
Making Geometry Dynamic:
Design Considerations in Mathematical Interactivity

Nicholas Jackiw

nicholasjackiw@gmail.com
Vancouver, Canada

Abstract: This paper surveys situations in the early development of Dynamic Geometry Software in which designers
had to “invent” plausible mathematical behaviors for specific dynamic configurations. It offers both a case study in the
design of mathematical software and a reflection on the potential contribution dynamism makes to the history of
mathematical representation.

1. Introduction

 How do mathematical representations—mathematical media, notations, and conceptions—
arise, and how do they evolve? Sixty years into a growing diffusion of computational activity and
software technology across mathematical practice, and half as long into an era in which various
Dynamic Geometry packages have arisen as the most widely used such tools in the teaching and
learning of mathematics, is it surprising that not one of these packages feature the most
characteristic—even emblematic—representation of school geometry across the century before
these new tools’ arrival, the two-column proof? The nature of activity changes as the tools change
through which activity is pursued. Adopting the position that emerging tools and representations
shape, as much as are shaped by, standing ideas and conceptions of a domain, this paper surveys
the origins of Dynamic Geometry software for moments where the gestural and visual paradigm for
mathematical interaction introduced by such software had to extend or refigure practices and
implications of “static” geometry to enable its new and dynamic approach.

 This account is personal and to some degree subjective. My colleague Steven Rasmussen
and I first coined the phrase “Dynamic Geometry,” and I write about its design from my experience
creating one of its first incarnations: The Geometer’s Sketchpad [1]. My account focuses primarily
on Sketchpad, but attempts to portray other perspectives in the fertile design dialog that occurred
across software packages beginning in the early 1990s and continuing, to some extent, to date.
However, my broad interest behind this account—in, through design, creating and clarifying the
role of gesturally-mediated dynamic manipulations in mathematics software—features not one, but
two, topics notably difficult to engage in print. Dynamic gesture, as I use the term, refers to
physical motions and actions (hand, or hand/eye/body movements) that almost by definition
constitute non-verbal and non-symbolic acts of communication, whether between people or
between a person and a manipulated machine. I can describe such actions in print, but I cannot
communicate them here effectively. And dynamic software is, of course, software whose content is
not only graphical in nature but moving, animating, and evolving continuously in time and in
response to gestured directions. It is decidedly not software that presents a text of symbols
conveniently transcribable in print. Scholarship in both domains struggles with capturing the
essential physicality of the gesture, and the inherent dynamics of the software, in words and static
pictures. This paper accompanies an invited lecture I shall give at ATCM, but where within a few
minutes in a talk I can give a half dozen compelling examples of dynamic gestures and dynamic
software responses to them, in text one labors for paragraphs to evoke the physicality or dynamics

critical to a single example. Thus, the presentations shall necessarily differ, as the media are so
different in regard to critical fault-lines of my topic. (Fortuitously, this very fact—that choice of
representational media is consequential! —is a fundamental conclusion of both my presentations.)
My talk covers examples drawn not just from Sketchpad but also from my lesser-known works and
from my work-in-progress and aims to highlight design comparisons and their implications. In this
paper instead, I focus on the single example of dragging within Dynamic Geometry, to detail a
single design in context, while hoping the reader has familiarity with the actual act of dragging in
Dynamic Geometry sufficient to compensate for the deficiencies of print description. Even before
we take up that subject, however, we must first ask “Why consider dynamics at all?” and “Why
consider design?”

