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ABSTRACT

Unlike Chicone and Jacobs' consideration in quadratic case and

unlike Rousseau and Toni's in homogenuous cubic case, the problem

of weak centers for general cubic di�erential systems involves too

much complicated polynomials. In this paper we analyze reversible

cubic systems using Maple V.2 on Pentium/75 PC for its weak

center and local bifurcation of critical period.

Keywords and phrases: cubic system, weak center, critical pe-

riod, computer algebra system, symbolic computation

AMS(1991) Subject Classi�cation: 34C05, 34C23, 60Q40

�Supported by the National Natural Science Foundation, National 863 Project and Sichuan

Youth Sience and Technology Foundation



1 Introduction

The di�erential system (
_x = �y + �(x; y; �)

_y = x+  (x; y; �);
(1.1)

where �(0; 0; �) =  (0; 0; �) = 0; 8� 2 Rn, is a basic form to discuss the degenerate

vector �elds. In particular, for C3 functions �(x; y; �);  (x; y; �) we often locally

consider a cubic system(
_x = �y + a20x

2 + a11xy + a02y
2 + a30x

3 + a21x
2y + a12xy

2 + a03y
3

_y = x+ b20x
2 + b11xy + b02y

2 + b30x
3 + b21x

2y + b12xy
2 + b03y

3:
(1.2)

Concerning Eq.( 1.2) one of important problems is the well-known weak focus prob-

lem, considering the e�ect of nonlinearity. As a question surrounding Hilbert's 16th

problem it was given a set of analyzing methods[1]�[4]. Especially the method cal-

culating the Lyapunov value with succesion function is often used[5]�[8]. Recently in

aid of computer algebra systems and symbolic computation techniques this theory

is developing rapidly [9]�[11].

Along with the deep research on weak focus, another important theme about

center becomes more and more attractive. One concerns the monotonicity[12] of

period function of the family of closed orbits surrounding the center, since mono-

tonicity is a nondegeneracy condition for the bifurcation of subharmonic solutions

of periodically forced Hamiltonian systems[13]. This makes it interesting to inves-

tigate critical points of the period function[14]. In the light of weak focus in 1989

C.Chicone and M.Jacobs[15] put forward the concept of so-called weak centre, an-

swering how many critical periods bifurcating from the center. However, because

of the complexity of computation only systems with quadratic and homogenuous

cubic nonlinearities were discussed, e.g., in [15] and [16]. There were seldom found

further results.

Unlike Chicone and Jacobs' consideration and unlike Rousseau and Toni's,

In this paper we analyze reversible cubic systems using Maple V.2 software[18]

on Pentium/75 PC for its weak center and local bifurcation of critical period.

The obtained conclusions should be too complicated to derive without computer

algebra systems. Section 2 is devoted to the theory of weak centers. In section 3

an algorithm for weak centers of reversible cubic systems is given. In section 4 a

Maple computation program is listed and a su�cient condition for weak centers

of order one is obtained. In section 5 we apply our method and program on two

examples.
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2 Theory of Weak Centers

Let V (x; y; �) be a family of planar analytic vector �elds parametrized by � 2 Rn

with a nondegenerate center at the origin, i.e., the vector �eld does not have a

double eigenvalue zero at the origin. P (r; �) denotes the minimum period of the

closed orbit passing (r; 0), a point in a su�ciently small open interval J = (��; �)

of x-axis.

De�nition 2.1 . Let F (r; ��) = P (r; ��) � P (0; ��). The origin is called a weak

center of �nite order k if

F (0; ��) = F 0(0; ��) = ::: = F (2k+1)(0; ��) = 0 and F (2k+2)(0; ��) 6= 0; (2.3)

where the derivatives indicated are taken with respect to the �rst argument of

the function F . The origin is called an isochronous center, i.e., all closed orbits

surrounding the origin have the same period, if F (k)(0; ��) = 0; 8k � 0.

De�nition 2.2 . Local critical period is a period corresponding to a critical point

of the period function which bifurcates from a weak center.

