Email: tclzhang@jnu.edu.cn

WEIJIA JIA²

Department of Computer Science, City University of Hong Kong, Hong Kong of China

Email: wjia@cs.city.edu.hk

JIANER CHEN³

Department of Computer Science, Texas A&M University, College Station,

TX77843-3112, U.S.A.

Email: chen@cs.tamu.edu

Abstract

The PARAMETERIZED SET PACKING Problem asks, for input consisting of a collection C of n finite sets satisfying $|c| \le m$ for any $c \in C$ and a positive integer k, whether C contains at least k mutually disjoint sets. We give a fixed-parameter tractable algorithm for this problem that runs in time f(k,m)+g(k,m)n, where

 $f(k,m) = (m-2)\sqrt{m-1}k^4 \left[\frac{k^{m-2}(m-1)^{m-1}b_m}{e^{m-2}}\right]^k, g(k,m) = (m+1)(m-2)\sqrt{m-1}k \left[\frac{k^{m-2}(m-1)^{m-1}b_m}{e^{m-2}}\right]^k + m$ b_m is the minimal positive root of m-degree equation

$$x^m = \sum_{i=1}^{m-1} \binom{m}{i} x^{m-i}$$

and e=2.7182818

In particular, this gives an $O(k^4 (5.7k)^k + [k(5.7k)^k + 3]n)$ algorithm to construct mutually k disjoint sets when $|c| \le 3$ for any $c \in C$.

¹ Supported in part by the Main Subject Foundation of the State Council's Office of Overseas Chinese Affairs and the Doctoral Foundation of Jinan University under Grant 93A109 and 98-D1029 respectively. Part of the work was done while this author was visiting City University of Hong Kong.

² Supported in part by UGC of Hong Kong under Grant 7000853.

³ Supported in part by the National Science Foundation under Grants CCR-9110824 and CCR-9613805.