
Introductory Programming and Word Problems

Jozef Hvorecký
Dept. of Mathematics

University of Papua New Guinea
hvorecky@upng.ac.pg

Abstract

Teaching introductory programming courses in developing countries has its
specifics. It must reflect a different structure of their ducational system, the lack
of resources (teachers, textbooks, classrooms, etc.), and a shorter tradition of
education itself. Particularly, our students have many difficulties with doing
good programming abstractions. Their thinking and reasoning is very concrete,
the students can not formulate algorithms (designs of their programs). As a
result, their programs are "random sequences of instructions" rather than
"computerized solutions of problems". That's why I have tried to shape a
methodology, which could show them the consecutive development of programs
- starting with verbal formulation of the problems. In the paper the milestones of
the methodology are presented: First, our problems are formulated as word
problems. Each problem exploits the student's previous knowledge and
experience and activates his/her creativity. Then, we want students to describe
algorithms - we only ask for their verbal (but written) design. The correctness of
the designs is verified. If the solution is correct, it is expressed in a
programming language. Another important aspect of our methodology is that all
new notions, concepts, and programming techniques are introduced in the
"bottom-up" manner. The students can "reinvent" and use them before the
notion is formally defined. In such a way, they can easier understand its
meaning and observe the most frequent ways of its usage. Morever, we try to
solve every problem using several different ways and do encourage students to
do the same with their assignments. Then, we discuss their advantages and
disadvantages. We see such critical analysis as a necessary backgroung for their
future professional carrier. Thus, the approach could be described as "from
word problems to (validated) computer programs". In our presentation some of
those problems and their solutions will be demonstrated.

1 Introduction

The education in developing countries must be based on different methodology
compared to that of the developed ones. In general, it must reflect a different
structure of their educational system, the lack of resources (teachers, textbooks,
classrooms, etc.), and a shorter tradition of education itself. Particularly, the lack of
such a tradition seems to be the most critical factor. The pressure of parents and the
society on students to study harder and to improve their skills is much smaller than an
outsider could expect. The reasons are simple:

• Most parents can not guide their children in their learning and the selection
of their study field simply because their education is minimal (if any).

• The structure of the society does not correlate to that of the most
advanced countries. Most university newcomers have no idea about main
characteristics of their future professions, because they have never had any
opportunity to observe it in their neighborhood.

• Due to lack of long-term planning the university subjects and the numbers
of their attendees might not fit the real situation students will face after
their graduation. That results into the students’ lower interest in their
studies.

Altogether, the organization and orientation of the university study must
concentrate on production of graduates able flexibly reacting to the future changes in
their countries. Educators should concentrate on forming the students’ thinking and
reasoning skills, problem solving methods and positive attitude to their future
cultivation. In this paper we show an attempt to reach these goals in programming.

2 Expectations and Experience

Currently I teach computer science subjects at UPNG little more than one year.
At the time of my arrival I presumed:

• My students are mostly studying mathematics. So, they should have
developed their problem solving skills.

• The students are already computer literate, because they completed the
one-semester Introduction to Computing course. Thus, my C++ course
could be a regular programming course similar to those given at other
universities round the world.

• In a short period I found the opposite:

• The students show low problem-solving skills. The low quality of
elementary and high school teaching is probably the main reason.
Particularly, they are quite good in performing any kind of mathematical
operations, but very bad in solving word problems. This causes their weak

orientation in the interconnections between mathematics and our real
world.

• Their hands-on experience with the computers was low as a result of
insufficient access to computers in the past. Moreover, the students made
their first contacts with computers rather late – in the end of the second
year of their university study. Luckily, this factor is now gradually
changing with better hardware facilities.

3 Ways Out

Critical situations require non-standard solutions. Thus, I have decided to modify
existing programming courses and to build a new approach. It is based on the
following principles:
1) Understanding basic concepts of programming: Any abstract thinking is based on

a deep comprehension of relationships among concrete facts. Thus, each notion
and concept is to be explained using two ways:
a) As an isolated element – the concept is introduced in its “pure form“.
b) As a part of a mosaic – the interconnection of the concept with other (already

known) notions and concepts is explained. Their various combinations are
studied, tested and analyzed.

