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Automated inequality proving has been a di�cult topic in the area of

automated reasoning for many years. The concerning algorithms de-

pend on real algebra and real geometry, and the computational com-

plexity increases very quickly with the dimension, i.e. the number of

parameters. Some well-known algorithms are complete theoretically

but ine�cient in practice, which cannot verify non-trivial propositions

in batches. A dimension-decreasing algorithm presented here can treat

radicals e�ciently and make the dimensions lowest. Based on this al-

gorithm, a generic program called \BOTTEMA" was implemented on

a PC computer. About 500 algebraic and geometric inequalities in-

cluding more than 100 open problems have been veri�ed in this way.

The total CPU time spent for proving 120 basic inequalities from Bot-

tema's monograph, \Geometric Inequalities" on a Pentium/200, was

20-odd seconds only.
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1. Algebraic approaches: achievements and di�culties

We have reason to believe that computer will play a much more im-

portant role in reasoning sciences in the next century. People will be able

to prove theorems class by class instead of one by one. Since Tarski's[14]

well-known work, A Decision Method for Elementary Algebra and Geometry,

published in early 1950's, the algebraic approaches have made remarkable

progress in automated theorem proving. Tarski's decision algorithm has

only got theoretical signi�cance, that could not be used to verify any non-

trivial algebraic or geometric propositions in practice, because of its very

high computational complexity. Some substantial improvements were made

by Seidenberg, Collins[8] and others afterwards, but it was still far away

from mechanically proving non-trivial theorems batch by batch, even class

by class. The situation didn't change until Wu Wen-ts�un[16][17] proposed

in 1977 a new decision procedure for proving geometry theorems of \equal-

ity type", i.e. the hypotheses and conclusions of the statements consist of

polynomial equations only. This is a very e�cient method for mechanically

proving elementary geometry theorems (of equality type). S.C. Chou[4] has

successfully implemented Wu's method for 512 examples which include al-

most all the well-known or historically interesting theorems in elementary



geometry, and it was reported that for most of the examples the CPU time

spent was only few seconds each, or less than 1 second!

The success of Wu's method has inspired in the world the advances

of the algebraic approach[11][15] to automated theorem proving. In the

past 20 years, some e�cient provers have been developed based on di�er-

ent principles such as Gr�obner Basis[2][3], Parallel Numerical Method[26]

[22], and so on. Especially, J.Z. Zhang and his colleagues gave the algo-

rithms and programs for automatically producing readable proofs of geom-

etry theorems[7][18][27]. The achievement makes the studies in automated

proving enter a new stage that the proofs created by machines can com-

pare with those by human being, while the decision problem was playing

a leading role before. It has also important applications to mathematics

mechanization and CAI.

These packages mentioned above are mainly valid to equality-type the-

orem proving, however, automated inequality proving has been a di�cult

topic in the area of automated reasoning for many years. The concerning

algorithms depend on real algebra and real geometry, and the computational

complexity increases very quickly with the dimension, i.e. the number of

parameters. Some well-known algorithms are complete theoretically but in-

e�cient in practice, which cannot verify non-trivial propositions in batches.

Recently Chou, Gao et al[5][6] made helpful approaches in this aspect by

combining Wu's method with CAD (Cylindrical Algebraic Decomposition)

algorithm or others. L. Yang and his colleagues[19][23][20] introduced a

strong tool, a complete discrimination system (CDS) of polynomials, for

inequality reasoning. By means of CDS, a generic program called \EX-

PLORER" was also implemented on PC computers that is able to discover

new inequalities, without requiring us to put forward any conjectures be-

forehand. For example, by means of this program, we have re-discovered 37

inequalities in the �rst chapter of the famous monograph, \Recent Advances

in Geometric Inequalities", and found three mistakes at the same page.