2. Why Dynamism?

 Why focus on dynamic motions and gestures—on the often non-verbal waving of our
hands—when we more typically consider mathematics as a set of concepts, skills, and procedures?
Broadly, dynamic gestures and motions are a placeholder for an entire spectrum of embodied
actions, intuitions, and understandings we might consider when we replace a perspective of
mathematics as a knowledge domain in favor of a perspective on it as a human activity. Neither
perspective invalidates the other: the first simply considers a set of propositions, symbolically
expressed and organized by principles of abstraction, whereas the second considers the
construction, communication, comprehension, and use of those propositions. And yet, a student of
mathematics history rapidly learns that one of the social conventions of mathematical practice is to
pretend mathematical practice has no social conventions: neither animate people nor animate—
moving—objects appear to be acceptable in the empyrean of formal mathematics, in which (in the
famous words of Nicolas Balacheff [2]) knowledge appears only and always “detemporalized,
depersonalized, and decontextualized.” Since this postured independence from all human action or
motion makes mathematics a decidedly inhospitable one for many human students (who
themselves are irrevocably temporalized, personalized, and contextualized!), it is worth briefly
touring arguments for the importance and contribution of the dynamism, motion, and gesture to
mathematical thinking.

Such a tour could usefully begin at the dawn of mathematics. Where Western accounts
often trace math’s origin to the work of the ancient Greeks—Plato coins the term “mathematics”—
of course at that time arithmetic and geometry were already well-developed practices, so we look
earlier. Drawing on the anthropological literature and Indian, Chinese, Babylonian, and Egyptian
documents as well as Greek ones, Seidenberg ([3], [4]) argues compellingly that both disciplines
have their earliest origin in religious ritual, and that—specifically—ritualistic chanting and
religious procession are the forebears of number sequence, of cardinality and ordinality. Thus the
moving body, and the social concert of moving bodies in song and in parade, is the very font of
mathematics. Jumping 5,000 years ahead to the opposite end of the timeline, Lakoff and Nunéz [5]
trace an arc of influence to present-day mathematics, which they argue, from cognitive science
perspectives, is constructed through a small but powerful set of embodied understandings in which
mathematical abstractions are metaphors based on concrete physical actions and sense perceptions
of the physical body. Inside these two historical bookends, the Platonic move away from embodied
and enactive (motion-based) understandings seems almost contrarian. Plato arises in an intellectual
milieu in which Zeno’s “paradoxes” have only recently challenged arguments based on temporality
and temporal continuity, so there is philosophical motivation to such a disposition. But present-day

scholars like James Kaput or Brian Rotman might argue such a turn arises as much as a
consequence of the available infrastructure for mathematical representation and communication in
the time of the Greeks (a move from the diagrams of “sand reckoning” to the symbols of writing
and “print”) as from any explicit epistemological rejection of embodiment, temporality, or
dynamism. (Recall that Archimedes—a dynamic geometer! —was more influential in his day than
was his rough contemporary Euclid, whose eventually important book established the next 2,000
years' pursuit of geometry as a static enterprise.) In either case, the Platonic conceit is clearly
situated within a larger narrative in which dynamics and motion-based reasoning are grounded, and
continue to ground, mathematical experience and comprehension.

3. And Why Design?

 And why talk about design? Is the art, mechanics, and practice of design in a particular area,
say mathematics education technology, relevant to anyone besides the small community of
practitioners working in that area? Yes. We are all users of designed objects; an awareness of,
sensitivity to, and ability to think critically about design makes us better-educated consumers of the
products or technologies we use. But more importantly, we are all also designers. In mathematics
education, we are designers in our choices of approaches to problems. There, design influences
how we assemble whatever physical or conceptual toolkit we bring to a given task, and how we
orchestrate those elements (what scripts we follow, what existing skills we rehearse) in
accomplishing that task. We are also designers of activities, lessons, and classes for our students,
sometimes merely in the sensibilities we bring to selecting and sequencing existing curricular
resources, other times more aggressively in creating our own new resources out of rawer
ingredients. Finally, if or where we use mathematical technologies that are themselves authoring
systems—systems where we can produce ideas rather than merely consume them—we are
designers of interactive technologies ourselves. In environments like Computer Algebra Systems or
Dynamic Geometry Systems, a digital object we create for ourselves, to answer our own private
curiosity, is never far from one that explains that same curiosity to another, and a frequent turn in
the development of one’s work in an environment like Sketchpad, comes at the moment one asks
“now how can I make this useful for someone else?” In all these cases, we are engaged in design.

