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Introduction. One of today's most exciting areas of mathematics is the study of dynamical systems.

There are numerous unsolved problems and the �eld is extremely active. Not only mathematicians, but also

ecologists, chemists, economists, and physicists have become involved in the �eld. The theory of dynamical

systems is used in computer graphics, population models, and meteorology, to name a few. Many mathe-

maticians feel that some knowledge of the subject is imperative. A leading biologist Robert M. May wrote

as early as 1976: I would therefore urge that people be introduced to, say, the Verhulst equation, early in their

mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or

even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such

study would greatly enrich the student's intuition about non-linear systems. Not only in research, but also

in everyday world of politics and economics, we would all be better o� if more people realised that simple

non-linear systems do not necessarily possess simple dynamical properties.

At Elizabeth City State University, we are trying to accomplish this through a project "Nurturing

Undergraduate Student Researchers (NERT) in Fractal and Chaos" funded by O�ce of Naval Research.

The program focusses on undergraduate education and research training. Nurturing these young researchers

is our primary concern. Highest priority is given to providing them with the guidance and skills to ensure their

entrance to and success in graduate school. Further, each student in this program learns the fundamentals

of scienti�c research in a structure team setting under the guidance of a faculty mentor. The Fractal and

Chaos research team is one of the six teams operating under the NERT grant. In this paper we will explain

how this group performed experimental mathematical investigation to acquire some knowledge in the �eld
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of dynamical systems. Our approach is to experiment examples, develop intuition from examples, form

conjecture, test conjecture, and prove or disprove conjecture.

De�nition:

A discrete dynamical system is a rule

pn+1 = f(pn)

that can be used to generate each term of a sequence from the preceding term.

De�nition: An equilibrium point or �xed point for a discrete dynamical system is a solution of

the equation

p = f(p)

,

that is, a point at which the two curve y = f(p) and y = p intersect each other.

De�nition:

We say that a sequence p1; p2; p3; :::: approaches the limit L or converges to the limit L and

write

Limn!1pn = L

if for every very large n, pn is very close to L.

Given F: R7�!R and x0 2R the sequence

x0; F (x0); F (F (x0)) = F 2(x0); F (F (F (x0))) = F 3(x0); ::::; F
n(x0); ::::

is called the orbit of x0. The basic question one asks in studying iteration is \What happens to orbits over

time (as n 7! 1)?

First, we look at the following two dynamical systems:

Pn+1 = 2:5Pn(1� :001Pn); P1 = 50

Pn+1 = 3:5Pn(1� :001Pn); P1 = 50
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Each of these dynamical systems has two equilibrium points, one of which is zero. The non-zero equilib-

rium point for the �rst dynamical system is 600 and for the second one is 2:5
:0035

� 714:29. Using Mathematica

Iterator program in Appendix we �nd that the limit point of the �rst dynamical system is 600. In this case,

we say that the equilibrium point 600 is \attracting" the limit of the dynamical system. For the second case,

however, we �nd that there is no limit.

Now our goal is to understand completely when does an equilibrium point attract the limit of a

dynamical system?

First we want to answer this question for simplest of all dynamical systems, the linear dynamical system

of the form

Pn+1 = mPn + b

.

We want to observe when does equilibrium point attract the limit point of these dynamical systems?

Experiment # 1: Find equilibrium point for each of the following linear dynamical systems. Use the

Mathematica Iterator program to see whether or not the equilibrium point attracts?

1) Pn+1 = 0:8Pn + 100; P1 = 50

2) Pn+1 = 100� 0:8Pn; P1 = 50

3) Pn+1 = 0:9Pn + 100; P1 = 50

4) Pn+1 = �0:9Pn + 100; P1 = 50

5) Pn+1 = 0:98Pn + 100; P1 = 50

6) Pn+1 = 1:02Pn + 100; P1 = 50

7) Pn+1 = 1:2Pn + 100; P1 = 50

8) Pn+1 = �1:2Pn + 100; P1 = 50

9) Pn+1 = 100� Pn; P1 = 50

Observation: Based on your experiment with these examples, what appears to determine whether or
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not equilibrium point will be attracting for the dynamical systems

Pn+1 = mPn + b?

Students were asked to write their conjecture based on their observation.