The CDS would be able to solve a variety of problems in science, tech-

nology and engineering that ask for real solutions, but it would be invalid

for automatically proving the theorems of higher dimensions or with more

parameters. When the hypotheses contain some algebraic equations, one

may think to eliminate some variables to make the dimension lower. In

this way, however, usually we have to deal with parametric radicals. A

dimension-decreasing algorithm presented here can treat radicals e�ciently

and make the dimensions lowest. Based on this algorithm, a generic pro-

gram called \BOTTEMA" was implemented on a PC computer. About 500

algebraic and geometric inequalities including more than 100 open problems

have been veri�ed in this way. The total CPU time spent for proving 120

basic inequalities from Bottema's monograph, \Geometric Inequalities" on

a Pentium/200, was 20-odd seconds only.



2. An example

For popularity, we show the main point of our algorithm with the fol-

lowing inequality-type proposition.

Proposition 1. Given real numbers u; v; w; x; y; z satisfying the follow-

ing 9 conditions,

u2 + 6xu� y2 + 2 yz � 4xy � 4 zx� z2 + 5x2 = 0;

v2 + 6 yv � z2 + 2 zx� 4 yz � 4xy � x2 + 5 y2 = 0;

w2 + 6 zw � x2 + 2xy � 4 zx� 4 yz � y2 + 5 z2 = 0;

u+ 3x � 0; v + 3 y � 0; w + 3 z � 0;

x > 0; y > 0; z > 0; (1)

prove u+ v + w � 0.

To verify this proposition, the basic idea of algebraic decomposition is:

decompose the space of parameters u; v; w; x; y; z into a �nite number of

parts, i.e. some cells with di�erent dimensions, pick out all the parts where

the hypothesis of the proposition holds, and then check whether the conclu-

sion u + v + w � 0 holds over the parts picked out. If so, Proposition 1 is

true; otherwise, it's false.

We will face a problem of 6-dimensional space if do a decompositin sim-

ply without dimension-decreasing measure. It would be impossible to im-

plememt a nontrivial algebraric decomposion for a 6-dimensional space by

means of the current computer softwares and hardwares. In fact, it was said

that such a decomposition is very di�cult even for spaces of dimensions

more than 3. So, we should take some measures to keep the dimension as

low as possible.

Noting that the 6 variables are not independent, we can regard x; y; z as

papameters and u; v; w as unknowns, and solve the �rst 3 equations of (1)

for u; v; w. We have

u = �3x�
q
4x2 + 4xy + 4 zx+ y2 � 2 yz + z2;

v = �3 y �
q
4 y2 + 4 yz + 4xy + z2 � 2 zx+ x2;

w = �3 z �
q
4 z2 + 4 zx+ 4 yz + x2 � 2xy + y2:

Employing the next 3 conditions,

u+ 3x � 0; v + 3 y � 0; w + 3 z � 0;

we see that the three radicals above are positive, i.e.

u = �3x+
q
4x2 + 4xy + 4 zx+ y2 � 2 yz + z2;

v = �3 y +
q
4 y2 + 4 yz + 4xy + z2 � 2 zx+ x2;



w = �3 z +
q
4 z2 + 4 zx+ 4 yz + x2 � 2xy + y2:

Substitute it in the conclusion u+ v + w � 0, we have

�3x+
q
4x2 + 4xy + 4 zx+ y2 � 2 yz + z2

�3 y +
q
4 y2 + 4 yz + 4xy + z2 � 2 zx+ x2

�3 z +
q
4 z2 + 4 zx+ 4 yz + x2 � 2xy + y2 � 0:

Thus, Proposition 1 is equivalent the following

Proposition 2. Given real numbers x > 0; y > 0; z > 0; prove

p
4x2 + 4xy + 4 zx+ y2 � 2 yz + z2 +

p
4 y2 + 4 yz + 4xy + z2 � 2 zx+ x2

+
p
4 z2 + 4 zx+ 4 yz + x2 � 2xy + y2 � 3(x+ y + z): (2)

In comparison with Proposition 1, the number of variables reduces to 3,

but 3 radicals occur in hypothesis. To eliminate these radicals, the conven-

tional means is to introduce new variables, that way the problem returns to

6-dimensional again. So, we must �nd an e�cient algorithm not only elimi-

nating the radicals but also keeping the dimensions non-increasing. That is

the problem so-called \rationalization for algebraic inequality with radicals".

