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Abstract

Mathematica does nearly all the ordinary engineering mathemat-
ics which working engineers need. Mathematica has always done more
than Computer Algebra (CA). Numerics, graphics, and user-interface
matters have been smoothly integrated with the CA. Mathematica 3
adds mathematical word processing and hyperlinks. This opens the
way to truly impressive, useful ‘electronic books’, ‘interactive engi-
neering handbooks’, etc..

The ratio of engineering users of Mathematica to academic math-
ematician users is already greater than one, and rapidly increasing.
The main part of the paper reports on a Pack - suite of useful code
- for Mechanical Engineers. The Pack - an ‘interactive engineering
handbook’ - described in the paper is incontrovertibly useful for engi-
neers, but, as this is a conference for mathematicians, the thrust of the
paper concerns the relevance of the Pack for applied mathematicians
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— both for our teaching of engineering mathematics and for our re-
search. To illustrate matters concerning the latter, the elastic torsion
problem is used as an example, and some developments from earlier
work are reported.

1 Introduction

Wolfram Research are about to release an Elastic Systems Pack, written in
Mathematica 3, for Mechanical Engineer users. The first author (CC) wrote
this Pack. A general description is given in the Appendix to this paper.
GK wrote the main part of the paper which, in part, can be considered an
independent review of (the elastic torsion) part of the Pack. The Appendix
is by CC.

This is a conference on computer technology in mathematics. CAS - Com-
puter Algebra Systems - in general, and Mathematica in particular, are
emerging as mass-market software products for ‘users’ of mathematics. This
paper illustrates some points related to this.

There will be implications, for applied mathematicians, of the technology
associated with this Pack, and the following more general items:

e mass-market CAS technology, where engineering users are the largest single
group of users (see §1, §6),

e university teaching of undergraduate engineering mathematics (see §1.1.1),
e applied mathematical research at the interface with engineering (see §2-).
These points will be treated, approximately in the order given above, in this
paper.

There is a little applied-mathematical research content in this paper. This
concerns the elastic torsion problem. This problem is just one of very many
topics treated in the Pack. The second author (GK) has long-term research
interests in the torsion problem, both concerning qualitative properties of
solutions and the collection of exact solutions for particular domains. The
paper [KA] (available on the Web) describes a continuing project. See §2.1
for how this paper differs from the earlier one.

The abbreviation ‘CAS’ is often used because it is shorter to write than
Mathematica. We use ‘CAS’ when the CA capabilities — rather than nu-
merics, graphics, etc. — are essential. Sometimes ‘CAS’ is used where CA
Systems besides Mathematica could be used, though we stress that no other
CA System has, as yet, Engineering Packs of the quality of Mathematica’s.
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1.1  Engineering Packs

Participants at this Conference are already aware that Mathematica 3 com-
bines, in a well-integrated and coherent manner, CA, numerics, graphics,
mathematical word-processing and hyperlinks. The promise for ‘Electronic
Books’ of applied-mathematical and engineering data is clear. It is still very
early in the history of developing these, so substantial examples realising the
promise are scarce. The Electrical Engineering Pack from WRI was an early
example (1994). There is also a third-party Mechanical Systems Pack (1995).
A review of relevant Packs at mid 1995 is given in [Ce]. The preceding pre-
date the major new facilities in Mathematica 3.

This paper and [KA] suggest that it is via Engineering Packs that many,
perhaps most, engineers - in the very near future - will look up their tables
of engineering data. The Appendix of this paper, describing the Elastic
Systems Pack, is further evidence for this.

1.1.1 Undergraduate engineering maths education

Even before the advent of publication of engineering data in CAS, CAS
were successful in providing engineering undergraduates (as well as practis-
ing engineers) with tools that they were able to use in helping them with
their mathematically-formulated engineering problems. In some universities,
Mathematica is used by the engineering lecturers in sufficiently advanced
engineering courses. Turning now to engineering-mathematics courses, the
paper [KFW] contains some observations, made at the time when Student
Versions of the CAS were beginning to be used by a significant fraction
of the students. (A Web-browsable version of the paper is at GK’s Web
pages. Papers like this become dated very quickly. Delivery of CAS materi-
als through the Web is not mentioned in that paper, and nor were Engineering
Packs.) Different styles of CAS-in-teaching are possible: one of the widely-
used courses [DPU| has Mathematica as a central part, and is in use at NUS,
Singapore.