 And yet, effective design often resists “strategic” or “paradigmatic” thinking—solutions or
design strategies that elegantly solve problems in one context often become either simplistic clichés
or arcane prescriptions, when reapplied in an unrelated context. We have all seen “effective design
principles” stripped of, and promoted outside, any specific application—“put the important thing
first!”, say, or “keep it simple, stupid!”—and we can easily summon specific problems in which
these principles would be not just ineffective but even, perhaps, counterproductive. (Mathematics
itself is ripe with such examples: in a deductive argument, we usually need to state the important
thing last! And we cannot motivate introducing tools of mathematical simplification—factoring, or
parentheses, or outsourcing a claim to a lemma or corollary—unless we are willing to tolerate the
emergence of sufficient complexity to justify them!) So rather than spend too much effort
considering abstract principles of design, we must consider design in application, design in specific
instances and practices rather than in generalizations and abstractions. In this, getting good at
design is like getting good at sport: a theory of volleyball only takes you so far. Eventually, you
have to play the game.

4. Design and dynamics, in Dynamic Geometry

4.1 The origin of dragging

 Now let us explore in detail an actual instance of a designed and gestural form of
mathematical interactivity, dragging, as it appears in Dynamic Geometry software such as The
Geometer’s Sketchpad or Cabri [6]. While these environments are mathematically rich and find
diverse curricular applications, the act of dragging is at their heart and was widely celebrated at
their inception as their most important contribution to the evolving corpus of geometry
technologies ([7], [8]). Broadly, dragging allows you physically to move one or more elements of a
graphical construction or diagram, while preserving all the stated definitions that relate that element
to other elements of the figure. In the single gesture of moving your computer mouse across the
screen, you tour dozens if not hundreds of continuously-related examples of your construction, its
fundamental invariances intact while inessential properties melt away. A diagram is no longer an
example of a construction, it instead appears almost as the general case. It is a powerful tool of
mathematical generalization, and since you yourself are guiding the mouse dragging the vertex
through all these limitless examples, you find yourself a tremendously empowered agent of
mathematical causation and generalization. Thirty years after the invention of Dynamic Geometry
dragging, the idea has spread so widely through software and mathematics that it is hard to imagine
the sensation of its original impact. And even in that moment, many mathematicians felt an
uncanny sense of familiarity upon first encountering Dynamic Geometry or a welcome inevitability
([9]): Dynamic Geometry Software had taken a fantasy of continuously evolving geometric
configurations out of the closed garden of mathematicians’ daydreams and put it into the literal
hands of mathematical explorers everywhere. It is almost as if Dynamic Geometry was not a
designed idea but rather an essential or pre-existing one that software simply made “real.”

 In one sense, this claim of inevitability is, in fact, correct. The same powerful idea—
dynamic dragging of geometric elements with responsive diagrams adjusting to that motion—
emerged simultaneously and completely independently in the United States with Sketchpad and in
France with Cabri Géomètre. Both programs were already well under development by their
respective research clusters when they first encountered each other at a NATO Advanced Research
Workshop in Grenoble in 1989, and the initial similarities of their approaches to this novel idea was
breathtaking. Since the name Cabri is a play on the French term for “electronic notebook,” even
their titles were similar! Yet this is perhaps less a case of raw serendipity than it first appears. The
research projects separately giving rise to these programs trace back to the mid-1980s, shortly after
the 1984 debut of the Apple Macintosh. The Macintosh introduced bitmap display screens, mouse-
based interactions, and graphical user interfaces to the computing public, and these were
technologies that individually and in concert disrupted many paradigms of software interaction that
preceded them. The Mac’s novel hardware and software capabilities forced software professionals
in all domains to ask: “what are the implications of graphical visualization and direct manipulation
on the objects and workflows of my work?” Sketchpad and Cabri both asked this question, and
answered it similarly.