Lemma 2.1 (Period Coe�cient Lemma)[15]. If P (0; �) = 2�; 8� 2 Rn, then for

any given �� 2 Rn,

P (r; �) = 2� +
1X
k=2

pk(�)r
k; (2.4)

which is analytic for jrj and j����j su�ciently small. Moreover, pk 2 R[�1; :::; �n],

the noetherian ring of polynomials; for k � 1; p2k+1 2 (p2; p4; :::; p2k), the ideal

generated by p2i; i = 1; :::; k over R[�1; :::; �n]; the �rst k > 1 such that pk(�) 6= 0

is even.

De�nition 2.3 . For �� 2 V (p2; p4; :::; p2k) := f�jp2i(�) = 0; i = 1; :::; kg and

p2k+2(��) 6= 0, the period coe�cients p2; p4; :::; p2k of F are said to be indepen-

dent with respect to p2k+2 at �� when the following conditions are satis�ed: Every

neighborhood of �� contains a point � such that p2k(�) � p2k+2(�) < 0; for any

j = 1; :::; (k� 1), if � 2 V (p2; p4; :::; p2j) and p2j+2(�) 6= 0 then every neighborhood

of � contains a point � 2 V (p2; p4; :::; p2j�2) such that p2j(�) � p2j+2(�) < 0.

Theorem 2.1 (Finite Order Bifurcation Theorem)[15]. >From weak centers of

�nite order k at parameter �� no more than k local critical periods bifurcate. More-

over, there are perturbations with exactly j critical periods for any j � k, if the

coe�cients p2; p4; :::; p2k of F are independent with respect to p2k+2 at ��



3 Algorithm for Reversible Cubic Systems

According to [17], a planar vector �eld is said to be reversible if it is symmetric

with respect to a line. Consider the cubic system ( 1.2) which is symmetric with

respect to y-axis. Clearly the right hands of ( 1.2), X(x; y) and Y (x; y), satisfy

that X(�x; y) = X(x; y); Y (�x; y) = �Y (x; y), that is, only terms with x of

even degree in X(x; y) and that of odd degree in Y (x; y) are retained. Such a

reversible cubic system is therefore shown as

(
_x = �y + a1x

2 + a2y
2 + a3x

2y + a4y
3

_y = x+ b1xy + b2x
3 + b3xy

2 (3.5)

with parameter � = (a1; a2; a3; a4; b1; b2; b3) 2 R7. This symmetry ensures that

Eq.( 3.5) has a center at the origin, cf. [4].

Taking polar coordinate

x = r cos �; y = r sin �; (3.6)

we have

_r = _x cos � + _y sin � = r2G2(�) + r3G3(�); (3.7)

_� = ( _y cos � � _x sin �)=r = 1 + rH1(�) + r2H2(�); (3.8)

where

G2(�) = a1 cos
3 � + (a2 + b1) sin

2 � cos �;

G3(�) = (a3 + b2) cos
3 � sin � + (a4 + b3) cos � sin

3 �;

H1(�) = (b1 � a1) cos
2 � sin � � a2 sin

3 �;

H2(�) = (b3 � a3) cos
2 � sin2 � + b2 cos

4 � � a4 sin
4 �:

Thus
dr

d�
=

r2G2(�) + r3G3(�)

1 + rH1(�) + r2H2(�)
: (3.9)

Lemma 3.1 . The vector �eld de�ned by Eq.( 3.9) is analytic and

dr

d�
= r2G2 +

1X
k=3

rk(G2Ak�2 +G3Ak�3) (3.10)

in a su�ciently small neighborhood of r = 0, where

A0 = 1; A1 = �H1; Ak = �H2Ak�2 �H1Ak�1; 8k � 3: (3.11)



Proof. For all � the functions H1(�) and H2(�) are uniformly bounded. Thus

for su�ciently small r,
1

1 + rH1 + r2H2

=
1X
k=0

rkAk (3.12)

is analytic. By comparison of coe�cients we obtain a recursive relation ( 3.11),

which determines all Ak. The remainder of this proof is simple. 2

Consider the solution of ( 3.9) with r(0; �) = r0 > 0 in the form

r(�; �) =
1X
k=1

uk(�; �)r
k
0 : (3.13)

Then the initial condition implies

u1(0; �) = 1; uk(0; �) = 0; 8k > 1; � 2 Rn: (3.14)