Useful Engineering Packs will increase further the uptake of Mathematica by
engineers. Not least amongst the implications for academic mathematicians
are those concerning teaching. If the engineering academics at University U
are using (mathematical) Package P in their engineering teaching, mathe-
maticians at U teaching Engineering Mathematics classes to the same stu-
dents will be expected, by their engineering colleagues, to do their best to
make educationally effective use of Package P. (Caveats are that the Engi-
neering Mathematics course is sufficiently advanced, the students are suffi-
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ciently able, and so on.) In universities where the mathematicians are ahead
of their engineering lecturer colleagues in using CAS with engineering maths
students, the presence of well-written, commercially-produced, widely-used,
‘electronic books of engineering data’ — like the Mathematica Packs — will
help motivate all of the students. All of the students includes those who
have not, prior to this, totally trusted the idea that CAS were for engineers
too, and not just for mathematicians. Engineering students will appreciate
CAS more if they see it as a real tool that a significant proportion of them
will use in their careers.

The Mathematica materials which are already available accompanying widely
selling Engineering and Engineering Mathematics text books (e.g. [ON, Zi,
Vv, MH]) will develop in ways which harmonise with Packs. The same Math-
ematica facilities, as used in the Packs, are useful for the accompaniments to
text-books too.

1.1.2 Practising and research engineers

The market for Mathematica’s Engineering Packs is the engineering com-
munity. Practising engineers will typically look up data in the interactive
handbooks. Research engineers will also have the skills to add functionality
following the style of, and examples in, the Pack. When, as reported below,
GK adds code for a different shape (e.g. lenses), or develops some alternative
representation (e.g. that for the sector’s torsion function given in §3.2.1), he
is using skills supposed of a research engineer.

It should be added that, at present, there is much greater usage of Mathe-
matica by research engineers than practising ones. The various Engineering
Packs are expected to spread the use of Mathematica widely through the
engineering community.

2 The Elastic Torsion Problem

Let €2 be a plane domain. The elastic torsion problem is to find a function
u whose Laplacian is constant in {2 - taken to be minus one in this paper -,
with v = 0 on the boundary of €

—Au=1 in £, u=0 on 0= boundary(). (1)

The quantity

S:/Qu, 2)
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is called the torsional rigidity and measures the ‘overall resistance to twisting’
of a bar of cross-section {2.

When (2 is a disk centred at the origin, and with radius a,

Loy Loy 2 2

u=g(a”=17) = (" — 2" —y7), (3)
when written in polar and Cartesian coordinates respectively. There are
several other geometrically specified domains which, using Cartesian coor-
dinates, have polynomial or rational function torsion functions. (See the
Pack for the equilateral triangle: u is then a cubic polynomial. See [KA]
for certain ‘lunes’ for which w is a very simple rational function.) In gen-
eral, though, given a shape €2, finding closed-form formulae for its torsion
function u and its torsional rigidity S is a nontrivial task. Indeed explicit
exact solutions are the exception, and, if one were to choose shapes ‘at ran-
dom’, typically numeric solution would be required. However, shapes used
for beams in engineering practice are not ‘chosen at random’, and, with an
appropriately large engineering mathematical armoury, substantial progress
has been made at exact solution. Series solution, different coordinate sys-
tems, special functions and complex variable techniques have all been used
for the elastic torsion problem. These are all techniques excellently handled
by Mathematica. The broad-brush picture is ‘if the exact solution gets messy,
solve numerically’: but note that exact solutions in special cases retain a role
in checking the numerical schemes. See §4.3 and the Appendix, for routes
through to numerics.

We remark that an accurate and comprehensible account of the torsion prob-
lem, written for engineers, is given in Chapter 4 of the Pack.

We use, §3.2.3 and §4.1.3, the variational characterisation of S ([PS, So]).
Define, for nonconstant functions v,

(Jo U)Q
SLB V) = —=—75- 4
)= Talwep W
The torsion function u - and scalar multiples of it - satisfy
1 1
= min (5)

SLB(’LL) v SLB(’U),

where the minimisation is done over functions in W, () vanishing on the
boundary of 2. We will use this to find rigorous bounds on S for various
shapes.

