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1. The role of schemes

My paper analyses the role of schemes in the learning of word problems in
mathematics.  I will report about our attempts to employ  schemes in our design of
computerized environment for solving word problems (SPA- Schemes for Problem
Analysis). In our case SPA serves as a semantic net organized around a scheme that
lends itself to a mathematical structure.

Rumelhart  writes “…schemata  (schemes) truly are the building blocks of cognition.
They are fundamental elements upon which all information processing depends.
Schemata are employed in the process of interpreting  sensory data (both linguistic
and non linguistic) in determining goals and sub goals, in guiding the flow of
processing the system” (Rumelhart, 1980)  pp.33-34).

Fischbein (Fischbein, 1997) thinks  that a sceme is also a strategy for solving a
certain class of problems .He stresses the behavioral aspect of scheme: for him, it is
a plan for action. Using a scheme in solving word problems is, in our view, a
mapping between the semantic relations underlying a given situation (described in
natural language) and its mathematical structure. The process by which a
mathematical structure that model the situation is reached, does not proceed in one
direction only, from the linguistic level or the formal mathematical structure, but is
rather an ongoing interactive and parallel process. The solver interacts
simultaneously on all levels of interpretation available to him. The task is ultimately
to be able to relate a pre-assumed structure which is well defined in terms of its
arguments and its inter-relation  to a diffuse situation described vaguely in natural
language.

I will demonstrate  this interactive process with the help of a very simple example:

Problem 1:

There are 16 boys and 13 girls in the group. How many children are there in the
group?

 A situation that calls for one additive binary operation when described in natural
language has minimally two complete components that describe the sets and their



extensions, and one set that is described by merely its set description. Finding its
extension is usually the mathematical task.

The text of Problem 1 consists of 3 components (propositions in the underlying
structure):

 1)  16 boys in the group     -  A complete component -  it consists of a set
description  (‘boys’) and its extension   (‘13’).

2) 13 girls  in the group      -  A complete component, as above)

Please note that the information presented so far cannot help determine which binary
operation to choose. One can now ask various questions depending on one’s focus or
interest. For example: “How many more boys than girls are there? “, or “How many
different couples of a boy and a girl  can be arranged?”. Each of the above questions
will lead to a different mathematical model. Thus, it is the question component
which is an incomplete component (missing the extension)  that is necessary in
order to model the situation. Actually it is a three argument relation and not a binary
relation that we are looking for even in such a simple situation.

The incomplete component is decisive in determining the mathematical operation to
be used. Any modeling that employs binary operations is based on the semantic
relations among the three sets described in the text and not on their extensions.
Understanding the triple relation: ‘boys’, ‘girls’ and ‘the group’ is a necessary
condition for modeling it. In this case it is the semantic knowledge that ‘boys’ and
‘girls’ are disjoint sets, and that the ‘boys’ and the ‘girls” are included in ‘the group’.
Formally it can be presented as follows: If B stands for ‘boys’ , G for girls and P for
the ‘group’, the following formal conditions hold:

 1)  B and G are disjoint sets.

 2)  B is a subset of P

 3)  G is a subset of P

 4)  Any element belonging to P is either B or G.

It is on the basis of the relation between B, G and P that the modeling is uniquely
determined and not on the basis of their extensions. Moreover the triple relation is
an additive relation and whether it will call for the addition operation or the
subtraction operation is a negligible issue.

It is well established now that by cognitive researchers that difficulties students face
in modeling word problems depend on whether the schemes needed for solving them
are available to the those students (Carpenter, Moser, & Romberg, 1982; De Corte,
1987; Greer, 1993; Kintsch, 1968; Mayer, ; Nesher, 1976; Nesher, Greeno, & Riley,
1982b; Reusser, 1990; Riley, 1983; Verschaffel, 1993). Because of time limitation I
intend to concentrate here on the additive structures, yet similar analysis was
performed for the multiplicative structure (Nesher, 1988; Schwartz, 1986a;
Vergnaud, 1988).



SPA that will be described later (Hershkovitz, Nesher, & Yerushalmy, 1990) was
based on the above analysis and it aims at making the underlying structures which
are mathematical elements of modeling explicit to the student. SPA will be
contrasted with similar programs that aim at helping the student in modeling by
emphasizing the binary operation.

 2.  Schemes that underlie  the modeling competence

Schemes that underlies  the modeling competence develop slowly. As the child starts
to describe the world of various sets with numbers,  he employs mainly  the
“predication” and “cardinality”  schemes (Nesher et al., 1982b). This kind of
schemes enable to solve various types of problems, counting all, each time from the
beginning. Later on the child is able to link different sets by cause and effect and to
anticipate results of actions described in ordinary language. He  constructs the
change scheme that enables him to model additional problems that preserve the
events order.
Next, the child is able to construct a  Part-Part-Whole scheme that can be used to
represent set relations with a slot for an unknown quantity for a set  that was defined
merely by its description. In mathematics at this level, the additive structure is
reversible and includes the = sign as denoting an equivalent relation. The Part-Part-
Whole scheme is reversible and also incorporates the arithmetic additive relationship
which now includes the operations + and  as related to inverse operations
operating on the same structure. Additional advanced schemes are further
constructed by the student and they enable him to cope with more complicated
situations that incorporates more advanced mathematics.