2) Developing problem-solving skills: Programming is something more than just
typing commands executable by a computer. The commands must express the idea
of the programmer. The ideas become our primary objective as no one can make a
good program without a good idea. All this means that we start every explanation
with a problem. The students are encouraged to find out as many its solutions as
possible. Then, the solutions are tested and evaluated.

3) Slow pace: The students’ comprehension is preferred to the number of notions.
Naturally, this principle slows down the speed of presentation. The speed follows
the students’ progress.

4 Problems and Their Solutions

Every notion is only introduced when it is necessary for solving a problem. Under
the problem we understand a triple1

/* Pre: Precondition */
A
/* Post: Postcondition */

The precondition Pre specifies the set of values that are expected as input data.
The postcondition Post defines the results that should be reached. As the way of their
obtaining is unknown, the postcondition only specifies a relationship between the
input data and expected results. Our goal is to find an algorithm A, which transforms
data satisfying the precondition to data satisfying the postcondition. However, every
solvable programming problem has many solutions with different complexities. Thus,
we present some of them to students and encourage them to create their own and
discuss their advantages and disadvantages.

4.1 Introducing Basic Concepts of Programming

We apply the problem solving approach from the very beginning. For example,
first C++ commands are introduced and studied using the following simple problem:

/* Pre: Two integer variables A and B are given, A < B */
A
/* Post: A ≤ B is valid for the results */

This problem has many solutions:
1) Null command: It is easy to show that the null command (“Do nothing!“) solves

the above problem. If A < B holds for two variables, A ≤ B is also valid. Thus,
none of them need be changed. That command will frequently used as a branch of
conditional commands.

2) Assignment command: It is one of the basic commands of most programming
languages. In our case we use the assignment A = B. After its execution the
equality A = B holds2. Naturally, its validity also implies the validity of the
postcondition A ≤ B. To understand its properties students are encouraged to
look after similar assignments (say, B = A).

1 S. Alagic, M. A. Arbib: The design of well-structured and correct programs, Springer-Verlag,
New York, 1987

2 The usage of the equality symbol “=“ as the assignment symbol in C and C++ is not very fortunate.
The author feels it as a step back compared to the “:=“assignment symbol in Pascal.

3) Recurrent assignment: A = A + 1 is the most important variation of the
assignment. There exist several of its variations to be discovered by students:

a) A = A – 1;
b) B = B – 1;
c) B = B + 1;
d) A = A – 76 (or any other constant)
e) etc.

4) Compound command: {A = 36; B = 36;}. When the same constant is assigned to
the both variables, A = B becomes valid. As in the previous case, that proves the
validity of the solution. An important characteristic of this solution is that it has
infinitely many variations. So, students are asked to show which of the above
solutions can be used as similar generators. A deeper discussion shows that the 3a,
3c and 3d can generate infinitely many solutions, but 3b not.

5) While-loop: while (A < B) /*do*/ {A = A + 1;}. Such a “Pascal-like“ while loop
is exclusively used, because it is better readable than the standard C++ loop
without /*do*/3. The following analysis – made with the students’ “help“ –
investigates whether the loop body can be replaced by another assignment. It is
easy to see that the solution 3b (i.e. the assignment statement B = B – 1) can be
used as the loop body, but not the others (3a, 3c, nor 3d). All of them create
infinite loops4. On the other hand, when the loop body is replaced by the solutions
2 or 4, the loop body is executed only once. That indicates that these solutions are
“simpler“ that the loop.

6) Do-loop: do {A = A+1;} /*while*/ (A < B). A similarity in appearance of two
texts does not mean an identity of their performance. In this case the sections of
the previous text has been exchanged. As a result, the execution of the loop body
and testing the loop condition are also made in a different order. Similar
modifications help students understanding of a correlation between the text of a
program and its execution.

4.2 Elements of the Computational Complexity

Finally, after collecting many solutions, we can raise the question: Which solution
is the best – and why? It allows us to introduce elements of computational
complexity: The solution, which requires fewer commands to be executed for a given
input, is better. Students easily conclude that there exist three important activities
during the execution:

3 We do the same with all other commands. For example, the conditional command is used in the
form: if – /*then*/ – else. Additional commentaries significantly improve the readability of the
commands.

4 Students “discover“ the existence of infinite loops before they run their first loop at computer.
Naturally, they are later less surprised by this “strange“ behavior of computers.

• Assignments of values into the variables;

• Comparisons of two values;

• Arithmetic operations.