3. Rationalization for inequality with radicals

For brevity, it is necessary to introduce a few de�nitions to describe our

algorithm.

De�nition 1. Assume � is an algebraic inequality (or equality) in

x; y; z; � � � etc. L(T ) is called a left polynomial of �, provided

� L(T ) is a polynomial in T , and all the coe�cients are rational poly-

nomials in x; y; z; � � � etc.,

� the left hand side of � is a zero of L(T ),

� amongst1 all the polynomials satisfying the two items above, L(T ) is

what has the lowest degree in T .

The right polynomial of �, namely, R(T ), can be de�ned analogously.

There are di�erent methods to �nd the left/right polynomial of an alge-
braic inequality with radicals, e.g. the parametric resultant method[28][21].
For inequality (2) in last section, the left polynomial L(T ) is of 8-degree in
T as follows:

T 8
� 24 (yz + xy + z2 + x2 + zx+ y2)T 6 + 144 (2 yzx2 + z4 + 3 y2z2

1sometimes, this requirement is unnecessary



+2 y2zx+ 2xy3 + 2 yz3 + 2 z3x+ 2x3y + 3x2y2 + 2 y3z + x4 + y4

+3 z2x2 + 2 zx3 + 2 z2xy)T 4
� 64 (4 z6 + 4x6 + 4 y6 + 12x5y � 26 z3x3

+12 z5x� 3 z2x4 + 12 zx5 + 12 z5y � 3 y4z2 � 26 y3z3 � 26x3y3 � 3 z4x2

+12 y5z + 12 y5x� 3 y4x2 � 3 z4y2 � 3x4y2 + 72 z4xy + 78 yz3x2

+72 yzx4 + 78 yz2x3 + 78 y2z3x+ 72 y4zx+ 78 y3zx2 + 78 y2zx3

+84 y2z2x2 + 78 y3z2x)T 2 + 20736 y2z2x2(x+ y + z)2: (3)

And the right polynomial R(T ) is obviously of 1-degree in T :

T � 3 (x+ y + z): (4)

Thus, Proposition 2 as well as Proposition 1 is equivalent to the following

Proposition 3. Assume the parameters x; y; z in polynomials (3) and

(4) take positive values. Show that the greatest real root of (3) is greater

than or equal to the greatest real root of (4), regarding (3) and (4) as

univariate polynomials in T .

This statement involves a lower dimension. By some parametric trans-

formation, We need only do a planar decomposition, and needn't deal with

radicals. The CPU time spent to verify Proposition 3 on a Pentium/200 is

about 1.6 seconds, making use of our generic program BOTTEMA.

Such a scheme based on the comparison between the greatest roots of

two polynomials, abbreviated as CGR, covers a large class of algebraic and

geometric inequalities, that is called class CGR.

BOTTEMA written in MAPLE is aimed at class CGR which most of the

propositions in monograph \Geometric Inequalities"[1] belong to. In order

to avoid the questions and arguments on the onerous error's estimation for

oating-point computation, here is employed the exact computation in every

step.

4. More examples in class CGR

The well-known Janous's inequality[10] which was proposed as an open

problem in 1986 and solved in 1988 belongs to the class CGR de�ned as

above.

Proposition 4. (Janous's Inequality) By ma; mb; mc and 2 s denote

the three medians and perimeter of a triangle. Show that

1

ma

+
1

mb

+
1

mc

>
5

s
:

The left hand side of the di�cult inequality implicitly contains three

radicls. BOTTEMA automatically interprets the geometric proposition to



algebraic one before proves it. The total CPU time spent for this example

on a Pentium/200 is about 80 seconds.

The following open problem appeared as Problem 169 at Mathematical

Communications (in Chinese) a few years ago.

Proposition 5. By ra; rb; rc and wa; wb; wc denote the radii of the ex-

circles and the bisectors of the angles of a triangle, respectively. Prove or

disprove

3
p
rarbrc �

1

3
(wa + wb + wc):

In other words, the geometric average of ra; rb; rc is less than or equal to the

arithmetic average of wa; wb; wc.