In the description of the above developmental levels we assume that there are at least
two sources of knowledge which are involved in modeling :  (a) A child’s
knowledge of the world, and (b) A child’s knowledge of logico-mathematical
structures. The sources of these two knowledge structures, as was noted by Piaget,
are not the same. The logico-mathematical growth of the child cannot, of course, be
understood as divorced from his experience with physical objects. Yet the
mechanism for that growth is different, as indicated by Piaget’s reference to ‘simple
abstraction’ and ‘reflective abstraction’ (Piaget, 1971 (1967))

I will not elaborate more on the development of early schemes (See, (Nesher et al.,
1982b). However, once the scheme of Part-Part-Whole is available to the child, as
well as the additive structure among number-triples, partial information of a given
scheme can be represented with a slot for the unknown quantity. At this stage it is
meaningful to the student.

The ability to solve problems such as Problem 2  at this level  brings in one of the
most powerful predictions of our theoretical analysis.

Problem 2:
Dan had some marbles.
He found 5 more marbles.
Now he has 8 Marbles.



How many marbles did he have to start with?
 In this kind of problems, the semantic schemes that originated in the child’s
experience with ordinary language contradict  the newly learned semantics of
addition and subtraction (+ and ).  The child’s experience with  natural language
will direct him to add (‘found’ means ‘adding’). Choosing to subtract (for the correct
solution) can be achieved only if the semantics of natural language and the
mathematical language are differentiated as two autonomous systems, so that each
one of them can be further elaborated to reach the necessary coordination between
the two systems.  Solving problem 2 involves interpreting the ‘initial state’, the
‘change’ and the final state’ of the above problem in a non-temporal manner as in a
part-part-whole relationship. Since one part and the whole are given, finding the
second part is achieved by subtraction. Thus, at this level, the student should be able
to make the mapping between his natural language knowledge and the mathematical
knowledge, not on the basis of isolated verbal cues, but rather on the basis of the
understanding of the underlying semantics of both languages and coordinating the
schemes originated in the two distinct realms.

 3.  More complex mathematical structures

Once the child has reached the Part-Part- Whole scheme, he has already acquired an
autonomous mathematical additive structure that will serve him for all the contexts
in which addition and subtraction are required. This structure can be depicted in a
diagram consisting of three related components (see Fig.1).  Note, that regardless the
fact that one component is an incomplete component, each component has a defined
role is the additive relation (structure). In the diagram the two upper boxes represent
the subsets, while the bottom box represents the union of these two subsets.

Figure 1

Having now the above scheme encapsulated as a mathematical object we can
construct higher mathematical hierarchies that will serve us as schemes for more
complex situations. The following schemes will demonstrate all possible situations
for two-step problems (see figure 2).

Figure 2
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   Hierarchical



The fact that there are limited number of schemes we employ in mathematics that
correspond to many  situations in which they can be applied, should guide us to
teach modeling in mathematics via general schemes.

I will now give some situations described by the above schemes. In each situation
we can ask different question that are derived from the same situation (I)):

Situation I:  A total of X flowers is distributed equally among Y vases.  In
each vase there are M tulips and N roses.

About  the situation described above we can ask various questions such as: “How
many roses are in each vase?”; “How many vases are there?”; “How many flowers
are there in all vases?”; or, “How many tulips are there in each vase?”.
All the above questions share the same underlying structure. It is actually the same
situation.  See the following figure:

Figure 3

                   Flowers in all

flowers in each vase                       Vases

Tulips in each vase                   Roses in each vase

This was a situation described by am Hierarchical scheme.  Here is a situation
described by the “Shared Whole” scheme. Situation II:
In the class there are X children. Y of them are boys and the rest are girls. They
were divided into M equal groups. How many children were in each group?

Situation III will illustrate the case of “Shared Part” scheme. Situation III:
X children went to the party. M were boys and  the rest were girls. At the end of the
party, Y flowers were left and they were given to the girls. Each girl got the same
number of flowers. How many flowers did each girl get?

Situations II and III, of course, can be elaborated into other problems, just as I have
detailed in Situation I. All the above situations share some common characteristics,
that  are detailed elsewhere:(Hershkovitz & Nesher, 1996; Hershkovitz & Nesher,
1997; Nesher & Hershkovitz, 1994).

