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Abstract

Fractional blending, also known as the �solera system�, is a technique dating from the mid

19-th century, for the aging of liquids such as forti�ed wines, spirits, and balsamic vinegars.

Such products require careful aging before they can be sold, and careful mixing of liquids

from di�erent ages is thus required. At each stage, every six months for example, or each

year, a new un-aged liquid is added to the system, and a sequence of mixings is used to

��lter�, as it were, this new material through the system. The result at the end is a liquid

carefully blended from di�erent ages, with the oldest predominating. When properly done,

this ensures a constant supply of an appropriately aged product. The mathematics can be

described as a sequence of di�erence equations, or recurrence relations, which leads into some

matrix algebra, and it turns out that this mathematics is more interesting than the simple

explanation of the system might lead one to believe. This article explores this mathematics,

using a computer algebra package for all the heavy lifting.

1 Introduction

The solera system [7] originated in Spain in the 19th century. It consists of a selection of
barrels�of sherry, for example�all of which together form the criaderas, or nursery.

A solera system is generally visualized as a pyramid, as shown in �gure 1. The bottom
barrels are in fact the solera, which means ��oor� or �sole� in Spanish.

Although a pyramid is a standard representation of a solera system, in fact the di�erent rows
of barrels may be spread out in di�erent cellars, just very carefully labelled.

At the end of each aging period; a year say, or maybe six months, one-quarter of the sherry
in each of the bottom barrels is taken away for bottling. They are �lled up from the third row;
each barrel of which loses one-third of its contents. These barrels, in turn, are re�lled from the
second row, so each barrel here loses half its contents. And these barrels are �lled from the
top barrel, which thus becomes empty. This top barrel is then �lled with the newest sherry for
aging.1

The beauty of the solera system, is that if it is carefully managed, the bottom barrels will
always contain an old mixture which can be sold. And this is constantly renewed. This system
thus provides a continually renewed aged mixture.

Of course there's much more to a solera system than this. A great deal spends on the skill
of the cellar master, �rst to ensure that all barrels in the criaderas are maintained at optimum
temperature and humidity, and then to ensure that the transfer of sherry between barrels is
done in such a way so as not to disturb the maturing sherry.

1A very good explanation, with solera animations beginning at 7:37, can be found at https://bit.ly/3r7Nh4Z.
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Fresh distillate

Aged material to be bottled

Figure 1: The solera system

This system is now in use world-wide to manufacture forti�ed wine and spirits of all sorts,
as well as condiments such as balsamic vinegar.

2 Basic modelling

Before we start, note that there are several articles already about fractional blending; for exam-
ple [1, 3, 6]. None of these adopt the approach we've taken, nor do they seem to use the same
mathematical model to describe the blending. Moreover, none of them use a CAS (the �rst two
were written long before and CAS was available), and as we shall see, the use of a CAS allows us
to work with a simple model, and to manage with ease the expressions that arrive in the course
of our use.

To develop a model, we shall consider four barrels of di�erent volumes, which at aging time
n will have ages an, bn, cn, dn. In the four layer system (as in �gure 1), one quarter of dn is
taken o� and replaced from cn. Thus immediately after this transfer, the age of the mixture in
d is

3

4
dn +

1

4
cn

At the end of the next aging period, before the next transfer, this mixture will have aged by one
period which produces

dn+1 =
3

4
dn +

1

4
cn + 1.



Likewise we have

cn+1 =
2

3
cn +

1

3
bn + 1

bn+1 =
1

2
bn +

1

2
an + 1

an+1 = 1.

The last equation is because the barrel on the top row is emptied and �lled afresh. What we
have now is a system of di�erence equations [5, 2] relating the ages at stage n to the ages at the
previous stage.

Suppose at the end of the �rst periods, before any transfer is done, we have

a(1) = 1, b(1) = 2, c(1) = 3, d(1) = 4.

To avoid too much tangled algebra, our tool of choice will be Python's SymPy [4] module,
which provides an rsolve command for solving di�erence equations. To do this, �rst rewrite
using integers only:

2bn+1 = bn + an + 2

and use an = 1 as shown in Listing ??.