The right hand side of the inequality implicitly contains 3 radicals. BOT-

TEMA proved this conjecture on a Pentium/200 with CPU time less than

3 minutes. One more conjecture from the book Geometric Inequality in

China[13] involves the trigonometric functions:

Proposition 6. By A; B; C; r; R denote the three angles, inradius and

circumradius of a triangle, respectively. Prove or disprove

cos
A

2
cos

B

2
+ cos

B

2
cos

C

2
+ cos

C

2
cos

A

2
� 1 + 2

p
2

2
+ (7� 4

p
2)

r

R
: (5)

This is apparently beyond class CGR for the right hand side of (5) is

not the greatest root of its right polynomial. However, multiplying the both

sides of (5) by
p
2, we obtain the following equivalent proposition which

belongs to class CGR:

p
2 (cos

A

2
cos

B

2
+cos

B

2
cos

C

2
+cos

C

2
cos

A

2
) � 4 +

p
2

2
+(7

p
2�8)

r

R
: (6)

The CPU time spent for proving (6) on a Pentium/200 is about 15 minutes.

The next conjecture proposed by J. Liu[13] was proved on the same

machine with CPU time about 8500 seconds and memory 31.8 M.

Proposition 7. By a; b; c; ma; mb; mc and wa; wb; wc denote the side

lengths, medians and angle-bisectors of a triangle, respectively. Prove or

disprove

ama + bmb + cmc �
2p
3
(w2

a + w2

b + w2

c ):

In fact, more than 100 open problems in geometric inequalities have been

proved or disproved in a short time using this package.

The following conjecture appeared in the Research Communications pub-

lished informally by the Inequality Reaserch Group in China, was disproved

in 3.6 seconds, that means, our prover is not a \yes man".



Proposition 8. By a; b; c; denote the side-lengths of a triangle, respec-

tively. Prove or disprove

1

6
(jb� cj+ jc� aj+ ja� bj)2 � a (b� c)2

b+ c
+
b (c� a)2

c+ a
+
c (a� b)2

a� b
: (7)

The computer disproved it by showing a sentence \no inequality holds"

with the data wherefrom we got a counter-example immediately, say, a tri-

angle with side-lengths a = 7; b = 8; c = 13 which contradicts Proposition

8 obviously so that anybody can check by hands.

Noting the counter-example is an obtuse-triangle, one has reason to guess

that (7) would hold for acute-triangles, i.e.

Proposition 9. By a; b; c; denote the side-lengths of an acute-triangle,

respectively. Prove or disprove

1

6
(jb� cj+ jc� aj+ ja� bj)2 � a (b� c)2

b+ c
+
b (c� a)2

c+ a
+
c (a� b)2

a� b
:

With CPU time 82 seconds, actually the screen showed \the inequality

holds" so probably we have discovered a new theorem if it is.

5. A class of min-max problems

It should be pointed out that class CGR includes a lot of min-max

problems which would be of importance in various applications. The next

example[12] shows how carefreely the algorithm applies to such problems

without inspirations.

Proposition 10. Given real numbers x > 0; y > 0; z > 0;

prove

x+ y + z +
q
x2 + y2 + z2 � xy � yz � zx � 3maxfx; y; zg: (8)

The l.h.s. and r.h.s. are respectively the greatest real roots of T 2 � 2(x +

y+ z)T +3(xy+ yz+ zx) and (T � 3x)(T � 3 y)(T � 3 z), two polynomials

in T . So the proposition is equivalent to the following

Proposition 11. Assume the parameters x; y; z take positive values in

T 2� 2(x+ y+ z)T +3(xy+ yz+ zx) and (T � 3x)(T � 3 y)(T � 3 z), which

we regard as univariate polynomials in T . Show that the greatest real root

of the former is less than or equal to that of the latter.

To prove the proposition by BOTTEMA on a Pentium/200, the CPU

time spent is about 0.26 sec.

The next example as well as Proposition 11 belongs to class CGR.



Proposition 12. By ma;mb;mc and ha; hb; hc denote the medians and

altitudes, R and r the circumradius and inradius of an acute-triangle, re-

spectively. Show that

maxfma � ha; mb � hb; mc � hcg �
1

2
(R� 2 r):

The CPU time for proving the above proposition is about 56 seconds.