Yet it is by no means given that something as “new” as Dynamic Geometry would arise from such
reflection. In many domains—including within the reigning geometry technologies of the day (that
is; of before the advent of the fully graphical user interface)—the answer was some form of “we
shall continue as before, but now use a mouse to choose from menus and icons directing our

previous workflows,” in a pattern designers have come to call skeuomorphism , wherein new
objects or technologies are intentionally designed to resemble older technologies they may seek to
replace. The ornamental triglyphs of Doric stone columns in classical Greek temple architecture
resemble structural features of the wooden temples they replace. While some dismiss the
skeuomorphic tendency in design as a form of nostalgia, I believe instead it reflects the difficulty of
envisioning what one cannot already, in some sense, see. The skeuomorph signals less the present’s
longing for the past than its stranglehold on potential futures, in other words. Comically, in the case
of Sketchpad, the very earliest design motivation for draggable configurations had nothing to do
with mathematical exploration or geometric generalization and was instead itself an instance of
skeuomorphism. I originally imagined the main purpose of the software was to enable
mathematicians to produce print illustrations—perhaps for publication in print journals! In that
context, the ability to rearrange their constructions on-screen to fit the available page space in print
would be welcome compared to an alternative of rebuilding them, repeatedly, to meet the layout
requirements. It was only through a process of considering consequences, and through experiment
with some of the first actual prototypes of moveable—dynamic—geometry, that its profound
mathematical novelty, and its vast potential impact on visualization and learning, became apparent.

In this preliminary account we gain insight into an essential characteristic of designs’ relationship
to the domains in which they appear. In the case of software design, the affordances of available
hardware not only dictate the limits of what is possible in software (an obvious point), but also
what is conceivable in software (a less obvious one). Thus at any moment within a domain where
software finds application, the affordances of contemporary hardware assert an influence not just
on our thinking about software but on our thinking about the domain itself. In the 1960s, pre-
graphical computers acted entirely as symbol processors; hardware supported text-based input and
text-based output. The quest of geometry software in that era—and therefore, of considerable work
both in geometry and in computer science—was to automate deduction, a task which conceives of
geometric reasoning as a symbol-processing activity. In the 1970s and early 1980s, hardware
developed limited support for graphical output but remained symbol-based (keyboard driven) in
their input register. The geometry software of that era—Logo ruled the day—involved students’
authoring symbolic procedures that produced entertaining or attractive images. Here geometry was
acknowledged as pertaining to the structure of space or the plane—the graphical output was
relevant—but reasoning and problem-solving was still propositional and linguistic. With the debut
of the Macintosh, hardware evolved to feature a ubiquitous bitmapped screen (an always-available
2D graphical output, which the metaphor of “scrolling” makes infinite) and a ubiquitous mouse (an
always-available 2D graphical input, which the action of continuous “rolling” makes infinite). It is
hard to conceive a better set of physical affordances on which to model the mathematical idea of an
unbounded two-dimensional Euclidean plane! And thus in that moment Dynamic Geometry
became possible, and the discourse of contemporary school geometry shifted again to emphasize
construction and visualization of planar objects rather than their symbolic manipulation.
Uncritically, we might like to think of mathematics as Platonically ideal, as impervious to
transitory issues of representation or affordance; but in transitions such as these, we see it is
constructed by them.

4.2 Deterministic designs for dynamic indeterminacies

Even if the possibility of Dynamic Geometry is a direct implication of the emergent computer
hardware of the 1980s, its inevitability or mathematical obviousness is, in fact, an illusion. On close
inspection, the manipulation of even simple geometric diagrams in space and time opens numerous

mathematically unresolvable questions. Thus the “inevitability” of the consequences of dragging
owes as much to design as to deduction or to the certainties of mathematical definition—of static
mathematical definition. Let us briefly consider several examples of situations where dynamics
needed to be newly designed for, rather than was defined by pre-existing, geometric purposes, in
order to survey the variety of considerations contributing to such design.