There are also a number of useful integral identities concerning S, some
helpful for explicit calculations for certain shapes: see [KA, KM].
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2.1 How this paper differs from the AEMC96 paper

(A Web-browsable html version of the AEMC96 paper [KA] is up at GK’s
homepage. The paper [KA| was written - and reproduced in the Conference
Proceedings - in Mathematica 3-3 to emphasise that the technology was
coming. However, mathematicians world-wide have now seen Mathematica
3 and there is no need to make that point again. We have docilely followed
the ATCM97 guidelines. Tools for Mathematica 3 to LaTeX translation are
in preparation, but we did not use them.)

There are substantial differences concerning the treatment both of the elastic
torsion problem, and of the Pack. When [KKA] was written, the release of the
Pack was too far in the future to review its contents. The focus in [KA] was
on some additional torsion functions for shapes not in the Pack (certain lens-
shaped domains) and new results for them. This paper is different in that we
now can review the torsion function chapter of the Pack, and investigate in
§3 how its basic solutions can be developed. There is, though, a small part of
this paper, §4, in which we report some developments concerning solutions
in lens-shaped domains made in the year since [KA] was accepted. This part
of this paper should be read in tandem with [KA].

The overall focuses of the two meetings were different. In [KA] the goal was
to report new applied-mathematical results related to Engineering Mathe-
matics, and the ‘technology’ was a sub-theme only. In this meeting, the
technology - Mathematica and its new Packs - is important, and the fact
that, for the elastic torsion problem, new results can be found - using CAS
- is merely an illustration that applied mathematicians can interact usefully
with the new technology. We also now allow ourselves to give a subsection
near the end of the paper, §5, on pure-mathematical uses of CAS related to
the torsion problem.

3 Cross-sections () in the Pack

The Elastic Systems Pack includes the main shapes in the present books
of engineering tables. Specific shapes included are circle, ellipse, equilateral
triangle, rectangle, sector - and the special case of a semicircle.

Mostly the mathematics in the Pack is deliberately kept at the level that
present-day working engineers are able to check.

In the Pack, there is a lot of useful graphics, making it both more interesting
and more easily comprehended than the book treatments of the subject.
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3.1 Basic shapes

The Pack favours familiar results over exotic ones. In a few rare instances
where short formulae which Mathematica can evaluate simply are available,
the Pack goes beyond the usual engineering books of tables. (See §3.2.1 for
the torsional rigidity of a sector.)

The torsion functions for the rectangle and for the sector are presented
through Fourier series engineers know from separation-of-variables techniques.

3.2 Basic shapes, sector
3.2.1 Closed form solution

The Pack has been written to be accessible to its engineering users. Further
research with CAS technology as a tool enables more to be done than is cur-
rently in the Pack. (Design decisions to keep the Pack simple and accessible
mean that there is room for incremental developments in later editions, or
published independently.)

In 1995, GK called to CC’s notice, the 1880s formula (in terms of PolyGamma
functions) for the torsional rigidity for the sector. This is now in the Pack,
and is an example of providing to a wider audience an old result, formerly
known only to specialists. In late 1996, GK asked CAS assistance to sum the
Fourier series representation of the torsion function for the sector. None of
the authors knew if there would be a closed-form solution, in spite of some
of us having read widely on the problem. The Fourier series for the torsion
function itself can be summed exactly in terms of HyperGeometricPFQ ,F,
functions. (The CAS was helped by replacing 17/ cos(j6/(2t)) terms by
Re(Z7) ... but that was the only help provided to it.) Consider a sector with
angle 2tm, and axis of symmetry § = 0. Then

2
v = " (1_M>

4 cos(2tm)

+16a2t2 s (—1)7 (£) ™ cos(B5H0)
T2 -1 (214 (2 —1—4t)

(6)

Below, Re(Z) = ((r/a)"/?Y) cos(0/(2t)). We have tgector = Re(Wsector) Where

7”2 . a2z4t
Wsector — 7Y
4 r2 cos(2tm)
242 1+4t 14t 1. 344t 3—4t 3. 2
_16a’tZ 4F3( 2 1 92 717§a 2 1 2 755_2)

. (13 4%) (1 —49) (7)
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Simplify, given the right parameter to say the sector is a semicircle, trans-
forms the 4F3 functions into o F7 ones - correctly and so that, with a little
checking, it can be seen that they give the log((1 — 2)/(1 + 2)) like terms
in the familiar elementary function representation of the semicircle torsion
function.