Replacing r in ( 3.10) with the series ( 3.13) and comparing coe�cients of

rk0 ; k = 1; 2; :::, we get the following di�erential equations

u01 = 0;

u02 = G2u
2
1;

u03 = (G2A1 +G3)u
3
1 + 2u1u2G2;

:::::: ::::::

(3.15)

successively, where u0k denotes d
d�
uk(�; �). Under the initial conditions ( 3.14) we

can obtain their solutions

u1(�) = 1;

u2(�) =
R �
0 G2(�) d�;

u3(�) =
R �
0 (G3 +G2(2u2 �H1)) d�;

:::::: ::::::

(3.16)

one by one. That is what we often do for weak focuses.

Finally, we compute the period P (r0; �) of the closed orbit C(r0) through (r0; 0).

From ( 3.8) and ( 3.12) we have

P (r0; �) =

Z
C(r0)

dt =
Z 2�

0

1

1 + rH1 + r2H2

d�

=

Z 2�

0
(1 +

1X
k=1

rkAk) d�

= 2� +
Z 2�

0

1X
k=1

rkAk d�; (3.17)

meanwhile, from ( 3.13) we obtain the following power series expansion

1X
k=1

rkAk = A1u1r0 + (A1u2 + A2u
2
1)r

2
0 + (A1u3 + 2A2u1u2 + A3u

3
1)r

3
0

+ (A1u4 + A2(u
2
2 + 2u1u3) + 3A3u

2
1u2 + A4u

4
1)r

4
0 + ::: (3.18)



Therefore

P (r0; �) = 2� +
1X
k=1

pk(�)r
k
0 ; (3.19)

where

p1(�) =
R 2�
0 A1u1 d� = �

R 2�
0 H1(�) d� = 0;

p2(�) =
R 2�
0 (A1u2 + A2u

2
1) d�;

p3(�) =
R 2�
0 (A1u3 + 2A2u1u2 + A3u

3
1) d�;

p4(�) =
R 2�
0 (A1u4 + A2(u

2
2 + 2u1u3) + 3A3u

2
1u2 + A4u

4
1) d�;

:::::: ::::::

(3.20)

and Ak; uk; k = 1; 2; ::: are determined by ( 3.11) and ( 3.16).

By Lemma 2.1 and De�nition 2.1 we have proved the following.

Theorem 3.1 . If for a certain �� 2 R7 there exists an integer k � 1 such that

p2(��) = p3 = (��) = ::: = p2k+1(��) = 0 and p2k+2(��) 6= 0; (3.21)

then the origin is a weak center of order k. Otherwise, the origin is an isochronous

center.

4 Computation of the Period Coe�cients pk

The following is a Maple program for computing the period coe�cients pn of the

reversible cubic system (3.5).

#################### The main procedure

####################

pols:=proc(n)

local A,u,H1,H2,i,j,p,e:

H1:=(b1-a1)*cos(t)^2*sin(t)-a2*sin(t)^3:

H2:=(b3-a3)*cos(t)^2*sin(t)^2+b2*cos(t)^4-a4*sin(t)^4:

A.(-1):=0: A.0:=1:

for i to n do

A.i:=-H2*A.(i-2)-H1*A.(i-1)

od:

G2:=a1*cos(t)^3+(a2+b1)*sin(t)^2*cos(t):

G3:=(a3+b2)*cos(t)^3*sin(t)+(a4+b3)*cos(t)*sin(t)^3:

u1:=1:

for i from 2 to n do

u.i:=Int(du(i),t): ":=value("):



e:=subs(t=0,"):

u.i:=normal(""-e):

od:

Int(collect(coe(n),sin(t)),t=0..2*Pi):":=value("):

p.m:=":

end:

###### Subprocedure for computing the coefficients of ######

###### the power series (3.18)

#########################

coe:=proc(n)

local u,f,r,cd,ccd:

f:=0:

for i to n do

f:=f+u.i*r^i:

od:

ccd:=0:

for j to n do

cd[j]:=f^j/(n!):

for i to n do

cd[j]:=diff(cd[j],r):

od:

f:=f-u.(n-j+1)*r^(n-j+1):

ccd:=ccd+expand(subs(r=0,cd[j])*A.j):

od:

end:

