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Abstract

This paper described the halfsweeps multigrid method with the rotated high-order dis-

cretization for solving the two dimensional Poisson equation with the Dirichlet boundary

conditions. This method along with several ordering strategies shows a relatively good

in accuracy and drastic improvement in execution time. The numerical results of test

problem are given.
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1 Introduction

Consider the following two dimensional Poisson equation,

2 2@ u(x; y) @ u(x; y)
+ = f(x; y); (x; y) 2 ;

2 2 (1. 1)@x @y
u(x; y) = g(x; y); (x; y) 2 @;

with the Dirichlet boundary conditions. When the partial derivatives of equation (1.1) are solved by
the ¯nite di®erences formulae, the most commonly used approximation is the standard ¯ve-points
stencil (SFPS) as,

2v + v + v + v ¡ 4v = h f ; (1. 2)i+1;j i¡1;j i;j+1 i;j¡1 i;j i;j

1where the widths between mesh points ¢x = ¢y = = h are uniform and the solution domain can
N

hbe denoted as  . The v is an approximation to the exact solution u at any mesh points (x ; y )i;j i;j i j
2for all i; j = 1; 2; : : : ; N ¡ 1. This stencil has a truncation error of order O(h ). An approximation

4of order O(h ) can also be used to solve equation (1.1),
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4[v + v + v + v ] + v + v + v + v ¡ 20vi+1;j i¡1;j i;j+1 i;j¡1 i+1;j+1 i¡1;j¡1 i+1;j¡1 i¡1;j+1 i;j

2h
= [f + f + f + f + 8f ]: (1. 3)i+1;j i¡1;j i;j+1 i;j¡1 i;j

2

This standard nine points stencil is called the Mehrstellenverfahren due to L. Collatz, 1960 and it
has been known for many years, see [2]. In recent years, several authors have derived the high-order
discretization to solve various partial di®erential equations and they ended up with the stencil (1.3)
for the case of Poisson equation. More information about this discretization can be found in [5,6].

Another type of approximation so-called the rotated discretization, can be achieved by rotating the
±i- and j-plane axis clockwise by 45 . Thus, the discretized form of equation (1.1) at the mesh point

(x ; y ) with the ¯nite di®erences formulae will leads the rotated ¯ve points stencil (RFPS) as,i j

2v + v + v + v ¡ 4v = 2h f : (1. 4)i+1;j+1 i¡1;j¡1 i+1;j¡1 i¡1;j+1 i;j i;j

2This stencil is order of O(h ) and has been shown by G. Dahlquist et. al., 1974, see [3]. This stencil
combined with the stencil (1.2) are extensively used to develop the four points explicit decoupled
group (EDG) method and the halfsweeps multigrid method, see [1,9].

An approximation of high order can be employed to approximate equation (1.1),

v + v + v + v + 4[v + v + v + v ]¡ 20vi+2;j i¡2;j i;j+2 i;j¡2 i+1;j+1 i¡1;j¡1 i+1;j¡1 i¡1;j+1 i;j

2= h [f + f + f + f + 8f ]: (1. 5)i+1;j+1 i+1;j¡1 i¡1;j+1 i¡1;j¡1 i;j

This equation is called a rotated nine points stencil (RNPS) and more details of this stencil are
described in [10].

In x2, we describe the multigrid methods which use the standard high order discretization. While
in x3 and x4 show the implementation of the halfsweeps multigrid method with the rotated high
order discretization and the numerical experiments on the speci¯c Poisons equation, respectively.
x5 o®ers a summary.

2 Multigrid Method

The multigrid method is a fast and one of the most e±cient iterative method for solving a wide
class of partial di®erential equations. This method is used in many areas of scienti¯c computing
and engineering, see [7].

A simple V (º ; º )-cycle multigrid algorithm can be described as follow,1 2

h h hAlgorithm MGV(i;A ; v ; f )
f

h h hIf (i == 0) coarsest grid, then solve A e = r directly.
else f

h h h hSmooth º times on A v = f on 1

h h h hCompute the residual r Ã f ¡A v
2h 2h 2h hSet e Ã 0 and restrict r Ã R rh
2h 2h 2h 2hGet e Ã MGV(i¡ 1; A ; e ; r )

h h h 2hCompute prolongation and errors (corr.) v Ã v + P e
2h

h h h hSmooth º times on A v = f on 2

g
hReturn v as the approximate solution

g

Algorithm 1: The recursive multigrid algorithm with V (º ; º )-cycle scheme.1 2
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The restriction and prolongation are two processes of transferring mesh points from ¯ne to coarse
2h h 2h h 2h hgrid (R :  !  ) and from the coarse to ¯ne grid (P :  !  ), respectively. Theh 2h

h 2h 2h hcomputed residuals r are injected to the coarse grid de¯ned as r Ã R r and there are severalh

restriction operators available such as full-weighting- and half-weighting-injections, see [7]. While
the most popular prolongation operator is bilinear interpolation which will be used in this research
works.

