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Abstract

In this paper, we introduce a method of generating the dual graph
of the minimal normal resolution of the algebraic curve singularities.
Using factorization of polynomials over algebraic extension �eld, we
can calculate the dual graph from the coe�cients of the given poly-
nomial exactly. The computing process includes no approximation.
We constructed the system to generate the dual graph on Risa/Asir.
Users can get the resulting dual graph by the list form and also by the
graphical form.

1 Introduction

A resolution of an algebraic curve C at a singular point p of C is saidminimal

normal, if the union of the proper transform of C and the exceptional curve

E of the resolution is of normal crossing type in a neighborhood of E, and

it is \minimal" among the resolutions having this property. Usually, the

geometric con�guration of the resolution is represented by a weighted graph,

called the \dual graph".

The dual graph of the minimal normal resolution of the algebraic curve

singularities is one of the most fundamental invariants in algebraic geometry.

At present, there is no computing system for the dual graphs.

Our method computes the dual graphs of the minimal normal resolutions

of the algebraic curve singularities at origin de�ned by polynomials in two



variables with coe�cients in the algebraic extension �eld over the rational

number �eld. We can calculate the dual graph from the coe�cients of the

given polynomial exactly. The computing process includes no approxima-

tion.

In our algorithm, Newton Polygon Algorithm is used to obtain Puiseux

pairs. Newton Polygon Algorithm needs �nding roots of polynomials with

coe�cients in the algebraic extension �eld over the rational number �eld.

We implemented this algorithm on Risa/Asir, a computer algebra system

developed at FUJITSU LABORATORIES LIMITED ([4]). Risa/Asir is

good at computing Gr�obner basis and factoring polynomials over algebraic

extension �elds, which was very suited to implement our algorithm.

In this paper, we show the algorithm generating the dual graph, and

introduce our system on Risa/Asir.

2 Blowing Ups and Dual Graphs

We shall assume from now on that M is a non-singular projective algebraic

surface over the complex number �eld and E an algebraic curve on M .

De�nition 1 (Normal crossing type) If each irreducible compornent of

E is non-singular and intersect each other at only one point at most, then

E is called of normal crossing type.

De�nition 2 (Dual graph) For a curve E of normal crossing type, we

represent each irreducible component of E by a vertex and join the vertices

if and only if the corresponding irreducible components intersect each other.

We associate to each vertices an integer, called weight, equal to the self-

intersection number of the corresponding irreducible component on M . The

weighted graph thus obtained will be called the dual graph of E.

Let C be an algebraic curve on M passing through a point P . By

replacing the point P with P1 we can construct new algebraic surface M 0.

This operation is called blowing up at a point P . And the curve on M 0

corresponding to C n P (resp. P1) is called proper transform of C (resp.

exceptional curve). The resolution of an algebraic curve at a singular point

is obtained by �nitely many blowing up operations ([2]).

Following lemmas related to blowing up are well-known.

Lemma 1 The self-intersection number of the exceptional curve obtained

by a blowing up is �1.

Lemma 2 The self-intersection number N of the exceptional curve E de-

crease to N � 1 by a blowing up at a point of E.



From these lemmas, the dual graph relating a resolution of an algebraic

curve at a singular point is obtained.

For example, (See De�nition 2)

f = y2 � x3 f = (y2 � x3)2 + y5
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Lemma 3 Let E1; E2; : : : ; Er; Er+1 be the irreducible components of E and

assume that the dual graph is of the following linear type :

�n1 �n2 �nr

E1 E2 Er Er+1

Furthermore assume that there exists a holomorphic function f on a

neighborhood U in the following form.

(f) =

rX
i=0

miEi +mr+1Er+1 \ U:

Then,

(1) m2; : : : ;mr+1 are all multiple of m1.

(2) Set pi = mi=m1 (1 � i � r + 1), then (pr+1; pr) are coprime each

other and the following continuous fraction expansion holds.

pr+1

pr
= nr �

1

nr�1 �
1

nr�2 � . . .
�

1

n1

Proof. Since (f) �Ei = 0, we have mi+1 = nimi �mi�1 for i = 1; 2; : : : ; r,

wherem0 = 0. The two assertions of the lemma are immediate consequences

of these equations. �



De�nition 3 (Intersection matrix) Let E1; E2; : : : ; Er be the irreducible

components of E. We call

IE = ((Ei � Ej))i;j=1;::: ;r

the intersection matrix of E.

The following two lemmas can also be proved by a direct computation.

Lemma 4 The determinant det(�IE) is invariant under the blowing ups of

the points on E. Namely, if � : M 0 ! M is a blowing up of a point P on

E, we have then det(�I��1(E)) = det(�IE).

