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Abstract

Numerical and graphical representations of radial eigenfunctions
for a charged particle contained in a cylindrical shell are obtained by
using Maple. The general solution of the radial Schrödinger equation
can be expressed analytically in terms of Bessel functions and con-
fluent hypergeometric functions when there is no magnetic-induction
field and a constant longitudinal magnetic-induction field, respec-
tively, in the shell. In both cases, the transcendental equation arising
from imposition of the boundary conditions is solved numerically to
obtain approximations to the eigenvalues. The bound-state Aharonov-
Bohm effect is exhibited through the change in the eigenfunctions due
to a longitudinal magnetic-induction field confined within the inner
cylinder, which the charged particle cannot penetrate. This paper
is partly based on a fourth-year (Honours) student project and illus-
trates some of the numerical and graphical capabilities that modern
computer algebra systems such as Maple make available to students.

1 Introduction

The Aharonov-Bohm effect [1] is a fundamental but surprising feature of
quantum mechanics in which a charged particle is influenced by a static
magnetic-induction field that is present in a region of space from which the
particle is rigorously excluded. The configuration space available to the par-
ticle must be multiply connected and must encircle the region of confined



magnetic flux. The effect has been verified experimentally by Tonomura et
al. (see [2]) by diffracting electrons around a toroidal ferromagnet coated
with superconducting material. In these scattering experiments, the effect
is manifest as a shift in the observed electron interference pattern caused by
the inaccessible magnetic-induction field. The Aharonov-Bohm effect is also
predicted [3, 4] to occur for a charged particle bound in a multiply connected
region, such as a cylindrical shell, that is threaded by a magnetic-induction
field. The bound-state effect consists of a shift in the discrete energy levels
and a change in the energy eigenfunctions and associated position proba-
bility densities. Both the scattering and bound-state effects are periodic in
the confined magnetic flux with period equal to London’s natural unit of
flux [4]. (For an electron, the magnitude of the unit of flux is approximately
4.1× 10−7 Mx in Gaussian units and 4.1× 10−15 Wb in SI units.)

Exact general solutions of the radial part of the time-independent Schrödinger
equation (see Section 2) for a charged particle in a cylindrical shell can
be found when (a) there is a cylindrically symmetric static longitudinal
magnetic-induction field inside the inner cylinder and no field in the shell
or (b) there is a constant non-zero longitudinal field in the shell as well as an
inner field as in (a). Even in these cases, however, determination of the radial
eigenvalues and eigenfunctions by imposition of the boundary conditions at
the inner and outer walls of the cylindrical shell must rely on numerical meth-
ods, although an asymptotic formula that gives approximations to the energy
eigenvalues in the domain of large radial quantum numbers has been derived
recently [5]. In this paper, we describe the use of Maple to obtain numeri-
cal and graphical representations of radial eigenfunctions in both cases (a)
and (b) above. The bound-state Aharonov-Bohm effect is exhibited through
the change in the eigenfunctions caused by the confined field. This change
is small (due to the periodicity of the effect and the smallness of London’s
unit) but nevertheless visible. The eigenfunctions for case (a) are expressible
in terms of Bessel functions and are considered in Section 3 while those for
case (b) are expressible in terms of confluent hypergeometric functions and
are considered in Section 4.

2 Radial Schrödinger Equation

The bound-state system consists of a particle of mass m and charge e confined
by perfectly reflecting walls to the cylindrical shell S defined in terms of
cylindrical polar coordinates (ρ, θ, z) by a ≤ ρ ≤ b and 0 ≤ z ≤ d, where
a, b and d are positive constants. The flux f of the cylindrically symmetric



longitudinal magnetic-induction field inside the inner cylinder ρ = a will
be measured in London’s unit hc/e, in which h is Planck’s constant, c is
the speed of light in vacuo and Gaussian units are used. The θ- and z-
dependent parts of the energy eigenfunction for a given stationary state are
independent of f but the radial part Rnλ(ρ) is flux dependent. It satisfies
the radial Schrödinger equation

ρ2R′′nλ + ρR′nλ +

[
α2
nλρ

2 −
(
λ− 2πe

hc
ρA0

)2
]
Rnλ = 0. (1)

Here the positive integer n is the radial quantum number and λ = l−f , where
the integer l is the canonical angular-momentum quantum number. Also
A0(ρ)θ̂ is the vector potential in the Coulomb gauge due to any cylindrically
symmetric longitudinal magnetic-induction field outside the inner cylinder
ρ = a. If ρ ≥ a,

A0(ρ) =
1

ρ

∫ ρ

a
B(ρ′)ρ′ dρ′ (2)

where B(ρ)ẑ is the magnetic-induction field. The allowed values of the pos-
itive constants αnλ are determined by the boundary conditions

Rnλ(a) = 0 = Rnλ(b) (3)

and the eigenfunctions Rnλ will be normalized on [a, b] with respect to the
weight function ρ. Only values of f in the interval [0, 1) need be considered,
as the eigenvalue spectrum and the set of eigenstates are invariant under the
addition of an arbitrary integer to f .