After the Pack is published, GK hopes to provide (via GK’s Web pages), the
code for the ,Fj solutions. One way that the material might be developed,
after it is tested, to harmonise with the Pack, is to provide amongst optional
arguments for TorsionFunction, etc,

Method -> HypergeometricPFQSolution, or

Method -> TruncatedFourierSeriesSolution.

(We remark that the sector solutions - as series and as ,F;, forms - generalise
from the plane case to spherical cones in R, N-dimensions. The N appears
in the parameters of the ,F, solution.)

There are other sectors besides the semicircle where closed-form elementary
function torsion functions are available. The quadrant, and the shaft split
along a radius, are examples. For these, a

Method -> ElementaryFunctionSolution

might be provided. A research engineer wanting to provide code for these
would merely take the exact solution, say from [Lo], and edit the semicircle
solution from the Pack into the desired form.

3.2.2  Further series solutions

The series solution for the sector, given in the Pack, is what would be gen-
eralised to treat ‘sectorial rectangles’: see [Lo], p319. A special case which
is deemed to be sufficiently important to be in ‘Roark’s Formulas’ [YR] is
the split hollow shaft. These and more can be obtained by straightforward
development of the code in the Pack.

It may be worth commenting that shapes like that of a shaft split along a
radius are examples where straightforward numerical computation can be
relatively difficult. Thus exact solution, as in the Pack, has its use. ([LSU]
use bipolar coordinates to give series solutions to the case when the disk is
cut, from the boundary, only part way along a radial line. It happens that
some exact solution work based on their series occuring within the series for
the torsional rigidity can be done. Again ,F, functions arise.)
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3.2.3 Variational bounds

Of course, finding variational approximations to S for shapes where S is
exactly known is a test of the method only. To give a simple example from
one of the Basic Shapes of the Pack, consider for €2 the semicircle in the
upper half-plane, radius 1. For this semicircle, substitute the trial function

vse = su(VI= 7 —y), ®)

in (4). Spp(vsc) is very easily found exactly and differs from the exact value
/8 —1/m by just 1%.
More generally, consider shapes {2 which can be described by

Q={(z,y) | Yu(z) <y <Yy(z) }. (9)
and trial functions .
v =5y = Yi(2))(Vp(z) — ). (10)

(The trial function solves the Dirichlet problem v = 0 on 0, but with
—Awv = 1 replaced by —wv,, = 1.) This approximation is already used by
engineers for long, slender, slowly-varying shapes, a topic that is related to
that in §3.3. (For the ellipse shape from the Pack, (10) substituted into (4)
gives the exact S.) With the reassurance that, for shapes in the Pack, we
could obtain good bounds by this method, we applied it to other shapes for
which, to date, we do not have closed-form torsional rigidities. The bounds,
presented in §4.1.3, are close to S.

The summary is that, with CAS to do the routine integrals, and some exact
solutions already there — in the Pack — against which to check, illustration
of the bounds is easy and enjoyable.

3.3 Thin regions

The torsional rigidity of a NarrowBar, sides €b, b is the first of the thin regions
treated by the Pack. In contrast to the usual account in engineering tables,
the presence of the code for the rectangle makes it easy for the derivation to
be presented, and, to lowest order, it is given in the Pack’s documentation.
Thus, the Pack gives the dominant term in S, which is that familiar to
practising engineers. A research engineer, modifying the Pack’s parameter
specifying the number of terms to be taken in the series to co, and using the
fact that for slender rectangles the tanh terms in the series can be replaced
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by 1, would soon find the improved approximation

16 186€e((5 364
S ~ 3631)4(1 - 6<( ) + ‘

- 5 exp(—m/e)+... . (11)
According to [Lo|, p324, an approximation like this was known to St Venant
last century.

(We remark that there are other places where one can use the fact that
tanh(\) ~ 1 when ) is large to improve the numerical convergence of some
series. For example, in the series for S for the rectangle, even when ¢ is not
small, because of the presence of the summation index in the argument of
the tanh, summing the series exactly with the tanh replaced by 1, and then
taking into account the remainder might result in some small speed-up of the
numerics. However, the cost in readability of code makes the decision not to
use these devices in the Pack the correct one.)

For other thin regions, and for hollow shapes, see the Pack.

4 More Shapes for Exact Torsion Data?

We judge this Conference Proceedings as an inappropriate place to provide
full printed details about exact solutions in more exotic domains. There is
some unavoidable mess, and LaTeX may be the wrong publication medium,
while CAS - via the Web - is a better medium. Some of the code will be
made available via GK’s Web pages.

