
Development of a Genetic Algorithm Model: GAP

Chan Wai Nelson

Department of Computing
 Hong Kong Polytechnic University

csnchan@polyu.edu.hk

Abstract

This paper proposes a model for computer-assisted-learning in genetic algorithms, and a prototype
GAP has been developed. GAP is an acronym that stands for Genetic Algorithms Platform. GAP
allows student to input his/her own evaluation function, population size, number of generations, and
etc. Standard cross-over methods are provided by GAP such as one-point, two-point and uniform
cross-over. In addition, it can accept student defined cross-over method to produce the fittest
offspring. GAP is mainly used for the purpose of demonstrating the feasibility and operations of the
model. Its study and development are funded by the Educational Development Group of the Hong
Kong Polytechnic University.

1 Introduction

 In the context of searching for optimal solutions, real-world problems are so
complex that robust methods for exploring complex solution spaces are desired. In
the late 1960 at the University of Michigan, Holland [4] noted that there are two
important elements in the learning process of a living species. One of them is
learning by adaptation and the other is learning by evolutionary adaptation over a
number of generations. To relate this learning process with Darwinian striving for
survival, Holland proposed a learning strategy, called the searches reproductive
plans. It is based on simulation of natural genetic inheritance and survival of the
fittest. The so-called searches reproductive plans, later known as genetic algorithms
(GA), are used as a problem-solving and function optimization technique. It uses a
set of genetic operators to transform a population through successive generations for
searching the fittest offspring (i.e. the optimal solution). Genetic algorithms are
particular useful in situations where no easy algorithm is known, or the effort of
finding optimal solutions is tremendous. The type of applications that GA can be
applied falls into a wide spectrum ranging from scheduling, game playing, travelling

salesman problem, strategy acquisition to multiple-fault diagnosis. Goldberg [3] has
discussed vigorously about GA and their applications. More examples have been
given by Forest [2] and Goldberg [1].

 It is the purpose of this paper to propose a novel architecture of Genetic
Algorithm Platform (GAP) for use of computer-aided learning in genetic algorithms.
Its functional components will be described in detail, and some of the experience in
developing such a prototype will also be discussed.

2 How GA Works

 To begin with, we would like to investigate the relationship between a genetic
algorithm and the application problem it attempts to solve. There are quite a few
components worth to be considered, but we would concentrate only on two major
components. They are the encoding mechanism and the evaluation function. Both
these components are to be defined by a user and they vary from application to
application.

 There exists many encoding mechanisms. GAP employs the technique of bit
manipulation. Bit manipulation mechanism is a representation of the application
problem using chromosome bit strings. Thus, a chromosome is essentially a bit string
consisting of 0s or 1s. For example, 10011101, can be considered as a chromosome
bit string of length eight bits. Let us illustrate this encoding technique with a simple
application problem of finding the cube root of 1331 = 113. For this particular
application, a chromosome is an integer whose cube is close to or nearly close to
1331. Such a chromosome is to be generated by the GA according to some user
defined attribute. Therefore, the set of chromosomes under consideration can be
taken as a certain range of integers whose cubes are close to 1331. The range, say
from 1 to 20, is a possible choice. If we convert the upper bound 20 into its binary
representation 10100, then the length of a chromosome bit string is 5, which is
therefore a user defined attribute for the chromosomes under consideration.

 The evaluation function, as defined by the user, is the mechanism that will link a
particular application at hand to genetic algorithm. When a chromosome is input to
this function, the corresponding numerical output is a measure of fitness of the
chromosome. GA will start a new generation based on the fitness of chromosomes.
This process is very similar to the natural selection. A possible choice of the
evaluation function for our simple problem is:

 f (chromosome) = 2000 - abs (chromosome ^ 3 - 1331) (1)

Assuming the GA has generated the following set of chromosomes, we now apply
this particular evaluation function to calculate their fitness values.

Table 1. Evaluation of the fitness of chromosomes according to function f in (1).
__

 Chromosome Integer Equivalent Output f
 of the Chromosome

 00011 3 696

 00001 1 670

 10100 20 - 4669

 11111 31 - 26460

 11010 26 - 14245

 01111 15 - 44

 01010 10 1669

 01100 12 1603

 01011 11 2000

 It is easy to see that the optimal fitness (i.e. 2000) is associated with the
chromosome corresponding to the desired cube root 11 of 1331.

3 Steps of a Simple Genetic Algorithm

 The above example illustrates the relationship between a chromosome and its
evaluation function. To obtain the optimal solution, GA must be able to perform
search on a set of potential solutions. This can be achieved by allowing information
formation and exchange within the initial set of chromosomes. In addition, this set of
chromosomes will undergo an ‘evolution’, so that only those ‘good’ chromosomes
survive and become a new generation of chromosomes. The evolution will stop only

when a certain pre-specified condition is satisfied. The description of our simple GA
is shown in Figure 1.

Figure 1. Simple GA procedure.

 procedure Simple_GA
 begin
 Initialize_Population;
 Evaluate_Population;
 repeat
 Select_Parent_Chromosome;
 Perform_Reproduction;
 Evaluate_Population;
 until (number of generation is exceed or optimal solution is found)
 end

4 Architecture of a Simple GA

 In order to implement the simple genetic algorithm, a number of modules need to
be constructed. These include Population Module, Reproduction Module and the
Evaluation Module.