Many research works have been done in the multigrid method, see [4,7,8,11,12,13]. For instance in
[8], the authors used the standard high order discretization scheme with multigrid method to solve
three dimensional Poisson equation in cylindrical coordinates. They employed the S- and V -cycles
in their experiments and found the S- cycle is more preferable due to the small number of smoothing
rate. The standard high order was only used in calculating the residual on the ¯nest grid while the
standard 2nd order was used to do the relaxations on all levels and calculate the residual on the
coarse levels.

The standard high order discretization was used by P. M. de Zeeuw and E.J.van Asselt, 1985 to
develop a Black Box multigrid solver for the general linear second order 2-D Elliptic partial di®er-
ential equations. The solver employs the S-cycle, matrix-dependent grid transfers and incomplete
line LU relaxation scheme, see [12].

The nine-points discretization of the Poisson equation was analyzed extensively by StÄuben and
U. Trottenberg, 1982 and they have shown that for the (SNPS) and four colors has the smallest
smoothing factor. Unfortunately, there are no report in practical application due to M.M. Gupta et.
al., 1995, see [4]. In the same paper, M.M. Gupta, et. al., 1995 compared extensively the multigrid
methods using the ¯ve- and nine-points stencils with the half- and full-weighting restriction operators
respectively on vector and serial machines. They used the red black Gauss-Seidel relaxation scheme
for their pre- and post-smoothing schemes. From the experiments, they found that the multigrid
solution using the (SNPS) combined with full-weighting restriction operator is more accurate and
e±cient than using the ¯ve-points stencil (SFPS) on both machines. Nevertheless, both methods
used all the mesh points in the process of iteration and it can be denoted as fullsweeps multigrid

method.

3 Implementation of Halfsweeps Multigrid Method with

Rotated High Order Discretization

The halfsweeps multigrid method due to M. Othman and A.R. Abdullah, 1997 needs the solution
domain at any levels in the form of red ± and black 2 points labelling. They employed both the
standard and rotated 2nd order discretizations and the horizontal zebra line Gauss-Seidel relaxation
scheme for their pre- and post-smoothing schemes. From the experiments, they claimed that the
method as the fastest Multigrid Poisson Solver and details of this method can be found in [9].

The same idea is applied to develop the halfsweeps multigrid method with the rotated high order
discretization. In this case, a group of red points will be iterated until the convergence criteria is
met, then the other group of points i.e. black points will be executed at once using the (1.2) stencil.
All the red points next to the boundaries will be iterated using the (1.4) stencil (i.e. in dotted
boxes, see Figure 1) while all the internal red points use the (1.5) stencil. It shows that the stencils
(1.4) and (1.5) can be implemented by only involving points of type ±. In other words, the iterative
evaluation of points type ± only require contribution from points type ± and the same happen for
points type 2. Therefore, the implementation of these two stencils can be carried out independently.

Those residuals needed to be injected are calculated and then transfer into the respective red points
at the coarser grid. Since all the red points involved in the iterative evaluation, the following
restriction operator is requires,
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Figure 1: The solution domain in the red ± black 2 labelling. The numbers indicate the horizontal
zebra line- (HZL) ordering strategy on the red mesh points.

2 3
1 0 1

1
2h 4 50 4 0R = : (3. 1)h 8

1 0 1

On the other hand, the linear prolongation is used to transfers the red points from the coarser grids
to the red points at the ¯ner grids as follows,

h 2hv = v ; for all i; j both even or odd: (3. 2)2i;2j i;j

While the bilinear interpolation is applied to interpolate the red points on the ¯ne grid and stated
as follows,

1h 2h 2hv = (v + v );4i¡2;4j 4i¡2;4j¡2 4i¡2;4j+22 (3. 3)1h 2h 2hv = (v + v ); for all i; j = 1; 2; : : : ;N ¡ 1;
4i;4j¡2 4i¡2;4j¡2 4i+2;4j¡22

and

1h 2h 2h 2h 2hv = (v + v + v + v ) for all i; j odd: (3. 4)i;j i¡1;j¡1 i+1;j¡1 i¡1;j+1 i+1;j+14

The most popular smoothing method is the Gauss-Seidel iteration scheme and its a more e®ective
smoother than Jacobi's scheme. These due to the fact that the new updated values are used to
calculate the next value as they become available. It is very important that the residuals are well
smoothed before they can be transferred to the coarser grids.