Figure 1. Membership indeterminacy: as A moves where is C?

In the simple example of Figure 1 (left), point C is defined as a given point on segment AB.
The user drags A closer to B, resulting in A, B, and the segment AB as shown on the right. Where
should C appear in this segment? Should it maintain its original distance from A, though the
segment is now shorter? Or is its original distance from B? Since all we know is that C is defined
somewhere on AB, does that mean anywhere? Should it move to a random location? Or perhaps
should it stick as close as possible to its original planar position, i.e. to C (left), minimizing the
distance it itself moves?

Sketchpad, Cabri, and every other Dynamic Geometry tool I know “answer” this question
identically: under changes to AB, C maintains a constant ratio of division of AB. Thus since C (left)
is roughly 30% of the distance from A to B, we can locate C (right) similarly. This design has the
elegant effect of moving C in linear proportion to the overall motion of either endpoint and thus
maintains a conceptual symmetry between endpoints while avoiding the stochastic chaos of C
hopping about at random even when the segment is minimally perturbed. And yet, by preserving a
constant ratio across dynamic manipulation, the solution introduces a mathematical artifact—a
barycentric invariance—to the generalization that is absent from the construction’s stated
definition. We expect students to be staggered by facts like the concurrence of a triangle’s medians
in a single point, but in Dynamic Geometry this is unremarkable: dynamically preserved
proportions guarantee any three cevians of a triangle that ever intersect in a point will always
intersect in a point, no matter how we deform the triangle.

A

B

C

A

B

Figure 2. Quadratic indeterminacy: as AB (left) moves, where is D (right)?

In the static configuration of Figure 2 (left), a circle is intersected by a given segment AB;

and a second segment, from C, connects to this intersection D. Now we drag points A and B into
the configuration at right, leaving the circle and C unchanged. AB now intersects the circle twice
rather than once. Where should D (and therefore segment CD) be located in this new
configuration?
Mathematically a system of one solution has evolved into a system of two, with no clear mapping
between the configurations in Euclidean geometry. To provide a definition of motion that allows
CD to reappear in the righthand configuration, software developers must augment Euclidean
geometry with a dynamic theory and behavior for quadratic intersections, and again balance
aesthetic and functional considerations with concern for mathematical artifacts such designs will
introduce in naïve exploration.

Here there is less agreement among software designers about what solution might be most
fitting to the problem’s constraints. Historically Sketchpad and Cabri both adopt solutions that
begin by treating the segment AB as intrinsically directed, thus enabling a dynamic discrimination
between the two potential intersections. However, they differ in their handling of many of the
special cases that arise with finite segments, or with arcs that can effectively “invert” their
orientations—and therefore the identity of their quadratic roots. Unhappily, in both programs, it is
possible to cause a point to hop from one of two possible circle intersections to the opposite, under
only a subtle motion of the configuration’s independent points, a discontinuity of output despite a
continuous transformation of input. The third major Dynamic Geometry software package,
Cinderella [11], took issue with this design, and introduced a new solution based on a sophisticated
internal mathematical architecture that guaranteed continuity in such transformations.
Unfortunately, subsequent research [12] proved that this gain simultaneously eliminated
determinism—the highly desirable property that the position of a construction’s independent
objects fully determines the position of its dependent ones. More recent Dynamic Geometry
implementations (such as GeoGebra or Desmos) have returned to the designs first proposed for
Sketchpad and Cabri, while sustaining numerous local exceptions and variations.