In [KA] it was pointed out that most of the entries in the popular tables, e.g.
[YR], were ‘circular-arc polygons’. GK’s project to collect exact solutions
was described in [KA]. Collaboration with others across the Net is desired.

The remainder of this section, treating lens shapes, should be read with [KA].

4.1 Lens shapes, continued from AEMC96

The simplest case (other than the circle) of circular-arc polygons, involves
just two arcs. A lens is an intersection of two disks. The semicircle given in
the Basic Shapes in the Pack is a special case of a lens, so, once again, we
see the Pack as a source of items against which to check developments.

4.1.1 Bipolar coordinates

An integral representation of the torsion function for a general lens is given in
[LSU]. We have yet to evaluate the integrals in the general case. However for
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symmetric lenses, and u evaluated at the centre of the lens, CAS can be used
to evaluate the integrals in certain special cases. We had earlier evaluated
U, for CC lenses (see [KA] and references there) and orthogonal lenses using
different techniques. The results agree.

4.1.2 CC lenses

We now consider the CC family of lenses treated in [KA]. In the CC family,
the centre of one disk is on the circumference of the other. (Normalise these
so that the distance between the points of intersection of the two disks is
2.) One of the new results reported in [KA] was the torsional rigidity for
the symmetric CC lens. In the notation of the [KA]| paper the CC lens
family is parametrised by a single parameter & which runs between & = 0
(a semicircle) up towards §; = m (where the family is approaching a large
disk). & = 7/3 is the symmetric CC lens and its torsional rigidity is reported
in [KA]. The new integral evaluated in October 96 was £, = /2. The exact
results are summarised below.

Table 1: Torsional rigidities for some CC lens shapes

gl area SCCZens

0 | semicircle /2 (r/8) — (1/7)
7/3 | symmetric | (47/9) — 2v/3/3 | (117/36) — /3/2
/2 m—1 (1617 /432) — 1

4.1.3 Variational bounds

We have applied the method, which we tested with the Basic Shapes in §3.2.3,
to lens shapes. The trial function (10) was used. The double integrals in (4)
are treated as iterated integrals, and the y-integrals — integrating a quadratic
in y — are done first. The formulae for the integrals for the subsequent -
integrals for general lenses — and even for the orthogonal and CC-lenses of
[KA] — are messy (e.g. for orthogonal lenses in general they appear to involve
elliptic integrals), and so the remaining z-integral is usually evaluated nu-
merically. Huge simplifications occur for symmetric lenses, and the integrals
StB,sym = SLB(VsymLens) evaluate in terms of elementary functions. The ap-
proximation Stp sym has the correct leading asymptotic term both when the
symmetric lenses are thin and when they are nearly circular.

As in the semicircle case reported in §3.2.3, we find that all these approxi-
mations are no more than 1% less than the true value of S. See also §4.3.
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We leave open the problem of actually proving fairly general items related to
this. We also speculate that, when such items are available, that they might
be written clearly in some subsequent development of the Pack - or associated
documents - in a way which engineering users find attractive, comprehensible,
and easy to apply for shapes like the lens shapes of this subsection.

4.2 Perturbation expansions

Asymptotics for general near-circular shapes are treated in [PS]. See also
[KA] for near-circular CC-lenses and §4.1.3 for symmetric lenses.

Asymptotics for thin and slender shapes from the Pack have been discussed
in §3.3 and for symmetric lenses in §4.1.3.

Mathematica is useful here for the routine algebra.

4.3 Numerical approximation

This subsection reports progress on numerics in the direction anticipated in
[KA] Section 5.

The Elastic Systems Pack provides general-purpose finite-element tools: see
the Appendix for details.

Most engineers have access to numeric codes written in Fortran and in C,
e.g. codes for solving the torsion problem, or, more generally, for solving the
Dirichlet problem for Laplace’s equation in the plane. GK had earlier used
NAG’s DO3EAF routine to solve the torsion problem. DO3EAF uses a boundary
integral equation method and is ideal to return the torsional rigidity S using
formulae given in [KKA]. There are several routes to combine older codes like
this with Mathematica.

A route we didn’t use was using InterCall, see [HK]. InterCall provides a
database and ready-to-use links to all routines in the NAG library. However,
in contrast to [HK], the application in this paper is best treated with some
further C code calling out to DO3EAF: using InterCall would have required a
preparation of an interface for this. Worse, it would have introduced another
layer of third-party proprietary code, and we decided on a design which,
while requiring C coding skills of people to adapt, would be flexible: thus we
decided to use MathLink directly.

