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Abstract

In teaching calculus of several variables for engineering students or science students one of the
important aims is to create a good comprehension of the basic concepts appearing in these
topics. This comprehension should give the students the capability to use their knowledge in
solving application problems and/or in their further studies. In many cases the introduction of a
new concept can be done by using a good visualization. A CAS with it's rich variety of
capabilities, especially graphic capabilities, makes it possible to use dynamical visualization in
the introduction of such new concepts.

In this paper an introduction of the concepts of level line, gradient, directional derivative using
dynamical visualization is presented. Finally an extremum problem with a constraint is treated
by dynamical visualization to get the Lagrange multiplier.
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1. Introduction

Teaching calculus to engineering students should promote insight into essential mathematical
concepts as well as into important mathematical contents (e.g. main theorems of calculus). The
teaching should promote a reflective and deep understanding of the basic concepts of calculus
which are important in the further studies of the students. If possible the students should
develop geometrically oriented “basic ideas” of such concepts; e.g. they should think of
derivatives as rates of change. (For the concept “basic idea” see [7].)

For engineering and also for science students, some mathematical concepts are needed much
earlier in other subjects than they appear in a calculus course. So it make sense to introduce
sometimes a concept in a preformal way. In such a situation, computers, especially CAS, are
very helpful. The graphical possibilities of CAS can be used to generate a good basic idea. This
basic idea should provide the students with the knowledge about the properties of the concept
they need. Here dynamical visualization is an excellent tool to create good basic ideas in an



impressive way. In[3] and [8], there are many comments concerning a visual approach in
teaching based on the computer. Let us also quote [1] and [5]. In [2], a great number of
animations are considered.

We describe now some examples of such visualizations which allow a vivid introduction into
important concepts.

Here the following topics are treated:
1. The concept of gradient for real valued functions of two variables.
2. The concept of directional derivative of such a function and the usual rule how to calculate

it.
3. An extremum problem with constraint and the geometrical meaning of such a problem

together with the way how to solve it.

Concerning (1) and (2) , it is remarked to the didactical aims among other things that the
students should be taught that a real valued function of two variables can be represented in
different ways. This can be done, for instance, by its graph (i.e. by a surface in space) and also
by the use of level curves. The students should become familiar with different kinds of
geometrical representations of a function. Above all, they should be able to interpret a plot of
level curves and to translate a simple real situation they have learned in the lessons, into
mathematics. They should be able for example to interpret a topographical map of a landscape
as a set of level curves of a certain function. They should also understand that different real
situations, such as isotherms or isobars lead to the same abstract interpretation. Furthermore
they should understand the concept of directional derivative as a local changing rate in a given
arbitrary direction. They should also know the meaning of the gradient by its properties and
how it is used to calculate a directional derivative, if the direction is given.

According to (1) the concept of level curves is stressed in order to introduce by local
geometrical considerations the concepts of grad f at a point P as a vector. Its direction is the
direction of steepest increase of f at P and it turns out that this vector is orthogonal to the level
curve through P and can be defined by ( f P f Px y( ), ( ) ).

It is known empirically that most of the students have problems to understand the definition of
the derivative for functions of several variables (here two) as a linear map from IR 2  into IR .
Even the concept of gradient in the first moment causes difficulties. It is easy to impart the
concept of partial derivatives since these are based on the concept of one dimensional
derivative which usually is introduced by considering local changing rates. The geometrical
introduction of the gradient should be based on both ideas. We can visualize the fact that a
C1 -function locally behaves like a linear function. And at the same time we can visualize the
fact that the direction of steepest increase of the function is orthogonal to the level lines.



In the following pictures respectively animations it is tacitly assumed that the functions under
consideration are sufficiently smooth.

2. Gradient of a function

In the first step, we will show that the direction, in which  f  increases most rapidly at a point
P, is orthogonal to the level curve of  f,  which passes through the point  P. Here we have
assumed that such a point exists. We start the visualization by considering graph  f  in three
dimensions, together with the curves which arise as intersection of the surface  z = f(x, y)  with
the planes     z = c. Then we project these curves in the  xy-plane in order to obtain the level
curves of  f.