Numerous other situations arise in which the designer is forced to choose between two or
more equally plausible mathematical outcomes of a certain dynamic interaction, including ones less
narrowly divergent than the choice of “plus or minus a square root” arising between the roots of a
quadratic. Consider two points A and A' related by geometric reflection through a mirror line l. In
most if not all Dynamic Geometry software, dragging point A causes A' to move in mirror image.
But an equally viable interpretation would move line l instead, maintaining a position bisecting the

DA B

C

A

B

C

moving A and the fixed A'. Here a designer’s choice (assuming a designer considers both options!)
is more subtly pedagogical: should reflection dynamics emphasize the “equal but opposite”
motions of mirroring—an emphasis on isometrics and chirality—or instead the “perpendicular
bisector” role of the mirror, of potentially greater value to construction and proof?

Perhaps the broadest category of designed “inventions” of mathematical behavior in
Dynamic Geometry involves situations where users attempt to drag some dependent object—an
object that is constructed rather than independent or given. There is no precedent and even no
allowance for such an operation in a geometry of strict deduction. To adhere narrowly to forward
inferences reasoning only from givens to conclusions would outlaw such ideas categorically. The
earliest versions of Cabri enforced such stricture. But in designing early Sketchpad, I remarked that
in an environment in which different graphical objects of similar type (e.g. different segments) had
similar visual identity and similar mouse-based accessibility, whether they were independent or
dependent objects, users (including myself) would often want to drag such objects, and would often
try to drag them. An important early design conception I held of Sketchpad was it should function
as a tool abetting users' pursuit of their own goals rather than either as an authority such as a
teacher establishing external goals or a censor didactically prohibiting them. An error message—
“dragging such an object is outlawed by the very precepts of deduction itself!”—seemed ill-advised
in this situation and unlike the behavior of any physical tool with which I was familiar. So from its
earliest version Sketchpad has attempted to support users’ desire to drag dependent objects, and to
assert consistent and predictable mathematical behaviors to such actions.

Figure 3. Base cases of “reverse dragging”

Figure 3 illustrates two extremely simple applications of reverse dragging. In the before/after
sequence at left, a user drags a segment to the right. More precisely, a segment AB—an object that
is itself dependent on the location of independent points A and B—is dragged by a mouse gesture
from plane location m1 to m2. (In this notation, m1 and m2 are not points defined in the
construction; they represent only the extremes of a mouse motion.) In a deductively strict
interpretation, the situation is under-constrained: an infinite number of potential segments pass
through m2; the segment could reasonably evolve into any of these. Even introducing the same
proportionate invariance as we introduced in Figure 1—with m2 diving the new segment in the
same ratio m1 divided the old segment—fails to limit usefully the solution space. Instead,
Sketchpad adopts the (I hope) obvious solution of attempting to preserve the length and orientation
of the dragged segment, yielding the parallel translation of AB (shown in Figure 3 left, after). The
important point here is that the justification for such a design draws from any of a number of
sources—physical plausibility (in suggesting the segment maintains some “inertial” length or
orientation, where possible), or from embracing a hypothetical “tool nature” (tools don't give error

m1

m2

A

B
m2

A

B

messages), or even from imagined user convenience (perhaps the user wanted to move the existing
segment!)—rather than from any prescriptive mathematics preceding dynamic interactivity!

In the sequence in Figure 3 right, the image is symmetric with respect to a vertical mirror of
reflection. Moving elements on either side of the mirror causes the opposite image to move
opposite, regardless of which of the pair is technically an “independent” object. Even though one
side necessarily preceded the other in the construction sequence behind the original configuration,
the designed dynamics emphasize the symmetry of the present transformation over the dependency
of its historical construction.

These cases of “reverse dragging” are no more arbitrary—or rather, no more dependent on
new innovation and productive design—than the earlier discussed figurations, but they appear to be
more controversial among practitioners. Cinderella joined Cabri in adopting a rigid, forward-only
propagation of dependency. Then subsequent versions of Cabri relented, acknowledging the
tremendous convenience users found in being able to reposition a segment or a circle by dragging
that object directly, rather than by dragging its defining points. Then GeoGebra copied Cabri’s
model. But both suffer from a somewhat capricious limitation: reverse dragging works only on
objects that themselves depend immediately from independent points, yet other similar objects
remain irreversible. Attempting to drag them has no effect. This gives rise to an unfortunate
situation in which the very draggability of an object no longer depends on that object’s fundamental
definition (a segment defined through two points, say), but instead on non-obvious conditions
imposed on the its ancestry. (To drag a segment through two points it is not sufficient, in GeoGebra
for example, for its parental points to be draggable; they must instead be free.)