Lemma 5 Assume that the dual graph is of the following type :

�mr �mr�1 �m1 �1 �n1 �ns�1 �ns

We have then

det(�IE) = pq � aq � bp;

where p; a; q; b are the natural numbers de�ned by the continuous fractions

p

a
= m1 �

1

m2 �
1

m3 � . . .
�

1

mr

q

b
= n1 �

1

n2 �
1

n3 � . . .
�

1

ns

satisfying

(p; a) = 1; (q; b) = 1; 0 < a < p; 0 < b < q:

3 Newton Polygon Algorithm

Let f(x; y) be a polynomial in two variables with complex coe�cients. We

can write f(x; y) =
P

c��x
�y�.



De�nition 4 (Newton polygon) The Newton Polygon of f is the convex

closure of set [

c�� 6=0

f(�; �) + R2+g

The Newton boundary of f is the union of compact faces of the boundary

of the Newton polygon of f .

Notice that the boundary of the Newton polygon di�ers from the Newton

boundary by two non-compact faces parallel to the coordinates axes.

We assume f(0; 0) = 0 and f(x; y) is not divisible by x. We choose

one among segments constructing Newton boundary, let �0 be the segment.

And let � 1
�0

be its slope. Then �0 is a positive rational, say

�0 =
p0

qo

where p0; q0 are coprime positive integers. Let f�0
(x; y) =

P
(�;�)2�0

c��x
�y�

and t0 a nonzero root of f�0
(1; t) = 0.

Next we shall substitute x = x
q0
1 and y = x

p0
1 (t0 + y1) for f(x; y). And

we get

f(x
q0
1 ; x

p0
1 (t0 + y1)) =

X
c��x

q0�+p0�
1 (t0 + y1)

�

= x
q0�0+p0�0
1 f1(x1; y1)

where (�0; �0) 2 �0 and f1(x1; y1) is a polynomial in x1 and y1, not divisible

by x1.

We now repeat the whole process, replacing f(x; y) by f1(x1; y1), and

continue inde�nitely. We obtain a sequence of positive rationals

�0 =
p0

q0
; �1 =

p1

q1
; �2 =

p2

q2
; : : :

and complex numbers

t0; t1; t2; : : :

(pi; qi) is called Puiseux pair. Using f(pi; qi)g and ftig we can get the

Puiseux expansion of f(x; y) ([3]). The whole process is called Newton Poly-

gon Algorithm.

4 Computation of Dual Graph

Let f(x; y) be a polynomial in two variables with coe�cients in the algebraic

extension �eld over the rational number �eld. Moreover we assume that the

algebraic curve C de�ned by f(x; y) = 0 has an isolated singularity at origin.



4.1 The method by Puiseux Pair

Using Squarefree Decomposition Algorithm we can �nd multiple factors of

f ([1]). Here, we assume that f has not multiple factors.

Using Newton Polygon Algorithm we get Puiseux pairs (pi; qi) of f until

(i) Newton boundary is parallel to a coordinate axis or (ii) Newton polygon

is of following type :

.
.

�

�

pk

1

Notice that in case of (ii) the proper transform of C and yk-axis intersect

transversely.

Let (p0; q0); (p1; q1); : : : ; (pk�1; qk�1); (pk; 1) be obtained Puiseux pairs.

As shown below, using k Puisuex pairs (p0; q0); (p1; q1); : : : ; (pk�1; qk�1) we

can get the dual graph for f .

For each Puiseux pair (pi; qi) of f if pi > 1 and qi > 1, then (pi; qi) coin-

sides with (p; q) in Lemma 5. From the fact that the determinant det(�IE)

is equal to 1 when the algebraic curve E is locally irreducible, we get a pair

of natural numbers (a; b) such that

piqi � aqi � bpi = 1; (pi; a) = 1; (qi; b) = 1; 0 < a < pi; 0 < b < qi ;

and we can determinem1;m2; : : : ;mr; n1; n2; : : : ; ns in Lemma 5 by continu-

ous fraction expansions of pi=a; qi=b. Namely, the dual graph corresponding

to this Puiseux pair is following type :

�mr �mr�1 �m1�2 �n1 �ns�1 �ns

Bi+1Bi

where Bi is a branch vertex such that B0 is omitted and the weight of Bk

is �1.