###### Subprocedure for differential equations (3.15) ######

du:=proc(n)

local u,f,r,cd,ccd:

f:=0:

for k to n-1 do

f:=f+u.k*r^k:

od:

ccd:=0:

for j from 2 to n do

cd[j]:=f^j/(n!):

for k to n do

cd[j]:=diff(cd[j],r):

od:

f:=f-u.(n-j+1)*r^(n-j+1):

ccd:=ccd+expand(subs(r=0,cd[j])*(G2*A.(j-2)+G3*A.(j-3))):

od:

end:



By running this program on a Pentium/75 PC we have obtained polynomials

p2, p4, � � �, p10 de�ned by (3.20). The result is as follows.

p2 =
�

12
(4 a1

2 + 3 a3 + b1
2 � 5 a1 b1 � 3 b3 � a2 b1 � 9 b2 + 10 a1 a2 + 9 a4 + 10 a2

2);

p4 =
�

1152
(�468 a1 a2 b2 � 510 a1 a3 b1 � 444 a1 a2 b3 + 513 b2

2 + � � �);

� � � � � �

Following table shows the total degree and number of terms of period coe�-

cients p2, p4, � � �, p10.

p2 p4 p6 p8 p10
total degree 2 4 6 8 10

number of terms 10 49 168 462 1092

In particular, we obtain the following theorem.

Theorem 4.1 . The origin is a weak centre of order one of the reversible cubic

system ( 3.5) if and only if q2 = 0, q4 6= 0, where

q2 = 4 a1
2 + 3 a3 + b1

2 � 5 a1 b1 � 3 b3 � a2 b1 � 9 b2 + 10 a1 a2 + 9 a4 + 10 a2
2;

q4 = 130 a2
3a1 + 51 a1

2b2 + 3 a2
2b2 � 78 a1

3a2 + 39 a1
3b1 + 3 a1

2a3 + 12 a1
2a4

�36 a1
2a2

2 + 33 a2
2a3 + 282 a2

2a4 + 42 a2
3b1 � 12 a1

2b1
2 + 3 a2

2b1
2

+18 a3 a4 � 3 b1
2b2 + a1 b1

3 + 3 a4 b1
2 + 18 a3 b2 + 81 a4

2 � 28 a1
4

+120 a2
4 + 27 b2

2 + 246 a1 a4 a2 + 48 a1
2b1 a2 + 36 a1 a3 a2

�6 a1 b1
2a2 � 3 a3 b1 a2 + 69 a4 b1 a2 + 54 a2 b2 a1

+51 a2
2b1 a1 � 3 a3 b1 a1 + 39 a4 b1 a1 + 6 a1 b2 b1

Proof. q2 = 12
�
p2 and q4 = 1152

�
prem(p4; p2; b3), where prem is a Maple

function[18] reducing p4 modulo p2 by substitution of the variable b3. Then the

result is given directly by Theorem 3.1. 2

5 Analysis of Certain Reversible Cubic Systems

In this section we analyze the weak centres and local bifurcation of critical periods

in two reversible cubic systems. First we consider a system in the following form

S� :

(
_x = �y � ax2 + ay2 + a3x

2y + a4y
3

_y = x� 2axy + b2x
3 + b3xy

2;
(5.22)



where � = (a; a3; a4; b2; b3) 2 R5 denotes the bifurcation parameters. Let

SI = f� 2 R5ja3 = b3 = �3a4 = �3b2g;

SII = f� 2 R5ja3 = b3; a4 = b2 = 0g;

SIII = R5 n SI n SII :

De�nition 5.1 (S�)�2R5 has a center of type I (respctively II, III) if the system

( 5.22) is nonlinear and � 2 SI (respctively SII, SIII).

We prove the following theorem.

Theorem 5.1 Consider the system ( 5.22).

1. A centre of type I is an isochrone point.

2. A centre of type II is either a weak centre of order at least 13 or an isochrone

point.

3. A weak centre of type III has order at most four. For any such centre of

order k � 4 and each j � k, there exist perturbations with exactly j critical periods.