Several ordering strategies were employed in the pre- and post-smoothing schemes and they were
applied only on the red points at each levels. The optimum ordering strategy so-called the horizontal
zebra line (HZL) strategy starts from red points 7; 8; 9; : : : ; 14; 15 and followed by 16; 17; : : : ; 19, as
illustrated in Figure 1a. While red points next to the boundaries used the natural ordering. All
the red points will undergo the iteration evaluation using the (1.4) and (1.5) stencils until the
convergence criteria is met and then the other half of points are obtained directly once using (1.2)
stencil as shown in Figure 1b.
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¡1h Fullsweeps Multigrid with SNPS Halfsweeps Multigrid with RNPS

Ordering V (1; 1) Time Max error Ordering V (1; 1) Time Max error
¡6 ¡4H 11 0.1622 4.60£10 H 9 0.0728 2.59£10
¡6 ¡48 RB 10 0.1491 1.81£10 HZL 8 0.0661 2.59£10
¡64C 9 0.1341 4.60£10
¡7 ¡5H 12 0.7682 1.16£10 H 11 0.3546 2.21£10
¡7 ¡516 RB 10 0.6443 1.16£10 HZL 10 0.3237 2.21£10
¡74C 10 0.6425 1.16£10
¡9 ¡6H 12 3.2106 7.28£10 H 12 1.5661 1.76£10
¡9 ¡632 RB 10 2.6861 7.28£10 HZL 11 1.4364 1.76£10
¡94C 10 2.6801 7.28£10
¡10 ¡7H 12 13.3846 4.55£10 H 12 6.4841 1.25£10
¡10 ¡764 RB 10 11.1992 4.55£10 HZL 11 5.9568 1.25£10
¡104C 10 11.1900 4.55£10
¡11 ¡9H 13 61.4929 2.83£10 H 13 31.9713 8.35£10
¡11 ¡9128 RB 10 48.3782 2.72£10 HZL 11 27.3852 8.35£10
¡114C 10 48.1860 2.84£10
¡12 ¡10H 13 256.7041 2.59£10 H 13 138.3894 5.44£10
¡12 ¡10256 RB 11 222.0144 1.74£10 HZL 12 130.0475 5.44£10
¡124C 10 204.9203 2.14£10

Table 1: The numerical results of fullsweeps- and halfsweeps-multigrid methods with the SNPS
and RNPS, respectively.

4 Numerical Experiments

The multigrid methods with the high order discretizations are tested on the following two dimen-
sional Poisson equation,

2 2@ u(x; y) @ u(x; y)
2 2 xy+ = (x + y )e ; (x; y) 2  = [0; 1]£ [0; 1]; (4. 1)

2 2@x @y

with subject to the Dirichlet boundary conditions and satisfying the exact solution,

xyu(x; y) = e ; for (x; y) 2 @:

The initial and boundary conditions are de¯ned so as to agree with the exact solutions.

In the experiments, several parameters are reported such as the number of V (1; 1)-cycle, execution
time (seconds) and maximum of errors. The methods run on Sequent S27 system with di®erent

h 2h 256hsize of grids  ; ; : : : ; . The fullsweeps multigrid method is employed the Gauss-Seidel
relaxation scheme along with the horizontal (H), red black (RB) and four colors (4C) ordering
strategies. On the other hand, the halfsweeps method is used the same smoothing scheme as
described in the previous section. Both methods will stop when the respective mesh points which

¡10undergo the process of iterative evaluation at the ¯nest grid are less than ² = 10 where ² is the
error tolerance.

After several experiments, all the numerical results are reported in the Table 1. The maximum
errors- and optimum execution time- versus grids size were plotted and shown in Figures 2 and 3,
respectively.

5 Summary

The numerical results obtained in Figures 2-3 show that the halfsweeps multigrid method with the
rotated high order discretization is relatively good in accuracy compared to the fullsweeps multigrid
method with the standard high order in all observed cases. This is due to the fact that both

4methods used the respective stencils of O(h ). In execution time, the halfsweeps multigrid method
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is faster than the fullsweeps multigrid method, reduce nearly 40-50%, this because of only half of
the points in the solution domain undergo the process of iteration. While in Table 1, we found
that the fullsweeps multigrid method with the four colors Gauss Seidel relaxation scheme is better
than the other two strategies which agreed with K. StÄuben and U. Trottenberg, 1982. This result
contradicted with the one found by M.M. Gupta et. al., 1995.

Overall, on the large size of grids, it can be summarized that the halfsweeps multigrid method with
the rotated high order discretization will improve both the accuracy and execution time.

Although at the moment our results may not convince the researchers to move the high order formula
immediately, it lays down the foundation for further research in this direction. We believe that high
order discretizations are promising in multigrid method.
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Figure 2: Maximum errors versus grid size.

Figure 3: Execution time (second) versus grid size.
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