One can easily see that there exists one
solution, which is undoubtedly better than
all others – the first one. It requires zero
operations. That means that there can
never exist a better solution5. Later, these
basic concepts are trained and developed
on more complicated problems.

4.3 Algorithmic thinking

After starting solving more complex
problems we concentrate our efforts
around one crucial idea: “Simple“ does
not mean the same for a computer and for
a human. To program some problems,
which are trivial for a human, might be
very complicated. Many of our decisions
are based on our intuition. Roughly
speaking, “we do not know what we
know“. In such a case the programmer has
to “discover“ a process simulating our
decision-making6. It is an ideal way of
allowing students to feel “Heuréka!“ – the
moment frequently lacking in our
education and the best tool to raise the
students self-confidence.

The following problem is a good
example of such reasoning. It is connected
to overlapping two windows at a computer
monitor (Figure 1): There are two
rectangles at the monitor. Their sides are
parallel with the edges of the screen Do they have a common area?

5 Any better solution should execute a negative number of operations. An occasional discussion on
“the algorithm with a negative number of commands“ was very interesting. It gave to the
students an insight on the concept of the natural numbers.

6 It does not mean that we solve the problem in the same way. Just the results of the processes are
the same.

Figure 1

Figure 2

Figure 3

When students generate the rectangles at screen (using a random numbers
generator), they can easily test their programs. And they see
that the results of their programs differ from what they see at
screen.

As the rectangles are defined by the locations of their
upper left and lower right corner, solutions are usually based
on the investigation whether a corner of one rectangle is
located inside the other. Because the investigation requires
testing many complex conditions, a natural question arises:
How many corners are to investigate? Eight? Four?
“Eight“ is a safe, but long way. “Four“ need not be enough –
see Figure 2. None of the corners of the outer rectangle is
located inside the inner one. However, five is enough,
because the fifth corner must belong to the inner.

Most students believe that this is the complete solution of
the problem. It has always been a good idea to show them a
counterexample. There exist pairs of rectangles, which are
overlapping, and at the same time none of their corners is
located inside the other rectangle (Figure 3).

4.4 Functions

C++ is an object-oriented language. Therefore, the deep
and correct understanding of functions is an important
prerequisite for the students’ future progress with the
objects. Again, we use a set of problems, which bring them
nearer to such comprehension. There is one of them: A
palindrome is a textual or numerical string that reads the
same backwards as it does forwards (deed, radar, and
1991). There is a way to generate numerical palindromes:
Suppose a number is given. If it is not a palindrome, add its
mirror image to it. Repeat the same with the result until you
get a palindrome. Figure 4 shows the computation, which
starts with 5843.

Top-down design is our preferred way to program
creation. For our first version of the program looks as
follows:

{input Number;
while !(Palindrome(Number))

/*do*/{Number+=MirrorImage(Number);
print Number;

};
};

Here we use two functions: Palindrome and MirrorImage. First, this example
presents a variety of function calls: One function is used inside a loop condition, the

5843

3485

9328

8239

17567

76571

94138

83149

177287

782771

960058

850069

1810127

7210181

9020308

8030209

17050517

71505071

88555588

Figure 4

other in an assignment command. Secondly, it can also demonstrate a possibility to
call a user-defined function inside the other. It is easy to see that a number is a
palindrome only when it is equal to its mirror image. This consideration leads us to
the function:

int Palindrome(int Number)
{if (Number == MirrorImage(Number))

/*then*/ {return Yes;}
else {return No;};

}

In this way students easily understand the reasons for our preference of the top-
down design to other program development methods.

4.5 Word Problems

There exists another big methodological problem. Students do not have a right
picture on the interconnection between programming and our real life. They do not
understand that any programming language is just a tool, which is used for the
expression of our intentions and their formulation in a form acceptable by a
computer. The correct comprehension of this relationship is crucial for their future
professional performance. To build it up we force them to solve many word
problems. Here we show some of them.

A bank uses the following algorithm with its credit cards: When the card is
issued to a customer, he/she types a four-digit number to the bank computer. For the
privacy reasons, the number is not stored in its original form. It is encoded as
follows:

a) All digits smaller then five are increased by 1.

b) Decrease 2 all other digits.

Write a program to perform the above transformation.

