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Abstract

In this paper we describe the mathematical capabilities of a "special"

interactive system with graphical facilities for solving the problem of

designing the motion law of cam-follower mechanisms.

Keywords: computer graphics, cam synthesis, approximation , regulariza-

tion.

1 Introduction

A "special" graphical system for interactive work in the �eld of "computer

aided cam design" (an industrial application of Mechanics) has been found to

be useful and highly desirable. A cam is a mechanical device which by its ro-

tation causes a follower to take di�erent positions. The follower displacement

may be expressed as a continuous function of time or, more conveniently, of

"angular displacement". The range of this function is a curve which is called

the motion law of the cam-follower system. Because of the dynamical e�ects,

it is required that the rise and return of the follower are as regular as possible;

indeed, a bad choice of the motion law will result in vibrations, wear, noise

and even breakdown. In practice, it is therefore necessary that the function

that describes the motion law is continuous and has a continuous �rst and
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second derivative.

The so-called classical motion laws (harmonic, trapezoidal, cycloidal, etc.)

ful�l the above demands of regularity for the curve, but, in many applica-

tions, the requested course of the follower is recorded experimentally and

then none of these classical laws can be used to �t the tabulated data accu-

rately. Besides, in the phase of modelling the cam motion law, the designer

must re�ne the expressions for displacement that he obtains to reduce an

acceleration peak or to shift peak values of some kinematic parameters away

from critical regions.

It is well known that the e�ectiveness of a "special" system is dependent on

the range of the mathematical capabilities of the system.

The use of spline functions to de�ne the motion law of the cam-followers

system yields a general, systematic, reliable approach to the task. (e.g. [1],

[6], [8].) Also the Bezier computer graphics technique to synthetize follower

motion laws has been introduced [7]).

Even if the problem of designing the motion law has been regarded as a higher

order smoothing approximation problem, the standard software packages on

curve �tting (see, for example [4]) are not readily adaptable for accomodat-

ing the constraints on follower displacements, velocities, and accelerations,

especially when the set of constraints becomes large.

In this paper we describe the mathematical capabilities of an interactive

system with graphical facilities which is based on a very general formulation

of the problem of designing the motion law of a cam-follower system.

2 Problem statment

If y represents the displacement and x represents the angular displacement,

varying from a � 0 to b > a, it is required that the motion law is expressed

by an equation y = f(x) for a � x � b, where f(x) is a function of class

C2[a; b], at least. This allows the �rst, second and third derivatives of f(x) to

be considered as non-dimensional geometric velocity, acceleration and jerk.

Besides, it is necessary that the acceleration peak values are reduced as much

as possible and are shifted away from critical regions.

Normally the values f(x1); f(x2); � � � ; f(xm) of the function f(x) are assigned
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atm distinct points x1; x2; � � � ; xm of the interval [a; b]; at some of these points

also the values of the �rst and second derivatives are known.

Given a set of data values fxr; f(xr); f
0

(xr); f
"(xr)g with a � xr < xr+1 � b

and a corresponding set of nonnegative weights fwr; w
0

r; w
"
rg, r = 1; 2; � � � ; m,

we want to determine a spline function '(x) on [a; b], of speci�ed degree

k � 5, with knots a < �1 < �2 < � � � < �g < b, as the solution of the opti-

mization problem:

minimize(

J(') +

mX
r=1

wr('(xr)� fr)
2 +

mX
r=1

w
0

r('
0

(xr)� f
0

r)
2 +

mX
r=1

w"
r('

"(xr)� f "r )
2

)
(1)

where fr � f(xr), f
0

r � f
0

(xr), f
"
r � f "(xr) for r = 1; 2; � � � ; m and J(') is

the functional:

J(') =
Z ~b

~a
('"(x))2dx (2)

with [~a;~b] � [a; b], which is a measure of the regularity of the curve y = '(x).

The positive parameter 
, called "regularization parameter", controls the

extent to which the defect from the data and the smoothness of the curve

will be satis�ed.