If pi = 1, then the dual graph is of following type :



Bi+1Bi

�2�2�2�2�qi � 1

| {z }
qi�1

If qi = 1, then the dual graph is of following type :

Bi+1Bi

�2�2�2�2�2

| {z }
pi�1

4.2 Another method for locally irreducible case

The algorithm described in 4.1 is not only used in case of locally irreducible

but also locally reducible. However, the algorithm needs factoring polyno-

mials over algebraic extension �eld. In general, this computation is very

heavy.

If f is locally irreducible, there exists another algorithm for the com-

putation of dual graph does not need factoring polynomials over algebraic

extension �eld. Here we introduce the another method.

Let f(x; y) be a polynomial in two variables with coe�cients in the alge-

braic extension �eld L over the rational number �eld Q . Moreover assume

that the algebraic curve C de�ned by f(x; y) = 0 has an isolated singularity

at origin and is locally irreducible. Let C 0 be the proper transform of C

obtained by a blowing up, h(x; s) the de�ning polynomial of C 0. Notice that

if f is locally irreducible, the exceptional curve obtained by the blowing up

intersects C 0 at only one point. Using this fact, it follows that the root of

h(0; s) is in L. Thus we can compute the intersection point without factoring

polynomials over algebraic extension �eld.

Step 1. For the de�ning polynomial f of C, compute the de�ning polynomial

h of the proper transform C 0 of C by a blowing up.

Step 2. Compute the intersection point P of C 0 and the exceptional curve

obtained by Step 1.

Step 3. If P is in origin, then let f = h and go to Step 1. Otherwise, for

h do the coordinate transformation such that C 0 passes through origin, say

h0.

Step 4. If the multiplicity of h0 is 1, then terminate. Otherwise, let f = h0

and go to Step 1.



4.3 Implementation and Examples

In this section, we introduce some of functions on Risa/Asir, which were

implemented by us in order to compute dual graphs.

4.3.1 roots

Let poly be a polynomial in one variable with coe�cients in the algebraic

extension �eld over the rational number �eld.

roots(poly) returns the list of all roots of the polynomial poly. In this

function, the function af in the package `sp' is used.

Example 1

[0] A0=newalg(x^2-x+1);

(#0)

[1] roots(81*x^4+(-18*A0)*x^2+(A0-1));

[(#1),(-#1)]

[2] roots(x^5+A0*x^2-1);

[(#4),(-#4-#3-#2+#0-1),(#3),(#2),(-#0+1)]

4.3.2 n polygon

Let poly be a polynomial in two variables with coe�cients in the algebraic

extension �eld over the rational number �eld.

n polygon(poly,
ag) returns the Newton polygon of poly. If 
ag is 0,

then the result is outputted by the list form. If 
ag is 1, by the list form

and the graphical form.

Example 2

[0] F=3*y^3+x*y^5-2*x*y+x^3*y^2+x^4+x^5+x^6*y^2$

[1] n_polygon(F,0);

[[[3,[0,3]],[-2,[1,1]]],[[-2,[1,1]],[1,[4,0]]]]

[2] n_polygon(F,1);

(0; 3)

(1; 1)

(4; 0)



4.3.3 p pair

Let poly be a polynomial in two variables with coe�cients in the algebraic

extension �eld over the rational number �eld.

p pair(poly,n) returns n Puisuex pairs of poly.

Example 3

[0] F=((y^3+x)^2+x^5)^2+x^9*y^3+x^10$

[1] p_pair(F,4);

[[1,3],[9,2],[9,2],[9,1]]

4.3.4 dualgraph

Let poly be a polynomial in two variables with coe�cients in the algebraic

extension �eld over the rational number �eld, C the algebraic curve de�ned

by poly.

dualgraph(poly,
ag) returns the dual graph of the minimal normal res-

olution of the algebraic curve de�ned by poly. If 
ag is 0, then the result is

outputted by the list form. If 
ag is 1, by the list form and the graphical

form.

In case of locally irreducible, this function use the method of 4.2. Oth-

erwise, this function use the method of 4.1.

Example 4

[0] F=((y^3+x)^2+x^5)^2+x^9*y^3+x^10$

[1] dualgraph(F,0);

[[],-2,[-2,-2]]

[[-2,-2,-2,-3],-2,[-2]]

[[-2,-2,-2,-3],-1,[-2]]

[2] dualgraph(F,1);

Where the square in the �gure is associated with the proper transform of C.



5 Conclusion

We have presented the method for the computation of the dual graph. Fur-

thermore we implemented our algorithm on Risa/Asir. This system can

compute the dual graph in both of locally irreducible case and reducible

case. In reducible case, factoring polynomials over algebraic extension �eld

is needed. This computation is very heavy. However, since this factoring

function is planning to be improved on next version of Risa/Asir, the per-

formance of our system will be also improved.
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