3 Zero Field in Shell

If there is no magnetic-induction field in S, the function A0 is identically zero
and the radial Schrödinger equation (1) reduces to Bessel’s equation of order
λ with parameter αnλ. An unnormalized eigenfunction is given by

Jλ(αnλa)Yλ(αnλρ)− Yλ(αnλa)Jλ(αnλρ). (4)

This obviously satisfies the boundary condition at ρ = a and will satisfy the
boundary condition at ρ = b also if αnλ (n = 1, 2, . . .) is a positive root of
the equation

∆(α) = Jλ(αa)Yλ(αb)− Yλ(αa)Jλ(αb) = 0 (5)

in which a, b and λ are fixed. The following Maple code shows how to
determine the allowed value of α numerically for the case in which b = 11a,



n = 4, l = 5 and f = 0 (and hence λ = l − f = 5). The radial distance ρ
will be expressed in units of a. ∆(α) is first plotted (see Figure 1) in order
to determine intervals in which its zeros occur.
> alias(J=BesselJ,Y=BesselY):
> Delta:=J(5,alpha)*Y(5,11*alpha)-Y(5,alpha)*J(5,11*alpha );

∆ := J(5, α) Y(5, 11α)− Y(5, α) J(5, 11α)

> plot(Delta,alpha=0.77..2,color=black,numpoints=200);
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Figure 1: Graph of expression ∆(α)

Approximations to the allowed value α45 and the normalized eigenfunction
R45 are now obtained. These are assigned to the Maple variables A and RA,
respectively. The graph of R45 is then plotted.
> A:=fsolve(Delta,alpha,1.7..1.8);

A := 1.725483795

> R:=J(5,A)*Y(5,A*rho)-Y(5,A)*J(5,A*rho):
> N:=evalf(Int(rho*R^2,rho=1..11));

N := 735.6919769

> RA:=R/sqrt(N):
> plot(RA,rho=1..11,color=black,numpoints=200);

The approximate expression for the normalized eigenfunction R45 obtained
from the Maple code above is

0.7145697131J5(1.725483795ρ) + 0.0001295721657Y5(1.725483795ρ) (6)
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Figure 2: Radial eigenfunction for n = 4 and f = 0

and the graph of this expression is shown in Figure 2. Since f = 0, R45 is
an eigenfunction for a state in which the confined magnetic-induction field is
zero.

Approximations to α4,4.6 and the eigenfunction R4,4.6 corresponding to the
same values of b, n and l as above but with f = 0.4 (and hence with λ = 4.6)
are obtained next. These are assigned to the variables B and RB, respectively.
> Delta:=J(4.6,alpha)*Y(4.6,11*alpha)-

> Y(4.6,alpha)*J(4.6,11*alpha);

∆ := J(4.6, α) Y(4.6, 11α)− Y(4.6, α) J(4.6, 11α)

> B:=fsolve(Delta,alpha=1.6..1.7);

B := 1.676189326

> R:=J(4.6,B)*Y(4.6,B*rho)-Y(4.6,B)*J(4.6,B*rho ):

> N:=evalf(Int(rho*R^2,rho=1..11));

N := 280.3419663

> RB:=R/sqrt(N):

> plot({RA,RB},rho=1..11,color=black,numpoints=200);
> plot(RB-RA,rho=1..11,color=black,numpoints=200);

> with(plots,cylinderplot):

> cylinderplot([rho,theta,RB-RA],rho=1..11,

> theta=Pi/2..2*Pi,style=patch,axes=frame);
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Figure 3: Radial eigenfunctions for f = 0 and f = 0.4
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Figure 4: Difference of radial eigenfunctions for f = 0.4 and f = 0
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Figure 5: Cylinderplot exhibiting the Aharonov-Bohm effect

The approximate expression for the normalized eigenfunction R4,4.6 is

0.7029970589J4.6(1.676189326ρ) + 0.0003793551008Y4.6(1.676189326ρ). (7)

R45 and R4,4.6 are plotted together in Figure 3. The difference R4,4.6−R45 is
plotted in Figure 4 and is also shown in Figure 5 as a ‘cylinderplot’ with one
quadrant excised. Figures 3 to 5 exhibit the bound-state Aharonov-Bohm
effect by showing the difference between the eigenfunctions R4,4.6 and R45.
This difference is due solely to the change from 0 to 0.4 in the value of the
flux f confined within the inner cylinder.