 Population Module.
The Population Module is to reproduce and maintain a set of good
chromosomes according to a certain rule of “survival of the fittest”. Its major
functions include initialization of the first generation, removal of some or all of
the existing members (i.e. “bad” chromosomes) from the current population,
selection of a group of parents for reproduction according to their fitness, and
replacement of old generations with new generations.

Reproduction Module
Reproduction Module is to engage in reproduction process according to a
reproductive plan dictated by crossover and mutation. Crossover recombines
the bit value(s) in two parent chromosomes so as to reproduce two offspring.
Mutation introduces random deviation into the population by altering one or
more bits of an individual chromosome.

Evaluation Module
The goal of Evaluation Module is to rank a chromosome using a user-defined
mathematical fitness function. Upon completion of evaluation, the value
returned by the function is the fitness of the chromosome.

The structure of a simple GA model is depicted below:

Figure 2. A simple GA model.

Generally speaking, the Population Module will select two good parents and pass
them on to the Reproduction Module. During each reproduction process, the
Reproduction Module will apply crossover and mutation genetic operators to the
selected parents. The two offspring so reproduced will become part of the
population. Upon completion of the reproduction process, the Evaluation module
will calculate the individual fitness of each chromosome and disqualify those unfitted
chromosomes accordingly. Finally, a new generation of chromosomes is thus born
and is ready for further reproduction process.

5 Construction of a Prototype: GAP

We have developed a prototype GAP (Genetic Algorithm Platform) for the
purpose of demonstrating the feasibility and usability of the simple GA model. For
the time being, we have implemented some basic functions within the Population
Module, Reproduction Module and Evaluation Module. These functions are:

Population Module
This particular module enables one to specify the initial chromosome population,
the type of fitness value (real or integer), user-defined evaluation function, the
type of crossover method, and the rates of crossover and mutation. The parent

Simple
GA

Reproduction
Module

Population
Module

Evaluation
Module

selection method used in this module is based on the roulette wheel selection
scheme.
Reproduction Module
We have successfully implement a number of crossover methods for this module.
These are one-point crossover, two-point crossover and uniform crossover. For
the mutation method, we use only bit mutation.

Evaluation Module
GAP has a built-in evaluation function that is capable of solving travelling
salesman problem. Moreover, GAP can also accept user-defined evaluation
function in the form of an algebraic function.

The following table illustrates different outputs generated by the GAP in finding the
cube root of 1997 after 100 generations:

Table 2. Finding the root 1997.

Chromosome Population Crossover Mutation GAP
 Range Size Rate Rate Solution

1 - 100 40 0.6 0.01 12.8071
1 - 100 40 0.6 0.02 12.5742
1 - 100 40 0.6 0.03 12.5712
1 - 20 40 0.6 0.01 12.6045
1 - 20 40 0.6 0.02 12.6005
1 - 20 40 0.6 0.03 12.5280
9 - 20 40 0.6 0.02 12.5572
9 - 20 40 0.6 0.02 12.5923
9 - 15 40 0.6 0.01 12.5929
9 - 15 40 0.6 0.02 12.5929
9 - 15 40 0.6 0.005 12.5929

Note the cube root of 1997 is approximately equal to 12.592908...

6 Conclusions

The prototype GAP for simple GA has been successfully developed and tested.
There are two interesting points that are worth to mention. The first point is related

to the length of the chromosome bit string, which is to be specified by the user. The
second point is related to the rate of convergence of GAP to the optimal solution.

For the first point, if a user carelessly specifies a range of chromosome which is
too far away from the expected solution, then GAP may not converge when roulette
wheel selection scheme is used. The reason is simple, for the evaluation function
may return a very large negative fitness value, which will subsequently be used to
form the running total of the fitness. As a result, a particular chromosome may be
repeatedly chosen in a particular generation. To remedy this situation, GAP only
select those parents whose fitness values are positive. In case it cannot find any
chromosome of positive fitness value in a generation, it will terminate automatically
without further processing.

For the second point, in order for GAP to converge to the optimal solution, a
certain regulation mechanism should be built-in. The method is by restricting further
the fittest chromosomes to a smaller selected range after GAP has completed the user
defined generations. This is particularly handy when the length of chromosome is
more than 20 bits. With this modification, GAP converges more quickly to 12.5929
in 50 generations for the above particular problem.

Acknowledgments

The research and development of the prototype GAP was the work of a project
funded by the Educational Development Group of the Hong Kong Polytechnic
University. The project started in December 1996. Members of the project team are
Mr. Charles Tse, Mr. Julian Kwan with the author as the project leader. The author
wishes to express his appreciation to all the team members. In particular, sincere
thanks go to Dr. S. H. Hou, Head of the Applied Mathematics Department of the
Hong Kong Polytechnic University, for his valuable comments and support of this
project.

References

[1] D.E. Goldberg, Genetic and Evolutionary Algorithms Come of Age, Comm.
ACM, Vol. 37, 1994, pp. 113-119.

[2] S. Forest, Genetic Algorithms: Principles of Natural Selection Applied to
Computation, Science, Vol. 261, 1993, pp. 872-878.

[3] D.E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine
Learning, Addision-Wesley, Reading, Mass., 1989.

[4] John H, Holland, Adaptation in Natural and Artificial Systems, Ann Arbor:
The University of Michigan Press, 1975.