AT has written the code, following the design anticipated in [KKA] §5. Thus
MathLink calls to C which calls NAG DO3EAF. The implementation is for
lenses, with their vertices at (-1,0) and (1,0), and radii a and b. It would be
easy to adapt the code to other circular arc polygons. The code is written to
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use the NAG library, but could be adapted to use some other torsion problem
solver.

NAG’s DO3EAF had been used earlier (1989) for computations of S both for
orthogonal lenses and for CC lenses. The 1996 computations repeated these
and also treated symmetric lenses. The numerical results for symmetric lenses
were compared with the lower bound of 4.1.3 and it is found that the simple
explicit formula from the lower bound is about 1% less than the numerically
computed values of the true S.

We speculate that symbolic-numeric combinations for computing torsional
rigidity may be developed which are ‘better’ than, perhaps also faster than,
the purely numeric codes like NAG’s DO3EAF. The increase in the number
of Mathematica-using engineers, as a consequence of the various Packs, is
bound to lead to experiments on this.

5 Qualitative PDE Work and CAS

One mathematical case for collecting examples of solutions of p.d.e. (par-
tial differential equations) — the torsion problem, for example — in particular
domains is that the mathematical literature abounds in guesses about how
solutions behave for various classes of domains {2 — bounds on various com-
binations of functionals (§5.1), derivative behaviour (§5.2), etc..

The range of different items related to the torsion problem which arise in
different applications is wide: see [KM, KA] for examples. Publication of
exact torsion functions enables them to be reused in different applications.

5.1 Domain functionals

The older literature comparing S with other domain functionals — area ||,
polar moments of inertia, etc. (which are available in another Chapter in the
Pack) — is collected in [PS]. [PS] consider non-dimensional ratios R and how
these vary over, say, convex ). In a very large number of cases, [PS] reports
that certain of the Pack’s Basic Shapes are extrema for R — slender sectors,
equilateral triangles, ....

As an example of this general kind, here is a recent result, proved in [DK].

Theorem. Let Q2 be convex. Let z. denote its centroid. Its torsion function
u satisfies

§um < u(ze) < Uy = maxu,
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1 Tun|Q  u(z)| w9
- < = < < < 6.
6-9 S — S — S =
To date, the extreme values we have found for u(z.)|2|/S are 4/3 for a

slender sector and 20/9 for an equilateral triangle. Our evidence for this
came partly from pre-release code associated with the Pack.

5.2 Derivative behaviour

A case for exact solutions, as opposed to purely numerical solution, is when
the behaviour of derivatives of the solution u rather than just u itself is
central.

Consider the Hessian matrix D?u. The concavity set €; is the set on which
the Hessian matrix is negative semidefinite. The location of the maximum of
the torsion function z,, is necessarily in §2;. The sector solution in the Pack
can be used to show that, for sufficiently slender sectors, z. & €2y, and z,, is
fairly close to the in-centre of €.

Manipulative mathematics occurs not just in connection with the ‘classical’
fare of CAS - exact solutions and perturbation expansions. For example, a
small exercise which is easily done with a CAS is to show the following.

Theorem. Let u be a solution of the torsion equation, and H(u) the
(determinant) of the Hessian of u. Then log(1 — 4H (u)) is harmonic.

There are uses of identities like this for example in connection with the
concavity properties of solutions of the torsion problem for convex domains
in the plane. See the survey paper of [KM] for details. Actually, one doesn’t
need a computer to get the particular result above, as one proof follows
from the two-dimensional result that log(|grad¢|) is harmonic when ¢ is
harmonic. However, there are lots of identities to check in this general area,
see [KM], and it is easier to systematically ask the computer to use the same
technique, eliminate y derivatives in favour of x derivatives using that u
solves the torsion equation. It is just substitution, use of replacement rules.
[KM] also gives references to where CAS have been used, in combination
with Maximum Principles for elliptic p.d.e., to establish concavity results for
other semilinear elliptic p.d.e..

Using CAS makes experimentation with messy identities less painful. Equally
important is good human insight into what to try.
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6 Conclusion, future prospects

The technology — Engineering Packs — is primarily for engineering use. How-
ever, applied mathematicians can find their own uses of them, and can also
contribute to further development of the Packs.