   Hierarchical



SPA was studied  (Hershkovitz & Nesher, 1997) with a comparison to another
program  AP - Algebraic Proposer (Schwartz, 1986a). The AP program assists in
making lists of the given information. It is sequential in nature. The solver attends to
each given piece of information (the numbers and their descriptions) and makes a
list of these in order to operate on them. Each element appears in AP as a line in a
table with three headings: ‘How many?’ in tending to capture the given number;
‘What’, intending to capture the units of measurement; and ‘Notes’ that intend to
describe the situation’s element.
The following problem demonstrates how it works:.

All the six graders of a school were divided into 7 groups. In every
group there are 17 children of whom 9 are boys. How many girls are there?

The student starts with filling in the table with the given information.
See 1a.

Table 1a:

How many What Notes
A:   7 groups equal groups
B: 17 children per group
C:   9 boys per group

After filling in the table it is possible to define the mathematical operations between
any two lines in the table. In our example the first operation will be:  B - C . Before
performing any numerical operation the program ask to operate first on the units of
measurement. In this case the computer will announce that the unit of the result is
children per group (adding and subtracting demand the same units). On approving
that, the computer will add a new line to the table, namely, D.

Table 1b:

How many What Notes
A:   7 groups equal groups
B: 17 children per group boys and girls
C:   9 children per group boys
D:   8 children per group         B-C girls

The next step will be finding the number of the girls. In order to do it the solver will
have to multiply: A x D .  In general terms, the progress is achieved by progressing
each time by a binary operation on the basis of already known information.

We will illustrate with the above problem how SPA works.  After reading the text
the student first needs to define the unknown component (? girls) and to select the



schemes that are relevant to the situation. (either the additive scheme and/or of the
multiplicative scheme).  Before filling  the schemes slots the user has to decide
about the role of each component in the entire scheme (a part, a factor, or a whole).
Moreover, he has to fill in all three elements of the scheme, though some numerical
information might be missing. In SPA the user cannot declare an operation unless he
has comprehended all the 3-place relation depicted by the location of the three
arguments in the scheme. The next step, therefore,  will be filling in the schemes and
marking the unknown location in the scheme.

Figure 4
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Each time the computer will show one particular scheme to the child  and will ask
him about the relevant units similar to the AP procedure. The schemes will now be
merged by the student via their shared  component. Note that the shared component
was not mentioned by the text, and must be deduced by the student.

Figure 5
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The solver can now solve the problem by solving only one exercise:
(17-9) X 7= 56 or by solving two exercises: 17 - 9 = 8;   8 X 7= 56

 4.  The Characteristics of SPA



I am mainly interested in the characteristics of SPA but will to some extent compare
it to AP in order to highlight the innovative aspects of SPA.

 One)   SPA shares with AP the fact that the information given in a natural
language text is depicted in terms of three distinct sub-fields: (i) the numerical
value, (ii) The description of the sets (the predication), and (iii) Additional
note about the situation described in the text of the problem.

 Two)   In SPA as in AP the computer relates to the semantic description of the
sets and not merely to their extensions (numbers).

 Three)  In SPA in contrast to AP the building blocks are three-place relation (and
not binary operations). The information in SPA is encoded in a graph that has
fixed slots for different roles in the entire structure. This can be contrasted
with similar tree graphs that use the same graph for binary operations (the
upper slots are always for the input and the third is for the output).

 Four)  Once the analysis of the needed scheme is completed and its arguments
filled up, the computer performs the numerical calculations .

 Five)  Since a scheme (when filled-up) is a close structure, the computer is able to
supply feedback in a general mode and not only to pre-solved problems that
were fed into it.

 
SPA is use in Israeli schools and a Ph.D. thesis by Dr. Sara Hershkovitz  was
devoted to compare two programs SPA and AP that aim to teach word problem
solving. This is reported elsewhere (Hershkovitz & Nesher, 1996). The main
findings show that students working with SPA develop different strategies that lead
them to a better performance. This is especially true for the low-level students.

 

5.  General schemes and open problems

To teach via schemes means to teach via the most general cases. I will present one
example:

Example :  Two cars are traveling from  Tokyo to visit another city. Car B is leaving
X hours after car A.
1)  Will they meet on their way? Under which conditions?
2)  When will they meet?
3)  How far from Tokyo will they meet?
4)  Make your own questions…



figure 6
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In a similar way one can construct a general scheme for cars that are traveling in
opposite directions and meet somewhere on the way.  We can use  the same schemes
for other contexts such as work, voltage etc. Once we have generated a general
scheme  for such problems, we can easily review all the possibilities. We can learn
that each problem in our standard textbooks is just one case of many others, that the
singular cases are not important,  it is the general scheme that counts. I have tried to
demonstrate that the ability to solve problems in mathematics is dependent on the
level of schemes and structures available to the students. Students can benefit best, if
we are aware of the schemes that are needed at each level of learning and if we
present them the needed schemes in their most general form.
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