The following was the student's conjecture:

Conjecture:

For a linear dynamical system

Pn+1 = mPn + b;

the equilibrium point is attracting (or the �xed point is attracting) if jmj < 1 and not attracting (or

the �xed point is repelling) if jmj > 1.

Graphical Analysis

In this section we want to use graphical methods to give us some insight into the question when equi-

librium point attracts? Mathematically, we have a function y = f(p): We start with an initial population P1

and compute the population for subsequent generations by repeating the same procedure; P2 = f(P1), then

P3 = f(P2), then P4 = f(P3), etc. We can picture this sequence of events as follows.

STEP 1:

To compute P2 = f(P1); start at the point P1 on the p-axis. Then draw a vertical line up to the graph

of y = f(p). Now we are at the point (P1; P2).

STEP 2:

To compute P3 = f(P2), draw a line horizontally from the point (P1; P2) on the curve y = f(p) to the

point (P1; P2) on the diagonal y = p. Then draw a line vertically from this point to the point (P2; P3) on

the curve y = f(p). This works because P3 = f(P2).

Now we can continue this procedure going horizontally to the diagonal line y = f(p), then vertically to

the graph of y = f(p) as often as we would like to get a picture of how the population continues to change.

We can see using this method whether an equilibrium of a dynamical system attract or not?

We have written a program in Mathematica Graphical Analysis Programas given in Appendix.

Using this program students tested their conjecture graphically by doing additional experiments.
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Finally, they proved their conjecture which was reformulated as following theorem:

Theorem If Pn+1 = mPn + b is a linear dynamical system, jmj < 1, and P1 is any initial value then

Limn!1Pn =
b

1�m

Notice that b
1�m is simply the equilibrium point for this dynamical system.

If jmj > 1 then there is no limit. (Exception: if initial value P1 is actually equal to the equilibrium

point, b
1�m , then every Pn is b

1�m .

Non-linear dynamical systems are more complicated than linear dynamical systems. Nonlinear dynam-

ical systems may have many equilibrium points, and longterm behaviour of a system may depend on the

initial value P1.

We know that under high magni�cation near a point, a smooth curve looks very much like the tangent

to the curve at the point. The slope of this tangent line is given by the derivative.

Based on the linear case, we have the following theorem for non-linear case:

Theorem: If P� is an equilibrium point of the dynamical system Pn+1 = f(Pn), jf
0(P�)j < 1, and if P1

is su�ciently close to P�, then

Limn!1Pn = P�

;

that is, �xed point P� is attracting.

Similarly if jf 0(P�)j > 1 and if P1 is su�ciently close to P�, then the �xed point is repelling.

Malthus population model

This model of population growth is based on the assumption

� The rate of growth of the population is proportional to the size of the population.

Hence the assuption is expressed as di�erential equation

dP

dt
= KP;
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where t = time (independent variable), P = population (dependent variable), K = proportionality

constant between the rate of growth of the population and the size of the population.

Students were given U.S. Census �gure Funk and Wagnalls 1994 world Almanac from 1790 to 1990 and

were asked asked how the solution of Malthus model �ts with the actual U.S. population. Using Mathematica,

they found out the model of P (t) does a decent job of predicting the population until roughly 1860, but

after 1860 the prediction is much too large. Hence the model is fairly good provided the population is

relatively small. However, as time goes on, the model predicts that the population will continue to grow

without any limits, and obviously, this can not happen in the real world. Next we consider a model which

will account for the fact that population exists in a �nite amount of space and with limited resources and

limited environment.

Verhulst population model We add the assumptions:

� If the population is small, the rate of growth of the population is proportional to its size.

� If the population is too large to be supported by its environment and resources, the population will

decrease. That is, the rate of growth is negative.

Hence the assumption is expressed as di�rential equation:

dP

dt
= K(M � P )P;

where t = time, P = population, K = growth rate and M = Maximum supportable population.

Using scaling p = P
M

we can change the di�erential equation dp

dt
= kp(1� p)::::(�) where k = KM .

Discrete version If times are in discrete steps of length �t, then the corresponding Verhulst model is

�p

�t
= kp(1� p)

For convenience, we choose �t to be the unit of time, so �t = 1. Then we write

�p = pn+1 � pn

and rewrite equation (*) as pn+1 = pn + kpn(1� pn) for n =0,1,2....