After that, we use the idea of the so-called function-microscope (see [4]), that is zooming level
curves in a small neighbourhood of  P again and again. It turns out that finally all level curves
in this neighbourhood appear as straight lines. It can also be seen that finally these straight lines
are parallel to each other. The level curve through P denotes the value c of the function. Here
we show only the level curves  c-2k,  c-k, c,  c+k, and  c+2k, where  k  is real and positive. In
the process of zooming the parameter k runs through a sequence of  k-values  k p   which tends

to zero if we would repeat this process infinitely often.

 ⇒…⇒…⇒…⇒…⇒…  

Figure 2.1 Figure 2.2

In the final picture, we use  k  again instead of  k p . But we note that we have here 0 1< <<k .

The sequence of arrows between the first picture (Figure 2.1) and the last picture (Figure 2.2),
indicates that one can see here on the screen, in fact, an animation.

In the last picture, we draw now a circle around the point  P  which touches the level curve
c+k see Figure 2.3. Considering the value of  f  at all points of this disk, it can be seen
immediately that  f  takes its maximum value at that point where the circle touches the level
curve  c+k see Figure 2.4. Therefore, it can be seen that the direction of most rapid increase of
f  at the point  P  is orthogonal to the level curve  c.



 ⇒…⇒…⇒…⇒…⇒…  

Figure 2.3 Figure 2.4

The sequence of arrows has the same meaning as mentioned earlier.

In the second step, we consider now the local rate of change of  f  in the direction of the  x-axis
and in the direction of the  y-axis. Suppose  P  has the co-ordinates  ( x y0 0, ). We draw a line
from the point  P  parallel to the  x-axis until it meets the level curve  c+k  and a second line
parallel to the  y-axis until it meets the level curve  c+k. Suppose that these both segments
have the length  a  and  b  respectively (see Figure 2.5).

Considering the partial difference quotients, we get
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Note here that k → 0  implies that a → 0 and b → 0 . That means the vector  ( f fx y, ) is the

limit of the vector  (
k
a

k
b

, ), if  k → 0 . (See  also Figure 2.6).

Figure 2.5 Figure 2.6



Now we draw the vector  (a, -b)  from the point  P  (this vector is parallel to the level curve  c)

(see Figure 2.7). Since the scalar product of  (
k
a

k
b

, )  and  (a, -b)  equals zero, the same is true

for the scalar product of  (
k
a

k
b

, )  and a vector lying in the level line  c. So in the limit we have

the desired result that the vector ( f fx y, ) is perpendicular to the level curve  c.

Figure 2.7 Figure 2.8

Figure 2.8, which shows the vector (
k
a

k
b

, ) together with the plot of the direction of most

rapid increase of  f , emphasizes the fact that this direction is the direction of   ( f fx y, ).

Now one can define the gradient of  f as  grad f(P): = ( f P f Px y( ), ( ) ) and we have the

essential properties that  grad f(P) is orthogonal to the level curve through P and that its
direction is the direction of most rapid increase of  f.

Note: What we have done now is nothing else as to consider the behaviour of a linear function.
But the method of zooming, which leads in a very impressive way to this special case, also
allows some insight into the local behaviour of a more general function. So this elementary
way of introducing the concept of gradient by simple geometric arguments maybe gives some
help to an engineering student not only to use formal definitions and rules.

3. Directional derivative

Based on the introduction of the gradient, we want to define now the directional derivative of
f  with respect to a direction given by a unit vector  

r
e =( cos , sinα α ) as the local changing rate

∂ f pe
r( )  = lim

( ) ( )
τ

τ
τ→

+ −
0

f P e f P
ρ

 .

Let us come back to the previous picture, in which we defined the gradient of  f  at  P. We
represented the function  f  by level lines. Zooming, in a neighbourhood of  P, we got finally
parallel level lines (see Figure 3.1).



Figure 3.1 Figure 3.2

We defined grad f(P) = lim( , )
k

k
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,  and we know that in this simplified situation the angle at

Q  equals  
π
2

.  If we choose  P  as the origin in a coordinate system, then the level curve  c+k

satisfies the equation  
x
a

y
b

+ = 1.

