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ABSTRACT

Unlike Chicone and Jacobs’ consideration in quadratic case and
unlike Rousseau and Toni’s in homogenuous cubic case, the problem
of weak centers for general cubic differential systems involves too
much complicated polynomials. In this paper we analyze reversible
cubic systems using Maple V.2 on Pentium/75 PC for its weak
center and local bifurcation of critical period.

Keywords and phrases: cubic system, weak center, critical pe-
riod, computer algebra system, symbolic computation

AMS(1991) Subject Classification: 34C05, 34C23, 60Q40

*Supported by the National Natural Science Foundation, National 863 Project and Sichuan
Youth Sience and Technology Foundation



1 Introduction

The differential system

y: x—i_q?b(x)y))\)?

where ¢(0,0,A) = (0,0, \) = 0,VA € R", is a basic form to discuss the degenerate
vector fields. In particular, for C? functions ¢(z,y, \), ¥ (x,y,\) we often locally
consider a cubic system

{ = —y+anr® + anry + apy? + azr’® + anr?y + apzy?® + agsy® (1.2)

U= x+bypr®+ by + boay® + b3ox® + by 2’y + biaxy® + bozy>.

Concerning Eq.( 1.2) one of important problems is the well-known weak focus prob-
lem, considering the effect of nonlinearity. As a quest1on surrounding Hilbert’s 16th
problem it was given a set of analyzing methods!! Espe(nall the method cal-
culating the Lyapunov value with succesion functwn is often used! I. Recently in
aid of computer algebra systems and symbolic computation techmques this theory
is developing rapidly ©1-L,

Along with the deep research on weak focus, another important theme about
center becomes more and more attractive. One concerns the monoton1c1ty[12] of
period function of the family of closed orbits surrounding the center, since mono-
tonicity is a nondegeneracy condition for the bifurcation of subharmonic solutions
of periodically forced Hamiltonian systems[13]. This makes it interesting to inves-
tigate critical points of the period function 4. In the light of weak focus in 1989
C.Chicone and M.Jacobs!1] put forward the concept of so-called weak centre, an-
swering how many critical periods bifurcating from the center. However, because
of the complexity of computation only systems with quadratic and homogenuous
cubic nonlinearities were discussed, e.g., in [15] and [16]. There were seldom found
further results.

Unlike Chicone and Jacobs’ consideration and unlike Rousseau and Toni’s,
In this paper we analyze reversible cubic systems using Maple V.2 software!18]
on Pentium/75 PC for its weak center and local bifurcation of critical period.
The obtained conclusions should be too complicated to derive without computer
algebra systems. Section 2 is devoted to the theory of weak centers. In section 3
an algorithm for weak centers of reversible cubic systems is given. In section 4 a
Maple computation program is listed and a sufficient condition for weak centers
of order one is obtained. In section 5 we apply our method and program on two
examples.
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2 Theory of Weak Centers

Let V(x,y,\) be a family of planar analytic vector fields parametrized by A € R"
with a nondegenerate center at the origin, i.e., the vector field does not have a
double eigenvalue zero at the origin. P(r, A) denotes the minimum period of the
closed orbit passing (r,0), a point in a sufficiently small open interval J = (—a, «)
of z-axis.

Definition 2.1 . Let F(r,\.) = P(r,\.) — P(0, A\.). The origin is called a weak
center of finite order k if

F(0,\) =F'(0,\) =...= F®*(0, \)=0 and F@*2(0,)\,)#0, (2.3)

where the derivatives indicated are taken with respect to the first argument of
the function F. The origin is called an isochronous center, i.e., all closed orbits
surrounding the origin have the same period, if F®*)(0,\,) = 0, Yk > 0.

Definition 2.2 . Local critical period is a period corresponding to a critical point
of the period function which bifurcates from a weak center.

Lemma 2.1 (Period Coefficient Lemma)[15]. If P(0,\) = 2m,Y\ € R", then for
any given A\, € R",
P(r, ) =2m+ > pe(M)rF, (2.4)
k=2
which is analytic for |r| and |\ — \,| sufficiently small. Moreover, py, € R[Ay, ..., A\,
the noetherian ring of polynomials; for k > 1,pags1 € (P2, P4y . Dox), the ideal

generated by pa;, i = 1,....k over R[\, ..., \,]; the first k > 1 such that pg(\) # 0
1S even.

Definition 2.3 . For A\, € V(pa,pa, ..., D2x) = {A|p2i(A) =0, i=1,...,k} and
pakr2(As) # 0, the period coefficients ps, py, ..., por of F' are said to be indepen-
dent with respect to popio at A, when the following conditions are satisfied: Every
neighborhood of A, contains a point A such that pog(A) - pori2(A) < 0; for any
jg=1,..,(k=1),if X € V(p2,p4, ..., p2j) and pji2(A) # 0 then every neighborhood
of A contains a point o € V(pa, p4, ..., p2j_2) such that ps;(0) - p2jra(A) < 0.