The following conjecture[25] seems much more complicated, but it also

belongs to class CGR.

Proposition 13. Amongest seven points in a unit square, there always

exist three points which form a triangle of area less than or equal to 1

12
.

By (xi; yi), i = 1; � � � ; 7, denote the 7 points, and �ijk, i; j; k = 1; � � � ; 7,
denote the areas of all the triangles formed by the 7 points. So the conjecture

is equivalent to the following

Proposition 14. The greatest root of the polynomial

Y

1�i�j�k�7

(T +�ijk)

is greater than or equal to � 1

12
, the greatest root of polynomial T + 1

12
,

provided 0 � xi � 1, 0 � yi � 1, for i = 1; � � � ; 7.
This requires a decomposition of a 14-dimensional space, that is impos-

sible by the current computer conditions. However, we have seen such a

problem is really covered by class CGR, as well as a lot of min-max prob-

lems else, so that they are no longer the kind of problems without generic

algorithms.

6. A general description of the algorithm

It was showed that class CGR covers a lot of propositions but can't cover

all the inequalities in elementary algebraic and geometry. We will describe

an algorithm valid in an area more extensive than class CGR.

De�nition 2. Assume � is an algebraic inequality (or equality) in

x; y; z; � � � etc., L(T ) and R(T ) are the left and right polynomial of �, re-

spectively. By P (x; y; � � �) denote the resultant of L(T ) and R(T ) with

respect to T , and call the surface de�ned by P (x; y; � � �) = 0 the critical

surface of �.

To verify a proposition with conclusion and hypothesis formed by alge-

braic inequlities �0; �1; � � � ; �s in x; y; z; � � � etc., e.g.

�1 ^ �2 ^ � � � ^ �s ) �0; (9)

we take the following procedures.



1. Find the critical surfaces of the inequalities �0; �1; � � � ; �s.

2. These critical surfaces decomposes the parametric space into a �nite

number of parts, D1;D2; � � � ;Ds. Choose at least one test point in

every part, (x� ; y� ; � � �) 2 D� ; � = 0; 1; � � � ; s.

3. We need only check the proposition for such a �nite number of test

points, (x1; y1; � � �); � � � ; (xs; ys; � � �). The statement is true if and only

if it holds over these test values.

The above procedures sometimes may be simpli�ed. When the conclu-

sion �0 is a CGR inequality, what we need in step 3 is to compare the

greatest roots of left and right polynomials of �0 over the test values.

According to our record, the numbers of the test points for above exam-

ples are listed as follows.

Proposition 2 1 test point

Proposition 4 11 test points

Proposition 5 4 test points

Proposition 6 27 test points

Proposition 7 3 test points

Proposition 8 4 test points

Proposition 9 4 test points

Proposition 10 1 test point

Proposition 12 12 test points

When the conclusion of the proposition to be veri�ed is an inequality of

type \�" or \�", we can select all the test points from some open sets of

the parametric space and thus make all the test values to be rational, that

remarkably reduces the computational complexity in the key steps.

7. Conclusion

In last 20 years, the e�ciency of automated equality-type theorem prov-

ing has increased greatly which became considerably wide apart that of

inequality, especially, for geometric theorems. The work reported here is an

e�ort to shorten the distance.

O.Bottema was the �rst author of the monograph Geometric Inequalities

which was known as \Bottema's Bible" due to the high frequency of cita-

tion. The generic program BOTTEMA was designed mainly aimed at the

inequalities which are of class CGR and with 2 freedoms only. Besides a lot

of elementary algebraic inequalities, this includes most of the theorems in

\Bottema's Bible". A general algorithm was also introduced which is valid

for a more extensive class, but the e�ciency seems much less than that of

BOTTEMA.



In my opinion, one of the key problems to promote the e�ciency of an

algorithm for inequality proving is how to employ the relevant knowledge

such as Arithmetic Mean Inequality and so on. That would be a quite

di�cult task but the expected achievements will bring the studies to enter

another new stage.
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