Consider now, additionally, the unit vector  
r
e = ( cos , sinα α ), and let  R  be the point where

the line with the direction 
r
e  meets the level line  c+k  (see Figure 3.2).

Let  τ   be the distance  PR .  Then
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Figure 3.3 Figure 3.4

From Figure 3.3, we see that the co-ordinates of  f  at  R  are  τ αcos  and τ αsin

respectively. But R  is on the level line  c+k,  so we have  
τ α τ αcos sin

a b
+ = 1.

Multiplication by  
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  gives
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k
cos sinα α

τ
+ =     which is     (
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r
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 ,

where • stands for the scalar product.  k→0  implies  τ →0.
So for k→0,  we find

grad f(P)•
r
e =∂ f pe

ρ ( ) .



Hence our result is:
The directional derivative of  f  at  P  in the direction  

r
e   can be calculated as the scalar

product of the gradient of  f  at  P  and the vector  
r
e .

Another way to conclude this result from the picture is as follows:

Consider Figure 3.4, since the angle at  Q  is  
π
2

, we see from the triangle  PRQ  that

cos β =
δ
τ

 , where  δ   denotes the distance PQ . And  Q  lies on the level line  c+k,  that is on

the line  
x
a

y
b

+ = 1.

The well-known formula for the distance of a point from a straight line (Hesse's formula) gives
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+
.
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From  k→0  we get
grad f P( )  

r
e  cos β  = ∂ f pe

r( ) .

That is
∂ f pe

ρ ( )  = grad f(P)•
r
e .

Note: The linear way to show here preformally the formula for the directional derivative avoids
at this place the chain rule and it shows the simple geometric background of this formula.

4. An extremum problem with constraint

Finally, as an application of the part about gradient, we consider an extremum problem with
constraint (maximize or minimize the function  f  under the constraint  g = 0).
Here, the geometrical background of the approach to the solution of the problem can be
studied. We visualize in detail the relation between gradients of the function  f  and the
gradients of the constraint function  g.

The function  f  to be considered here is
f(x, y) = xy  ;      the constraint function  g  is      g(x, y) = x y2 24 8+ − .

First, the problem is visualized in  IR 3 . The graph  f  is plotted (see Figure 4.1) and then the
graph  f  is plotted together with the constraint (see Figure 4.2), that means the curve g = 0 is



lifted on to the graph of  f. Then using an animation, we move a point on the surface along the
constraint (that means along the lifted curve). This dynamical visualization explains clearly this
kind of extremum value problem and moreover it indicates immediately where the maximum
(minimum respectively) of f is attained.

 

Figure 4.1 Figure 4.2

To visualize the problem in two dimensions, and to investigate how to find the solution in a
geometrical way, we consider level curves of f  together with the (level) curve  g = 0 (see
Figure 4.3). Here, using the picture, we point out the fact that extremum points of  f  cannot
occur at points where the curve  g = 0  crosses a level curve of  f.  That is an extreme point of
f  can occur only at a point  P  where the curve  g = 0  is tangential to the level curve of  f
through  P. See also [6] where “this principle of touching level lines” is beautifully described.

     

Figure 4.3 Figure 4.4 Figure 4.5

From this, together with the property that the gradient of a function at a point is orthogonal to
the level curve of the function which passes through that point, we can conclude that  grad f
and  grad g  are parallel to each other at an extreme point  P. That is, we have

grad f = λ⋅grad g     and     g = 0
as the necessary conditions for an extreme point.

As is indicated in Figure 4.4 and Figure 4.5, we show on the screen an animation which moves
a point Q together with grad f (Q)  and grad g (Q) along the curve g=0. Here one can see
exactly at which points the two gradients become parallel.



These kinds of visualization, as described in section 2 and in section 3, presumably help the
students to get a better understanding of the concepts "gradient" and "directional derivative".
And the visualization, as described in section 4, will support the students' understanding about
the geometrical background of a method they learn and apply formally. Furthermore, the
visualization of the graph of a function appearing in a problem will help the students to
understand the problems better. They can also acquire self-confidence in analysing or solving
problems.
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