Experiment # 2: Comparison between discrete and continuous model
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For the choices of k = 0:5; 1:5; 2:2; 2:5; 2:9 with p0 = :02 compare the graphical solution of discrete and

continuous model using Mathematica.

For k= 0.5, 1.5, students observe that even if discrete and continuous solution converge to the same

number, the two solutions may not look alike.

For k = 2.2, they notice something peculiar. The discrete sequence does not get close to any number;

instead, within only few iterations, it starts to oscillates back and forth. This limiting behavior is called a

cycle of period 2, or simply a 2-cycle. As k increases to 2.5 the iterations settle into an even more complicated

pattern, a cycle of a period 4. For k = 3.9, the sequence exhibits no discernible pattern. The values of p

seem to jump around at random.

Experiment # 3: Using Mathematica iterator �nd out what values of k and the initial values of p0,

0 < p0 < 1, the orbit of the discrete dynamical system

pn+1 = pn + kpn(1� pn)

is

a) simple (converge to 1)

b) interesting (neither simple nor dangerous)

c) dangerous (when the values get larger and larger beyond the computer can handle)

They �nd that orbits are simple when 0 � k � 2, interseting when 2; k � 2:57 (this includes 2-cycles,

4-cycles, 8-cycycles, 16 cycles and so on), chaotic when 2:57 < k � 3 and dangerous when k > 3.

Using Pascal program in the Appendix (Mathematica program is time consuming) they capture the

bifurcation diagram in the computer.

In studying the dynamics of any function it is important to know its periodic points. At this point

students learn a special case of a very beautiful theorem of Sarkovskii, dealing with a period- 3 point.

NEWTON'S METHOD

In this section we turn our attention to study the dynamics of Newton's method. Newton's method

is among the most prominent numerical methods for �nding solutions of nonlinear equations. Basically

Newton's method is an iteration method for computing zero.
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Given a di�erential function f: R7�! R, Newton's method consists of iterating the function

Nf = x�
f(x)

f 0(x)

.

Evidently the roots of f are �xed points of Nf , and we would like to determine the possible behaviors

of orbits when Nf is iterated.

Experiment #4 : Using the Mathematica iterator program, determine the set of initial values (say,

E) for which Newton's method fails i.e., the points x that Nn
f (x) does not converge to a root of f as n 7! 1

for the following polynomials:

a) f(x) = ax+ b (linear case)

b) f(x) = x2 � 1(quadratic case with two real roots)

c) f(x) = x3 � x(cubic case with three real roots)

Use more examples for case b) to predict what will happen in general. What happens if the roots are

complex for quadratic and cubic case.

The following is the summarized version of students �ndings for the above experiment:

For linear case all initial values will attract to the �xed point. Hence the set E = ;.

After experimenting number of polynomials of type b) we conclude that E = f�g where � is the critical

point(i.e., f 0(�) = 0 ) of f(x). If r1 and r2 are the real roots then any initial values in (�1; �) will attract

to r1 and any initial values in (�;1) will attract to r2.

Using the Q-basic program in the Appendix we studied the dynamics of the polynomial like f(z) =

z2� (3+ 4i) by Newton's method . Based on the pictures produced by the Q-basic program , we conjecture

that if the complex quadratic polynomial p(x) has two distinct roots, then the set E is the set of points on the

perpendicular bisector of the line segment joining the two roots. Further more, this perpendicular bisector

will split the plane into two halves. Each half contains one of the roots. All initial values lie on one half

will attract to the root containing that half. Students were able to conjecture what is known as Cayley's

theorem.

For the cubic case c) , we found that � 1p
3
are two critical points. By Newton's method, any initial

values in (�1;� 1p
3
) will converge to -1 , any initial values in ( 1p

3
;1) will converge to 1 and any initial
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values in (a,b) containing 0 will converge to 0. Further analysis shows that the set E contains a sequence

fakg and a two cycle fa; bg.

Finally for the complex cubic case we developed a program in Q-basic (see Appendix) that would show

pictorically using which initial values would attract to which roots, and which would not work. This program

check each pixel on the screen and color it based on their outcomes.
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