Mathematicians are much involved with the basic algorithms of CA. The
torsion problem is, of course, but one simple p.d.e. problem amongst many.
The same technology - exact solutions, graphics, etc. - and so on are equally
applicable for other problems in other Packs. As Engineering Packs acquire
a large base of users, the funding and need may be there to build systematic
mathematical libraries — e.g. a p.d.e. methods library ([LSU]) - to facilitate
re-use of code in different Packs.

Many routes to further progress are opened by the production — and distri-
bution — of the Mathematica Packs for engineers.
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Appendix: General Description of the Elastic
Systems Pack

by Cetin Cetinkaya

Elastic Systems is a collection of Mathematica packages addressing computa-
tional problems in analyzing elastic structural elements. In the design of the
package, the symbolic capability of Mathematica is utilized so that the func-
tions in the packages can be used as an interactive engineering “handbook.”
While many results are given in closed-form, some inherently numerical tech-
niques, such as finite element method, are also incorporated.

The functions of Elastic Systems are designed for professional engineers, en-
gineering educators, and engineering students of engineering mechanics in
mechanical, civil, and aerospace engineering. In practice, the engineer can
adopt the package to perform analysis of elastic structural elements along
with other professional engineering analysis tools. These functions, coupled
with the seamless computational features of the Mathematica environment,
provide a powerful support tool for engineering analysis in many fields. Both
Mathematica and the functions in this package are flexible problem-solving
tools in which engineers and students examine both computational and math-
ematical issues involved in problem solving. Using the Elastic Systems func-
tionality, many useful design methodologies can be implemented in the Math-
ematica environment.

The main engineering mechanics topics covered in the Elastic Systems pack-
age are as follows:

e Cross-sectional properties of two-dimensional shapes

e Bending of beams

e Torsional analysis of beams

e Two-dimensional finite element analysis

e Analysis of stress at a point

e Equations of elasticity theory

In engineering analysis and design, the cross-sectional properties of two-
dimensional objects are widely used. The cross-sectional properties are essen-
tial, for example, in the bending of beams and torsional analysis. With this
package, we can utilize both numerical and symbolic facilities of Mathemat-
ica in calculating the common cross-sectional attributes such as the area, the
centroid, and moment of inertia of two-dimensional domain objects. These
attributes for both basic domain objects and composite sections created by
arranging the basic domain objects can be obtained. The basic domain ob-
jects include rectangular, triangular, circular, and elliptical sections, and
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parallelograms. Additional basic objects can be added to the package Cross-
SectionPropertiesSym if a need occurs. A composite section consists of a
number of basic domain objects. The well-known composite cross sections
such as T-sections, I-sections and channel sections are included in the pack-
age as built-in domain objects. For other composite cross sections such as
L-sections and Z-sections, a simple procedure to create new cross sections
from the basic domain is also included with a number of examples. The
cross-sectional properties of these basic and composite sections can be cal-
culated both symbolically and numerically. For more complex domains, the
boundaries of a cross section are defined by using polygons. The same do-
main attributes can also be calculated for such complex domain, but only nu-
merically, by the functions in the package CrossSectionPropertiesNum. The
numerical techniques are based on a triangulation schema and an integration-
in-a-triangle routine. Several examples of complex sections are also included.

In many engineering structures, cantilever beams are widely used as a main
structural element receiving bending forces. The package BeamAnalysis pro-
vides a number of computational and graphical tools in stress analysis of
cantilever beams. The package enables numerical and symbolic calculation
of bending functions, stress fields, and deflection of a beam. The solutions
included in BeamAnalysis are based on Saint-Venant’s semi-inverse method
in calculating stress functions. Since some of the formulas used in beam
analysis are in series form, the symbolic results are useful examining the
convergence of results, especially in stress computations. A number of two-
and three-dimensional graphical functions can also be used to generate illus-
trative representations of deflected beams under bending loads.

Like bending of beams, torsional analysis has also been of practical interest
to engineers for a long time. Structural elements subjected to twisting forces
are used in many engineering applications. In the package TorsionAnalysis,
closed-form solutions for a number of cross sections are available. The cross-
sectional constants such as twist and torsional rigidity are calculated for
these built-in cross sections. The stress and displacement fields as well as
the torsion stress function can also be generated in closed-form. The package
provides graphical tools to illustrate the visual aspects of the torsion analysis.
The lines on a twisted bar, for example, can be shown using the function
TorsionPlot. Also, the rotation of a cross section at an arbitrary station
point can be drawn with respect to its original position. In addition to the
TorsionAnalysis functions, many built-in Mathematica graphical functions
are adopted to demonstrate various aspects of the package.