It is often required to control the zero end-point derivative constraints of the

cam-follower system. In this case it is convenient to replace the functional

(2) into

eJ(') = J(') + �

8<:
3X

j=0

waj j '
(j)(a) j2 +

3X
j=0

wbj j '
(j)(b) j2

9=; (3)

where � � 0 and waj, wbj, j = 0; 1; 2; 3, are non negative weights.
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3 Representation of the solution

Let Sk(�1 ; �2 ; � � � ; �g) denote the vector space (of dimension g+k+1) of spline

functions on [a; b] of degree k > 0 having as knots �i the strictly increasing

sequence a < �1 < �2 < � � � < �g�1 < �g < b. By introducing additional knots

�
�k; � � � ; �0 = a and �g+1 = b; � � � ; �g+k+1 satisfying

~a = �
�k < � � � < �

�1 < �0 = a

b = �g+1 < �g+2 < � � � < �g+k < �g+k+1 = ~b

let fBk;i(x)g, i = �k;�k + 1; � � � ; g, denote a basis for Sk(�1 ; �2 ; � � � ; �g) of

normalized B-spline functions of degree k with support [�i; �i+k+1]. This basis

for Sk has the interesting property of forming a partition of unity on [a; b], i. e.

gP
i=�k

Bi;k(x) = 1 for all x 2 [a; b].

For any x 2 [a; b], the normalized B-splines that are nonzero in the subin-

terval containing x may be computed by recurrence (k = 1; 2; � � �):

Bk;i(x) =
x� �i

�i+k � �i
Bk�1;i(x) +

�i+k+1 � x

�i+k+1 � �i+1
Bk�1;i+1(x)

B0;i(x) =

(
1 if x 2 [�i; �i+1]

0 if x 2 [�i; �i+1]

Every spline function '(x) 2 Sk(�1 ; �2 ; � � � ; �g) has a unique representation

'(x) =
gX

i=�k

ciBk;i(x) (4)

in which the ci are called "B-spline coe�cients" of '(x).
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Substituting the expression for '(x) in (1) and (2) and di�erentiating

with respect to ci, we obtain the system of equations for the determination

of the B-spline coe�cients ci in the form:

(
D + ETWE)c = ETWh (5)

where c = (c
�k; c�k+1; � � � ; cg)

T , W = diagf ~wig, i = 1; 2; � � � ; 3m with

fwi =

8><>:
wi for i = 1; 2; � � � ; m

w
0

i�m for i = m + 1; m+ 2; � � � ; 2m

w"
i�2m for i = 2m + 1; 2m+ 2; � � � ; 3m

h = (f1; f2; � � � ; fm; f
0

1; f
0

2; � � � ; f
0

m; f
"
1 ; f

"
2 ; � � � ; f

"
m)

T , E is the rectangular ma-

trix (3m� (g + k + 1)) with the (i; j)-th element

ei;j =

8><>:
Bk;j(x) for i = 1; 2; � � � ; m

B
0

k;j(xi�m) for i = m+ 1; m+ 2; � � � ; 2m

B"
k;j(xi�2m) for i = 2m+ 1; 2m+ 2; � � � ; 3m

(i = 1; 2; � � � ; 3m; j = �k;�k + 1; � � � ; g), and D is the square matrix (g +

k + 1)� (g + k + 1) with the (i; j)-th element

di;j =
Z ~b

~a
B"

k;i(x)B
"
k;j(x)dx

(i; j = �k;�k + 1; � � � ; g)

The functions B
0

k;i(x), B
"
k;i(x), B

000

k;i(x) are the �rst, second and third deriva-

tives of Bk;i(x) respectively.

It is known that the functions fB"
k;i(x)g, i = �k;�k+1; � � � ; g, are linearly

independent on [~a;~b]; then the matrix D with the (i; j)-th elementZ ~b

~a
B"

k;i(x)B
"
k;i(x)dx
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is symmetric positive de�ned. Therefore the system (5) has a unique solution.

When we consider the functional (3) the matrix D in (5) is replaced by

the square matrix fD (g + k + 1)� (g + k + 1) where

fD = D + �

26666664
M1 0 0

: : : : : : : : :

0 0 0

: : : : : : : : :

0 0 M2

37777775 (6)

and M1 and M2 are square matrices (k � k) of the form:

M1 =

2666664
(

3P
j=0

wajB
(j)
k;�k(a)B

(j)
k;�k(a)) : : : (

3P
j=0

wajB
(j)
k;�k(a)B

(j)
k;�1(a))

: : : : : : : : :

(
3P

j=0
wajB

(j)
k;�1(a)B

(j)
k;�k(a)) : : : (

3P
j=0

wajB
(j)
k;�1(a)B

(j)
k;�1(a))