4 Constant Non-Zero Field in Shell

If there is a constant non-zero longitudinal magnetic-induction field in S,
then Equation (2) implies that

2πe

hc
ρA0 = f ′

[(
ρ

a

)2

− 1

]
(8)

where f ′ is the scaled flux (in units of hc/e) that the field in the shell would
have if this field were inside the inner cylinder. It will be assumed here that
the difference between the fluxes f and f ′ is not an integer and that the sense



of the z axis is chosen so that f ′ > 0. The general solution of Equation (1)
can then be expressed in terms of the confluent hypergeometric function F ,
which has two parameters and one argument [6]. The eigenfunction Rnλ is
proportional to

exp

(
− f ′

2a2
ρ2

)[(
ρ

a

)µ
F2(βnλ, a)F1(βnλ, ρ)−

(
a

ρ

)µ
F1(βnλ, a)F2(βnλ, ρ)

]
(9)

where the functions F1 and F2 are defined by

F1(β, ρ) = F

(
−β +

1

2
µ+

1

2
, 1 + µ,

f ′

a2
ρ2

)
(10)

and

F2(β, ρ) = F

(
−β − 1

2
µ+

1

2
, 1− µ, f

′

a2
ρ2

)
. (11)

Also βnλ is given in terms of αnλ by

βnλ =
a2

4f ′
α2
nλ +

1

2
µ (12)

and µ = λ+ f ′. Expression (9) obviously satisfies the boundary condition at
ρ = a and will satisfy the boundary condition at ρ = b also if βnλ is a root
of the equation

∆(β) =

(
b

a

)µ
F2(β, a)F1(β, b)−

(
a

b

)µ
F1(β, a)F2(β, b) = 0. (13)

It should be noted from Equation (12) that βnλ cannot be less than µ/2.

The eigenfunctions R25 and R2,4.6 will now be plotted together with a as the
radial unit of length. For both eigenfunctions, b = 11a, n = 2, l = 5 and
f ′ = 0.3. For R25, f = 0 and hence λ = 5 and µ = 5.3.
> readlib(hypergeom): alias(F=hypergeom):

> F1:=(beta,rho)->F([-beta+3.15],[6.3],0.3*rho^ 2):

> F2:=(beta,rho)->F([-beta-2.15],[-4.3],0.3*rho ^2):

> Delta:=11^5.3*F2(beta,1)*F1(beta,11)-

> (1/11)^5.3*F1(beta,1)*F2(beta,11):

It was determined graphically that the second allowed value of β for this case
lies in the interval (4.1, 4.2).
> A:=fsolve(Delta,beta,4.1..4.2);

A := 4.150170607



> R:=exp(-0.15*rho^2)*(rho^5.3*F2(A,1)*F1(A,rho)-

> rho^(-5.3)*F1(A,1)*F2(A,rho)):

> N:=evalf(Int(rho*R^2,rho=1..11));

N := 77676.10260

> RA:=R/sqrt(N):

The Maple code to determine R2,4.6 is the same as that used to obtain R25

except that now f = 0.4 and hence λ = 4.6 and µ = 4.9. The expression for
R2,4.6 was assigned to the Maple variable RB and both RA and RB were plotted.
The graph is shown in Figure 6. This illustrates the Aharonov-Bohm effect
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Figure 6: Radial eigenfunctions for n = 2 and f ′ = 0.3

when there is a constant field (with f ′ = 0.3) in the shell and the scaled flux
f of the field inside the inner cylinder changes from 0 to 0.4.

5 Discussion

This work is partly based on a fourth-year (Honours) student project com-
pleted in 1997. Numerical and graphical representations of radial eigenfunc-
tions for a charged particle contained in a cylindrical shell have been obtained
by using Maple. The work has included the numerical solution of transcen-
dental equations involving special mathematical functions (Bessel functions



and confluent hypergeometric functions) as well as the plotting of these func-
tions. Maple’s graphical capabilities have enabled easy visualization of a sub-
tle feature of quantum mechanics — the bound-state Aharonov-Bohm effect.
Such visualization of solutions of differential equations is a major benefit of
the use of Maple in the mathematics curriculum.
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