Theorem 2.1 (Finite Order Bifurcation Theorem)[l‘lﬂ. ¢sFrom weak centers of
finite order k at parameter A, no more than k local critical periods bifurcate. More-
over, there are perturbations with exactly j critical periods for any j < k, if the
coefficients pa, P4, ..., por of F' are independent with respect to pogio at A,



3 Algorithm for Reversible Cubic Systems

According to [17], a planar vector field is said to be reversible if it is symmetric
with respect to a line. Consider the cubic system ( 1.2) which is symmetric with
respect to y-axis. Clearly the right hands of ( 1.2), X(z,y) and Y (z,y), satisfy
that X(—z,y) = X(z,y), Y(-z,y) = =Y (z,y), that is, only terms with z of
even degree in X (z,y) and that of odd degree in Y (z,y) are retained. Such a
reversible cubic system is therefore shown as

T = —y+a2® + ay? + azx’y + agy? 9.5

y= x+bxy+ ba®+ byxy? (3.5)

with parameter A = (ay, as, as, ay, by, by, b3) € R7. This symmetry ensures that
Eq.( 3.5) has a center at the origin, cf. [4].

Taking polar coordinate

x=rcosf, y=rsinb, (3.6)
we have
io= dcosf+ ysinf = r*Gy(0) + r*G3(0), (3.7)
0 = (jcos® —isind)/r =1+ rHy(0) +r>Hy(0), (3.8)
where
Go(0) = aycos® 0+ (ag + by)sin® 0 cos b,
G3(0) = (as+ by)cos®Osinf + (ay + bs) cos fsin® ),
Hi(0) = (b —ay)cos’Osind — aysin® 6,
Hy(0) = (b3 — a3)cos®fsin® 6 + by cos* § — ay sin® 6.
Thus
ﬁ . TZGZ(G) + T3G3(0) (3 9)
do  1+rH(0)+r2Hy(0) '
Lemma 3.1 . The vector field defined by Eq.( 8.9) is analytic and
d oo
d—z = T2G2 + Z Tk(GQAk_Q + G3Ak_3) (310)

k=3

in a sufficiently small neighborhood of r = 0, where

AO - 1, Al - _Hb Ak - —HQA]C,Q - HlAkfl, Vk Z 3 (311)



Proof. For all # the functions H;(#) and Hy(#) are uniformly bounded. Thus
for sufficiently small r,

1 2
=>» r*A 3.12
1+rH +r?Hy, (= F (3.12)
is analytic. By comparison of coefficients we obtain a recursive relation ( 3.11),
which determines all Ax. The remainder of this proof is simple. O

Consider the solution of ( 3.9) with r(0,A\) = ry > 0 in the form

r(0,)\) = i ug (0, \)ry. (3.13)

Then the initial condition implies

ui(0,A) =1, u(0,A) =0, Vk>1\€R" (3.14)

Replacing 7 in ( 3.10) with the series ( 3.13) and comparing coefficients of
rk k=1,2, ..., we get the following differential equations
uy =0,

uhy = Gyul,
Ug = (G2A1 + Gg)’LL? + 2U1U2G2,

(3.15)

successively, where uj, denotes L, (f, \). Under the initial conditions ( 3.14) we
can obtain their solutions

ui(9) =1,
up() = [y G2(€) de,
uz(0) = fG(G:), + Go(2uy — Hy)) dE, (3.16)

one by one. That is what we often do for weak focuses.

Finally, we compute the period P(rg, A) of the closed orbit C'(r() through (7o, 0).
From ( 3.8) and ( 3.12) we have

2T 1
P(ry,\) = / dt = / 0
(0, A) C(ro) o 1+4+rH,+1r?H,

2 0
_ / (1+ 3 rkAy) do
0 k=1

2w
S / S kA df, (3.17)

meanwhile, from ( 3.13) we obtain the following power series expansion
Z R AL = Ay + (Ajug + Asu?)rd + (Ayus + 2A5uiuy + Asud)rd
k=1

+ (Ayuyg + Ag(ul + 2uyus) + 3Asuluy + Agul)ry + ... (3.18)



Therefore

P(ro, \) =27 + Zpk()\)rg, (3.19)
k=1
where
(N = 57 Ay df = — [ H(0)df = 0,
pg()\) = OZW(AI’LLQ + AQU/%) d9,
pg()\) = fOZF(Al’LLg + 2A2U1U2 + AgU:{)) d9, (320)
pa(N) = I (Ayuy + Ay(ud + 2uyus) + 3Asudug + Agul) db,

and Ay, ug, k =1,2,... are determined by ( 3.11) and ( 3.16).