3777775

M2 =

2666664
(

3P
j=0

wbjB
(j)
k;g�k+1(a)B

(j)
k;g�k+1(a)) : : : (

3P
j=0

wbjB
(j)
k;g�k+1(a)B

(j)
k;g(a))

: : : : : : : : :

(
3P

j=0
wbjB

(j)
k;g(a)B

(j)
k;g�k+1(a)) : : : (

3P
j=0

wbjB
(j)
k;g(a)B

(j)
k;g(a))

3777775
Generally the matrix E, that has a band structure, is ill-conditioned.

The condition number of the coe�cient matrix of system (5) depends on

the number of knots and their position. However, in this problem it is not

essential to develop an automatic routine for �nding the minimum number of

knots nor their optimal positions. Knots sequences having uniform spacing or

coincident with the ordered set of the xr are used systematically. (The knot

placing strategy described in [4] sometimes gives good results.) Generally, the

degree k of the spline function, the number of knots, the knots distribution

on [~a;~b] and the weights are given by the designer.
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The system (5) can be solved e�ciently using the methods described in

[2] and [5].

Two iterative methods for determining the regularization parameter 
 are

presented in [3] and [4]. In order to apply the method [4] the matrix ETWE

must be positive de�nite; this will be the case if and only if an ordered subset

of the data points xr satis�es the Shoenberg-Whitney condition.

4 Numerical Studies

The method described in the previous section has been implemented in the

programming language C and has been included in a "special" interactive

system with graphical capabilities for "computer aided cam design".

The advantages accrued by working on an interactive system with graphical

capabilities are the very fast turnaround, the immediate graphical display, the

simplicity of the control of the parameters that characterize the method (as,

the degree of the spline function, the number of the knots and their position,

the regularization parameter, the zero end-point derivative constraints,...).

The interactive system has been implemented on a workstation computer

SPARC SUN, but it is highly portable and it can run on almost currently

available personal computers.

The descriptive aspects of the man-machine dialogue are reduced at the max-

imum, by designing the interaction to require only very simple actions by the

users, which are anticipated by the system. The system has been designed

and written with portability in mind. For this the system has been written

in C (a FORTRAN version is also available).

In the following example it is shown the e�ect of varying the position of

the knots on a problem that has a total of twenty Kinematic conditions to

satisfy. Although cam syntesis problems in which the cam is contrained by a

very large number of constraints are rare, the capacity of the system to acco-

modate these conditions is still important. Often, in cam synthesis problems,

certain constraints are introduced by designer, in addition to those that are

prescribed by application, to obtain desirable qualitative characteristics in
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the follower motion and that can easily yield a large array of constraints.

The conditions for this problem are listed in the following the table

Cam Angle Displacement Velocity Acceleration

(degree) (cm) (cm/rad) (cm/rad2)

xr f(xr) f
0

(xr) f "(xr)

0.0 0.00 0.00 0.00

45.0 1.02 - 0.00

90.0 2.00 0.00 0.00

135.0 1.81 - -1.17

150.0 1.61 - -

180.0 1.00 -1.20 0.00

210.0 0.39 - -

225.0 0.20 - 1.20

270.0 0.00 0.00 0.00

We have considered the regularization functional (3) with waj = wbj =

1 for j = 0; 1; 2; 3 and � = 105. The regularization parameter 
 = 1. The

degree of the spline function '(x) is k = 5. It is seen that if the number

of knots is small, the corresponding �t is not accurate; if it is too large the

results are overlay a�ected by errors in data value. In fact: with 8 knots we

obtain a curve that presents large oscillation for the acceleration and jerk,

and the velocity constraint in 90 degree is not satis�ed. With 10 and 11

knots there are only little di�erences for displcement and velocity, but with

11 knots there is more oscillations in the acceleration curve and the constrain

in 180 degree is not respected.

The results all seem to indicate that g = 10 is the optimal number of knots

for this example.

The example illustrates how, by varying the knots number , local re�nement

in the resulting motion can be obtained.

Figures 1-4 illustrate the e�ect of the knots' placement on the follower dis-

placement, the follower velocity, the follower acceleration and the follower

jerk respectively, when we use a uniform spacing of 8, 10, and 11 knots.
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Figure 1: Displacement.
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Figure 2: Velocity.
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Figure 3: Acceleration.
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Figure 4: Jerk.
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