By contrast, Sketchpad—and more recently, Desmos—deploy reverse draggability as a

generalized premise of Dynamic Geometry, as something consistently available rather than limited
to special expedient circumstances. Dragging any constructed element attempts to relocate its
determining geometry in such a way that the element remains under the mouse over the course of
the motion. This is of course a heuristically-defined search, since—just as in the forward-dragging
cases listed above—multiple and diverse solutions exist. From an analytic perspective we are now
asking neither “what is the solution to this set of equations?” nor “which of the multiple solutions
to this system of equations is preferrable?” but rather “which system of equations might produce
this desired solution?” It is an entirely different approach to problem posing, and occasionally the
system yields startling insight. In the example of Figure 4, left, a user begins with construction of
medians of a triangle, that concurs in a point (the centroid X). Knowing the circumcenter of a
triangle is a similar point of concurrence (of side bisectors), she might wonder “is it possible for the
centroid and circumcenter to be the same point?” Drawing a circle and reinscribing her triangle
inside it allows her to compare the triangle’s centroid to its circumcenter O (Figure 4, middle). She

X
B

C

A

X
O

B

A

C

X OB

A

C

then drags the centroid—a highly dependent object, a point of concurrence of three medians, which
are themselves segments connecting points on the circle (the reinscribed triangle’s vertices) to
midpoints of the sides opposite those vertices—and moves it toward the center of the circle. The
triangle wriggles and stretches into a position (Figure 4, right) where X and O coincide at just the
moment that—ah ha!—the triangle becomes equilateral. Such provocations to insight cannot occur
for the strict axiomatician, for whom reverse dragging is geometric heresy, but are very in keeping
with the inductive and exploratory approaches that were encouraged as complements to strictly
deductive enterprise by the mathematics reform movements of the 1980s.

Reflection

Collectively, this case history of design situations demonstrates that when the surface of
traditional mathematical practice is wrapped taut across a new representational medium, fissures or
tears or holes open up in which prior mathematics is insufficient to describe the new shape. These
can be viewed as inadequacies of the novel medium or—equally—as opportunities to ask and
answer new mathematical questions. Thus every new representation both opens and closes doors to
potential forms of activity. When we survey how new questions are answered and how such
answers are ratified, we see a variety of mechanics at play. Sometimes even where a question has
never been previously asked, a solution appears so obviously sufficient there is little interest in
questioning it further (the point-on-segment example). In other situations, an issue appears
ultimately resolved by reasoned consensus emerging from a community’s grappling over time with
various alternatives (the quadratic intersection example). Elsewhere, a variety of equivalent
solutions seem to vary largely on sociocultural lines, reflecting pedagogic norms for instance that
may vary place to place, and in these moments we may sustain multiple viable solutions although
perhaps only one in one place at one time. (For example: should a constructed symmetry better
appear as a construction or as a symmetry, in situations where both cannot be emphasized
equally?). Even where a solution arises as the result of one individual’s singular or quixotic vision,
often such vision appears consonant with developments in surrounding socio-material and
sociocultural milieux (as in the origin of Dynamic Geometry in the dawn of the modern graphical
user interface; or in the relation of reverse dragging to the “inductive approaches” encouraged by
the 1989 NCTM Standards [13]). These varied mechanics demonstrate not just how a novel tool
arises within a social context but how a community of practice adopts and empowers a new
representation.