Proof . 1. For a centre of type I the corresponding system ( 5.22) has the

following form (
_x = �y � ax2 + ay2 � 3bx2y + by3

_y = x� 2axy + bx3 � 3bxy2:
(5.23)

It satis�es Cauchy-Riemann conditions, i.e., it can also be written into

dt =
dz

iz � az2 + ibz3

= dz

�
�i

z
+O(z)

�
;

where z = x+ i y. By the residue theorem the period is constant.

2. For �� 2 SII , using the program in previous section we have obtained that

p2(��) = p4(��) = � � � = p26(��) = 0;

thus the centre has order at least 13. This evidence suggests strongly that the

corresponding system is an isochrone, although the further computation will be

more complicated.



3. For �� 2 SIII we compute the period coe�cients. Each coe�cient, denoted

by q2k, is reduced modulo the ideal of the previous coe�cients.

q2 = �b3 + a3 � 3 b2 + 3 a4 ;

q4 = 2 (b2 + a4 )a3 + 9 a4
2 + 3 b2

2;

q6 = (15 a4 + 8 a2) b2
3 + (150 a4

2 � 28 a4 a
2) b2

2

+(15 a4
3 + 32 a4

2a2) b2 + 12 a2a4
3;

q8 = �132890625 a4
7 � 9071831250 a2a4

6 + 15239407500 a4a4
5

+2404621800 a6a4
4 + 724745440 a8a4

3 � 17954688 a10a4
2

�1544704 a12a4 + 184320 a14;

q10 = �19676131453125000 a4
11 � 1653958596228750000 a2a4

10

+2652999510044671875 a4a4
9 + 873772899636161250 a6a4

8

+484117762157353125 a8a4
7 + 49987526399075100 a10a4

6

�3703103053643420 a12a4
5 � 900204917868864 a14a4

4

+159307105283584 a16a4
3 + 1690694788608 a18a4

2

�1155822981120 a20a4 + 62108467200 a22;

where a constant factor � in each formula is omitted for convenience. This implies

immediately that

(1): �1 := fq2 = 0; q4 6= 0g 6= ; and if � 2 �1 the origin is a weak centre of

order one;

(2): �2 := fq2 = q4 = 0; q6 6= 0g 6= ; and if � 2 �2 the origin is a weak centre

of order two;

(3): �3 := fq2 = q4 = q6 = 0; q8 6= 0g 6= ; and if � 2 �3 the origin is a weak

centre of order three;

(4): If q2 = q4 = q6 = q8 = 0 then q10 6= 0 and the origin is a weak centre of

order four.

Theorem 5.1 is proved. 2

The other system we discuss is the reversible cubic system with homogenuous

nonlinearities of the third degree, i.e.,(
_x = �y + a3x

2y + a4y
3

_y = x + b2x
3 + b3xy

2;
(5.24)

where � = (a3; a4; b2; b3) 2 R4 denotes the bifurcation parameters. It is just a case

considered by Rousseau and Toni[16] when

a3 = �(e6 � 3e4); b3 = (e6 � 3e4); a4 = �(e4 � e5); b2 = (e4 + e5); (5.25)

for some real numbers e4; e5 and e6. Those ej's come from what Rousseau and

Toni[16] used.



Theorem 5.2 The system ( 5.24) has a weak center of order at most one. For any

such center of order one there exist perturbations with exactly one critical period.

Proof. Using the same program as before and taking the substitution ( 5.25)

and a1 = a2 = b1 = 0, we compute the period coe�cients

p2 = �
�e6

2
;

p4 = �f
3 e24
2

+
3 e25
2

�
e6 e5

4
� e6 e4 +

9 e26
32

g;

and

q4 = �f
3 e24
8

+
3 e25
8
g;

obtained from p4 modulo the ideal of p2. Obviously, if p2 = 0, i.e., e6 = 0, then

q4 6= 0 and certainly p4 6= 0 except for that e4 = e5 = 0, which implies the system

( 5.24) is a trivial one without nonlinearities. Therefore, the origin is a weak center

of order at most one. The proof of the theorem is completed. 2

Clearly the equation ( 5.24) with restriction ( 5.25) is a reversible Sibirskii's

form with a center of Rousseau and Toni's type I, de�ned in [16]. Our results is

identical with Rousseau and Toni's in Theorem 3.3 of [16].
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