By Lemma 2.1 and Definition 2.1 we have proved the following.

Theorem 3.1 . If for a certain A\, € R” there exists an integer k > 1 such that

pZ()\*) =p3= ()\*) = e = p2k+1()\*) =0 and p2k+2()\*) 7£ 07 (321)

then the origin is a weak center of order k. Otherwise, the origin is an isochronous
center.

4 Computation of the Period Coefficients p;

The following is a Maple program for computing the period coefficients p,, of the
reversible cubic system (3.5).

#HHHHH RS H##E The main procedure

HHHHEHHH SRR

pols:=proc(n)
local A,u,H1,H2,i,j,p,e:
Hi:=(bl-al)*cos(t) "2*sin(t)-a2*sin(t) ~3:
H2:=(b3-a3)*cos (t) "2*sin(t) "2+b2*cos (t) "4-ad*sin(t) ~4:
A.(-1):=0: A.0:=1:
for i to n do

A.i:=-H2%A.(i-2)-H1xA.(i-1)
od:
G2:=al*cos(t) "3+ (a2+bl)*sin(t) "2*cos(t):
G3:=(a3+b2)*cos (t) "3*sin(t)+(a4+b3)*cos(t) *sin(t) ~3:
ul:=1:
for i from 2 to n do

u.i:=Int(du(i),t): ":=value("):



e:=subs (t=0,"):

u.i:=normal(""-e):
od:
Int(collect(coe(n),sin(t)),t=0..2%Pi) :":=value("):
p-m:=":

end:

######E Subprocedure for computing the coefficients of ######
###### the power series (3.18)
HHH R R
coe:=proc(n)
local u,f,r,cd,ccd:
f£:=0:
for i to n do
f:=f+u.i*r"i:
od:
ccd:=0:
for j to n do
cd[jl:=f"j/(n!):
for i to n do
cd[jl:=diff(cd[j],r):
od:
f:=f-u.(n-j+1)*r~(n-j+1):
ccd:=ccd+expand (subs (r=0,cd[j]1)*A.j):
od:
end:

###### Subprocedure for differential equations (3.15) ######
du:=proc(n)
local u,f,r,cd,ccd:
£:=0:
for k to n-1 do
f:=f+u.k*r’k:
od:
ccd:=0:
for j from 2 to n do
cd[jl:=f"j/(n!):
for k to n do
cd[j]l:=diff(cd[j]l,r):
od:
f:=f-u.(n-j+1)*r"(n-j+1):
ccd:=ccd+expand (subs (r=0,cd[j])*(G2xA. (j-2)+G3*A. (j-3))):
od:
end:



By running this program on a Pentium/75 PC we have obtained polynomials
P2, Pa, + -+, pro defined by (3.20). The result is as follows.

Py = 17T—2(4a12+3a3+b12—5a1b1 —3bs — asby — 9by + 10y az + 9 a; + 10 ag?),
= %52(—468611 a3 by — 510 a1 az by — 444 ay ag by + 51302 + - - ),

Following table shows the total degree and number of terms of period coeffi-
cients P2, P4, -+, P1o-

P2 | P4+ | Ps | P8 P1o
total degree 2 | 4 6 8 10

number of terms | 10 | 49 | 168 | 462 | 1092

In particular, we obtain the following theorem.

Theorem 4.1 . The origin is a weak centre of order one of the reversible cubic
system (8.5) if and only if ¢ =0, g4 # 0, where

¢ = 4a.2+3a3+b2—5a,b; —3b3 —asb, —9by + 10a; ay +9a; + 10 a2,
@ = 130a’a; + 51 a1%by + 3as%by — T8 a1 as + 39 a1®by + 3a1%as + 12 a1%ay
—36a1%as” + 33 ax’az + 282 ax’ay + 42 a*by — 12a,°b,* + 3 ay’b,
+18azas — 3b1°by + a1 by® +3asb,” + 18 az by + 81a,” — 28 ay*
+120 ay* + 27 by? + 246 a1 aq as + 48 a1by ay + 36 ay asz as
—6ay by%ay — 3as by as + 69 ag by as + 54 as by ay
+51 as?by ay — 3asby a; +39ay by ay + 6ay by by

Proof. ¢ = %pg and ¢4 = %prem(m,pg,bg), where prem is a Maple
function18l reducing ps modulo p, by substitution of the variable b3. Then the
result is given directly by Theorem 3.1. O

5 Analysis of Certain Reversible Cubic Systems

In this section we analyze the weak centres and local bifurcation of critical periods
in two reversible cubic systems. First we consider a system in the following form

S, - { T = —y—ar®+ay® + a3’y + as’® (5.22)

y= x—2axy+ box® + byxy?,



where \ = (a, as, as, by, b3) € R® denotes the bifurcation parameters. Let

St = {)\ € R5|a3 =by = —3a4 = —3b2},
S = {)\ € R5|a3 = b3,a4 =by = 0},
SIII = R5\SI\SII-

Definition 5.1 (S))\crs has a center of type I (respctively II, III) if the system
( 5.22) is nonlinear and X € Sy (respctively Sy, Sirr)-

We prove the following theorem.