For various reasons students do not always understand the text well. That’s why
from two to five sets of testing data are given. In the above problem the sets have the
form:

a) For input 3707 the value 4515 is stored.

b) For input 4648 the value 5456 is stored.

As we have already mentioned, the students have a weak mathematical
background. Their picture of a “proof“ is quite uncertain. Frequently, they assume
that the validation of a hypothesis for a concrete data set is the equivalent of a proof.
To disprove their conviction a problem, which uses random data is needed. In this
case the student can not know what will be the actual input of his/her program. Thus,
his/her solution must be “bullet-proof“. There is a good example:

N soldiers stand in a line (side by side). On their commander’s order “Left face“

they (randomly) turn 90o to the left or to the right. In the next second those who
stand face to face with another soldier, realize that “Something is wrong“ and turn

about face (i.e. 180o). The same repeats in the next second etc.

a) Write a program, which simulates the soldiers’ behavior. Program should
display their line in one-second intervals. Use the character “<“ for a
soldier facing to the left and “>“ for a soldier facing to the right.

b) Determine and display the duration of the process from its beginning to the
moment when no soldier moves.

c) Prove that the process always terminates.

d) What is the maximum duration of the process with N soldiers?

Realize that the last three questions are theoretical. There is no way to solve them
using the computer7. In this way we underline another of our aims: Forcing students’
thinking about their programs not facing their computers. They should build up their
mental structures to become capable of algorithmic reasoning anywhere8.

Most word problems are also oriented to specific topics. The following problem
has been constructed to pinpoint a possible usage of the same value for two different
goals: A farmer sells 50 watermelons. The melon weights vary from 1 kg to 10 kg,
but their price is the same – K1 per piece. (That’s why the farmer only registers
their weight in integers – it does not play an important role in his considerations. As
we will see, it will play a very important role in those of ours.) There exists at least
one melon of each weight from 1 to 10 kg. The weight of melons is stored in
elements of the integer array Melon. Our car can only carry 100-kg load.

a) Design an algorithm, which counts the number of melons of each particular
weight from 1 to 10 kg and stores the numbers in the array Amount.

b) Design an algorithm, which helps us to select the maximum weight of melons
with the minimum price. (The previous algorithm can be used as its part.)

c) Show that if the total weight of melons is at least 100 kg, one can always
select melons in their total weight 100-kg.

d) Write a C++ program that corresponds to the algorithms.

Particularly, the weights of melons are used as values of array elements in the
array Melons, but they must be simultaneously used as the indexes of the array
Amounts.

7 There is one “way“: To run all possible combinations of the starting positions N soldiers. However,
the actual number of the positions excludes that possibility.

8 The author is convinced that the position in the front of a computer is probably the worst place for
thinking about your program. This position provokes your examining immature ideas.

5 Concluding Remarks

The tradition of education in Papua New Guinea is very short. It explains why the
students’ background is quite weak. However, we can not feel comfortable with this
judgement. We have to elaborate teaching methods, which would accelerate such an
appreciation to education similar to that of developed countries. We believe that the
teaching methods similar to the presented one will help the students build up their
abstract thinking and reasoning. And we wish it would be so simple and so fast as in
the following problem used for practicing the recursion:

One lecturer teaches programming in a class of 12 students. After 4 years the
students are qualified enough to start their own classes of 12 students. The students
are also obliged to train 12 students in 4 following years etc. How long would it last
while the whole population of Papua New Guinea9 is computer literate?

References

[1] J. Adams, S. Leestma, L. Nyhoff: C++ An Introduction to Computing. Prentice
Hall, Englewood Cliffs, 1995

[2] P. Brusilovsky, E. Calabrese, J. Hvorecký, A. Kournichenko, P. Miller: Mini-
languages: a way to learn programming principles. Education and Information
Technologies, Vol. 2, No. 1 (1997), pp. 0065-0083

[3] P. Drlík, J. Hvorecký: Informatika - nácrt didaktiky (Information Science – an
Outline of Didactics). Pedagogická fakulta, Nitra 1992

[4] J. Hvorecký: On a Connection Between Programming and Mathematics.
SIGCSE Bulletin, Vol. 22, No. 4 (Dec. 1990).

[5] J. Hvorecký, J. Kelemen: Algoritmizácia (Algorithm Design). Alfa, Bratislava
1983, 1986.

9 The estimated population is 5 million inhabitants.