It is hubris to suggest that a handful of software programs, or even an entire genre of them, form
some sort of epochal advance in the long evolution of mathematical representation or practice.
Software goes obsolete within the lifetime of its authors and compared to the durability of journal
publication (to say nothing of the durability of The Elements!), is as fragile as Archimedes'
drawings in the sand. And yet, the design and social ratification of Dynamic Geometry
representations stands as a small example of an ongoing and much larger revolution in
representation. The rise of propositional and symbolic mathematics, in the era of Plato and Euclid,
corresponds historically to the rise of pervasive writing and the logocentric technologies of print.
2500 years later, print—with its relatively fixed symbol catalog and its physical archive in the
bookshelves and libraries of the world—is being rapidly and systemically replaced by
computational representations. While computers excel at symbol manipulation—and therefore will
extend and further symbolic mathematics—it is perhaps a skeuomorphic error to think of them only
as symbol processors; they are electricity processors. While we may code their currents and

voltages into symbolic zeroes and ones, we then deploy those symbols to depict graphical diagrams
and temporal motions, and to capture gesturing hands, probing fingers, and rolling mice. These
non-symbolic infrastructures point the way to a post-symbolic mathematics, of which Dynamic
Geometry is perhaps an early suggestion. As in biological evolution there is no goal or even clear
direction, only a mechanism of change. Ultimately, what we mean by mathematics is a function of
what we do, when we do mathematics, and of what we think, when we think mathematically. Both
these in turn are constituted by the representations, technologies, infrastructure and affordances of
the moment. When we look closely at any one of them, such representations or technologies reveal
themselves to be caught, in that moment—as in every moment—between the nostalgia for a
vanished past, and the uncertain vision of many potential futures.

References

[1]. Jackiw, N. (1991, first version) The Geometer’s Sketchpad (computer Software). Key
Curriculum Press.

[2]. Balacheff, Nicolas (1988) Une étude des processus de preuve en mathématique chez des
élèves de collège. Modélisation et simulation. Institut National Polytechnique de Grenoble -
INPG; Université Joseph-Fourier - Grenoble I.

[3]. Seidenberg, A. (1961) The ritual origin of geometry. Arch. Hist. Exact Sci. 1, 488–527
(1961). https://doi.org/10.1007/BF00327767.

[4]. Seidenberg, A. (1962) The ritual origin of counting. Arch. Hist. Exact. Sci. 2, 1–40 (1962).
https://doi.org/10.1007/BF00325159.

[5]. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind
brings mathematics into being. Basic Books.

[6]. Laborde, J.-M. et al. (1990, first version) Cabri Géomètre (computer software), LSD-
IMAG, Université Joseph-Fourier - Grenoble.

[7]. Finzer, W. and Bennett, Dan. (1995) From Drawing to Construction with The Geometer’s
Sketchpad. The Mathematics Teacher, 88.5 (May).

[8]. Hoyles, C. and Noss, R. (1994) Dynamic Geometry Environments: What’s the Point? The
Mathematics Teacher, 87.9 (December). https://doi.org/10.5951/MT.87.9.0716.

[9]. Hofstadter, Douglas R. Discovery and Dissection of a Geometric Gem. In James R. King
and Doris Schattschneider (eds.), Geometry Turned On!: Dynamic Software in Learning,
Teaching, and Research. Washington, D.C.: The Mathematical Association of America
(1997): 3–14.

[10]. Norman, Don (2013). The Design of Everyday Things: Revised & Expanded Edition.
Basic Books. ISBN 978-0-465-05065-9.

[11]. Kortenkamp, U. and Richter-Gebert, J. (2000, first version) Cinderella (computer
software). Springer.

[12]. Gawlick, T. (2001). Dynamic Notions for Dynamic Geometry. In Borovcnik and
Kautschitsch (eds.), Fifth International Conference on Technology in Mathematics
Teaching, Klagenfurt.

[13]. National Council of Teachers of Mathematics (1989). Curriculum and Evaluation
Standards for School Mathematics. Reston, Virginia.

——