Theorem 5.1 Consider the system ( 5.22).
1. A centre of type I is an isochrone point.

2. A centre of type 11 is either a weak centre of order at least 13 or an isochrone
point.

3. A weak centre of type III has order at most four. For any such centre of
order k < 4 and each j < k, there exist perturbations with exactly j critical periods.

Proof . 1. For a centre of type I the corresponding system ( 5.22) has the
following form

{ = —y—azx?+ ay® — 3bx’y + by? (5.23)

= x— 2axy+ bx® — 3bxy.

It satisfies Cauchy-Riemann conditions, i.e., it can also be written into

dz

1z — az? + 1bz3

= dz (; + O(z)> ,

dt =

where z = x + 1 y. By the residue theorem the period is constant.

2. For A\, € Sy, using the program in previous section we have obtained that

P2(A) = pa(As) =+ = pag(A) =0,

thus the centre has order at least 13. This evidence suggests strongly that the
corresponding system is an isochrone, although the further computation will be
more complicated.



3. For A\, € S;;r we compute the period coefficients. Each coefficient, denoted
by go, is reduced modulo the ideal of the previous coefficients.

Q2 = —b3+a3 —3b2—|—3a4,

0 2 (bg + ay)as +9a;2+ 3 by,

g6 = (15a; +8a%) by” + (150 a;2 — 28 a; a?) by*
+ (15 a;® + 32 a;%a?) by + 12 a%a,?,

gs = —132890625a," — 9071831250 a®a;® + 15239407500 a*a,®
42404621800 a®a,* + 724745440 a®a;?® — 17954688 a'%a 2
—1544704 a12a4 + 184320 a'?,

g0 = —19676131453125000 a;'! — 1653958596228750000 a2a, "
+2652999510044671875 a'a,? + 873772899636161250 aba,®
+484117762157353125 aba, " + 49987526399075100 a4, 6
—3703103053643420 a'2a, — 900204917868864 a'*a,*
+159307105283584 a'%a,;? + 1690694788608 a'®a,>
— 1155822981120 a®a,; + 62108467200 a2,

where a constant factor 7 in each formula is omitted for convenience. This implies
immediately that

(1): Ay :={g2 =0,q4 # 0} # 0 and if A € A; the origin is a weak centre of
order one;

(2): Ay :={q2=q =0,q6 # 0} # 0 and if A € A, the origin is a weak centre
of order two;

(3): A3 :={g2=q1 = qs = 0,q3 # 0} # 0 and if A € A3 the origin is a weak
centre of order three;

(4): If g3 = g4 = g6 = gs = 0 then g9 # 0 and the origin is a weak centre of
order four.

Theorem 5.1 is proved. O

The other system we discuss is the reversible cubic system with homogenuous
nonlinearities of the third degree, i.e.,

&= —y+azr’y + asy’®
{ U= x+ b+ bywy?, (5.24)

where A = (a3, aq, b, b3) € R* denotes the bifurcation parameters. It is just a case

16

considered by Rousseau and Tonil*% when

as = —(eg — 3ey), b3 = (€5 — 3eq), a4y = —(e4 — €5), by = (€4 + €5), (5.25)

for some real numbers ey, e; and eg. Those e;’s come from what Rousseau and

[16]

Toni used.



Theorem 5.2 The system ( 5.24) has a weak center of order at most one. For any
such center of order one there exist perturbations with exactly one critical period.

Proof. Using the same program as before and taking the substitution ( 5.25)
and a; = ay = by = 0, we compute the period coefficients

TEg
p2:_77
3e?  3el  eges 9e2
m=mg s meat 5t
and 52 302
e e
n=mg )

obtained from p, modulo the ideal of py. Obviously, if p, = 0, i.e., e = 0, then
qs # 0 and certainly py # 0 except for that ey = e; = 0, which implies the system
(5.24) is a trivial one without nonlinearities. Therefore, the origin is a weak center
of order at most one. The proof of the theorem is completed. O

Clearly the equation ( 5.24) with restriction ( 5.25) is a reversible Sibirskii’s
form with a center of Rousseau and Toni’s type I, defined in [16]. Our results is
identical with Rousseau and Toni’s in Theorem 3.3 of [16].
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