The main emphasis of the package is on the closed-form expressions, given
a shape, for the torsion stress functions. We also present, via examples, a
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‘hybrid geometric-algebraic’ method, used by Saint-Venant, to obtain stress
functions for a class of cross sections. This method is based on assuming a
form of harmonic function, e.g. polynomial, thence a solution of the torsion
equation, and generating the shapes for the boundary conditions to be satis-
fied. The graphics from Mathematica make this more usable than formerly.

The finite element method has been adopted as the major analysis and de-
sign tool in many engineering fields. The modern commercial finite element
programs offer many advanced computational features to solve a very large
class of practical problems. In Elastic Systems, we introduce a set of tools
that can be used to explore the main techniques of the finite element method
such as constructing interpolation functions. In addition, a finite element
code to calculate nodal forces and displacements for two-dimensional prob-
lems is included in the package along with a number of graphical tools to
visualize the results. While this code is limited to plane stress and plane
strain cases, material properties need not to be isotropic.

Using the functions, we can calculate one- and two-dimensional shape (in-
terpolation) functions for Lagrange, Hermite, triangular, rectangular, and
serendipity types of elements. Almost all shape functions found in text-
books can be generated with the help of these functions. Moreover, a general
methodology for creating shape functions for new elements is also included.
With this feature, users can design their own interpolation functions and ele-
ments, and test them against other elements using the functionality offered in
this package. Such exercises in constructing user-defined interpolation func-
tions can be invaluable to students of the finite element method as well as to
practioners. Many graphical functions are provided for drawing explanatory
pictures of the locations of nodal points and the forms of shape functions.

Solutions to a number of finite element problems from well-known textbooks
are provided. The effect of meshing in finite element computations is dis-
cussed with many examples by solving the same problems with different
meshes. As demonstrated in many examples, the mesh can also be gener-
ated with the built-in Mathematica programming constructs and mappings.
These mappings are usually generated by interpolation functions. The re-
sults obtained in a finite element analysis session are illustrated with the aid
of the graphical functions.

A number of tools to manipulate and to illustrate the state of stress at a
point in a continuum are provided in the StressAnalysis package. The state
of stress at a point in an elastic body is determined by six independent
stress components. The stress state is specified by a second-order symmetric
Cartesian tensor. This tensor is also known as the stress tensor. The values
of these stress components change with the orientation of the axes system in
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which each stress component is defined. The axes system can be rotated such
that some practical issues about the stress state at a point can be studied.
For example, certain stress components can be reduced to zero in a particular
orientation of the axes system.

Functions in the StressAnalysis package are provided to obtain useful in-
formation about the stress state at a point. For instance, the functions for
computing the principal stress components and principal stress direction from
a stress tensor are available. Also included are the functions for computing
maximum shear stress and its directions and the graphical functions to plot
the principal stress planes and principal stress directions. Mohr’s circles can
be drawn directly from the state tensor. A number of examples illustrating
the use of these functions are provided.

The state of stress is usually studied to determine a single failure criterion
from the stress tensor. From a number of proposed theories in predicting
material failure, we consider three of the most commonly used:

e Maximum normal stress theory

e Maximum shear stress theory

e Distortion energy theory.

The equations of the linearized theory of elasticity, such as constitutive rela-
tion and equilibrium equations, are usually quite lengthy when they are ex-
panded from their compact forms for an analysis. As a result, these equations
are both difficult to remember and tedious to manipulate by hand except for
overly simplified examples. The purpose of the package GoverningEquations
presented in this chapter is to provide a systematic way to access these equa-
tions. The equations are formatted in two ways: text and indexed. In text
form, the components are represented as Mathematica functions. For in-
stance, sigmal[x,y] represents the zy-stress component, oy, in text form.
In indexed form, the indices are used instead of the function brackets to
specify the directions of stress, strain, and internal force components.

The package GoverningEquations provides equations in three different coor-
dinate systems: Cartesian, polar, and spherical. There are also facilities to
generate symbols for stress and stress components in a desired coordinate
system. The functions for constitutive relation and equations for equilibrium
and elastodynamics are included. A function for converting between various
elastic coefficients is provided as well.