In[]: import sympy as sy

In[]: b = sy.Function('b')

In[]: c = sy.Function('b')

In[]: d = sy.Function('b')

In[]: bn = sy.rsolve(2*b(n+1)-b(n)-3,b(n),{b(1):2}); bn

3− 2

2n

In[]: cn = sy.rsolve(3*c(n+1)-2*c(n)-bn-3,c(n),{c(1):3}); cn

−15

2

(
2

3

)n

+
4

2n
+ 6

In[]: dn = sy.rsolve(4*d(n+1)-3*d(n)-cn-4,d(n),{d(1):4}); dn

45

2

(
2

3

)n

− 76

3

(
3

4

)n

− 4

2n
+ 10

This means that the asymptotic age of the solera barrels will be 10 aging periods. If the
transfer of material between the barrels takes place every six months, the age in the bottom
barrels will approach 5 years.

We can work with the recurrence relations to obtain individual equations for each one. We
start with

2bn+1 = bn + 3 ⇒ 2bn+1 − bn = 3 (1)



and we write out the recurrence relation for cn twice:

3cn+1 = 2cn + bn + 3 (2)

3cn+2 = 2cn+1 + bn+1 + 3 (3)

Now suppose we multiply the equation (3) by 2 and subtract equation (2) from it:

6cn+2 − 3cn+1 = 4cn+1 − 2cn + 2bn+1 − bn + 2(3)− 3.

Bu equation 1 we can replace 2bn+1 − bn with 3, thus producing

6cn+2 − 3cn+1 = 4cn+1 − 2cn + 6

This can be cleaned up to produce

6cn+2 − 7cn+1 + 2cn = 6. (4)

The same thing can be done to produce a recurrence relation for dn, writing it out three times
and eliminating the cn terms by equation (4):

4dn+1 = 3dn + cn − 4 (5)

4dn+2 = 3dn+1 + cn+1 − 4 (6)

4dn+3 = 3dn+2 + cn+2 − 4 (7)

In this case, to use equation (4) we compute

6× (7)− 7× (6)+ 2× (5)

This will eliminate all the c terms, replacing them with 6, and will produce:

24dn+3 − 28dn+2 + 8dn+1 = 18dn+2 − 21dn+1 + 6dn + 6 + 4

This can be rewritten as

24dn+3 − 46dn+2 + 29dn+1 − 6dn = 10 (8)

The coe�cients in equations (4) and (8) may look at �rst to be quite random, but this is not
the case. We �rst notice that the characteristic equations for each recurrence relation are easily
factorized into linear factors:

6λ2 − 7λ+ 2 = (2λ− 1)(3λ− 2)

24λ3 − 28λ2 + 29λ− 6 = (2λ− 1)(3λ− 2)(4λ− 3)

and this pattern can be continued.
Also, if we create an array A of the coe�cients of each relation:

1 2 3 4 5

1 1
2 2 −1
3 6 −7 2
4 24 −46 29 −6
5 120 −326 329 −146 24

it is easy to see that (assuming all empty cells to have zero values):

An,1 = n!, An,k = nAn−1,k − (n− 1)An−1,k−1 for k ≥ 1.



3 Matrix formulation

The di�erence equations can be written in matrix form asbn+1

cn+1

dn+1

 =

1/2 0 0
1/3 2/3 0
0 1/4 3/4

bncn
dn

+

3/21
1


We don't include an equation for an as that is constant. Writing

bn+1 = Abn +X

and with a starting vector b1, we have

bn+1 = Anb1 + (An−1 +An−2 + · · ·+A2 +A+ I)X

and the sum of powers of A can be written as

(An − I)(A− I)−1.

and so the expression for bn+1 is:

bn+1 = Anb1 + (An − I)(A− I)−1X. (9)

The matrix A is diagonalizable:

A =

 1 0 0
−2 −1 0
2 3 1

1/2 0 0
0 2/3 0
0 0 3/4

 1 0 0
−2 −1 0
2 3 1

−1

=

 1 0 0
−2 −1 0
2 3 1

1/2 0 0
0 2/3 0
0 0 3/4

 1 0 0
−2 −1 0
4 3 1


Thus

An =

 1 0 0
−2 −1 0
2 3 1

(1/2)n 0 0
0 (2/3)n 0
0 0 (3/4)n

 1 0 0
−2 −1 0
4 3 1



=

 (1/2)n 0 0

−2(1/2)n + 2(2/3)n (2/3)n 0

2(1/2)n − 6(2/3)n + 4(3/4)n −3(2/3)n + 3(3/4)n (3/4)n


Given the matrix An we can now develop the rest of the result, noting that

(A− I)−1 =

−2 0 0
−2 −3 0
−2 −3 −4


and using equation (9). This produces

bn+1

cn+1

dn+1

 =

3−
(
1
2

)n
6 + 2

(
1
2

)n − 5
(
2
3

)n
10− 2

(
1
2

)n
+ 15

(
2
3

)n − 19
(
3
4

)n




To get the equations for bn, cn and dn note that, for example, (2/3)n−1 = (3/2)(2/3)n. Thus all
powers can be scaled to produce powers one less. The result is:

bn = 3− 2

(
1

2

)n

cn = 6 + 4

(
1

2

)n

− 15

2

(
2

3

)n

dn = 10− 4

(
1

2

)n

+
45

2

(
2

3

)n

− 76

3

(
3

4

)n

and it will be seen that these are the same equations as obtained earlier on using the rsolve

command in Python's SymPy module.
All of the above can be simpli�ed by writing the recurrence as:

bn+1

cn+1

dn+1

1

 =


1/2 0 0 3/2
1/3 2/3 0 1
0 1/4 3/4 1
0 0 0 1



bn
cn
dn
1


The matrix M can also be diagonalized as M = ADA−1:

1/2 0 0 3/2
1/3 2/3 0 1
0 1/4 3/4 1
0 0 0 1

 =


1 0 0 3
−2 −1 0 6
2 3 1 10
0 0 0 1



1/2 0 0 0
0 2/3 0 0
0 0 3/4 0
0 0 0 1




1 0 0 3
−2 −1 0 6
2 3 1 10
0 0 0 1


−1

Since the top three diagonal elements of D are all less than one, the limiting value of Dn will
be a 4× 4 matrix all zero except for the bottom right element, which is 1. This means that the
limiting values of the ages are:

1 0 0 3
−2 −1 0 6
2 3 1 10
0 0 0 1



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




1 0 0 3
−2 −1 0 6
2 3 1 10
0 0 0 1


−1 

2
3
4
1

 =


0 0 0 3
0 0 0 6
0 0 0 10
0 0 0 1



2
3
4
1

 =


3
6
10
1


This approach also shows that the limiting value is independent of the starting ages, since

0 0 0 3
0 0 0 6
0 0 0 10
0 0 0 1



b0
c0
d0
1

 =


3
6
10
1

 .

4 Limiting values

As n increases, the age in the barrels at each layer approaches a constant value. We diagonalize A
as PDP−1 and since every diagonal element of D is less than one, it follows that An approaches
zero. From equation (9) if An is set to zero, we have, as a limiting vector:

−(A− I)−1X = −

−2 0 0
−2 −3 0
−2 −3 −4

3/21
1

 =

 3
6
10





To generalize this, suppose we have k rows, with A being the matrix whose diagonal elements
will be 1/2, 2/3, 3/4, 4/5, . . . and whose sub-diagonal elements will be 1/3, 1/4, 1/5, . . ., like
this:

A =


1/2
1/3 2/3

1/4 3/4
1/5 4/5

. . .
. . .


Then:

A− I =


1/2
1/3 −1/3

1/4 −1/4
1/5 −1/5

. . .
. . .


Hand or computer-aided computation (for example, the Python command (A-sy.eye(3)).inv())
can be used to show that for increasing sizes, the matrices (A− I)−1 are:

−2 0 0
−2 −3 0
−2 −3 −4

 ,


−2 0 0 0
−2 −3 0 0
−2 −3 −4 0
−2 −3 −4 −5

 ,


−2 0 0 0 0
−2 −3 0 0 0
−2 −3 −4 0 0
−2 −3 −4 −5 0
−2 −3 −4 −5 −6


This pattern is easily proved by induction. Suppose that Ak is the k × k version of A− I, and
Bk is the inverse. Then we can de�ne Ak+1 and Bk+1 with block matrices:

Ak+1 =

 Ak 0k

0 0 . . . 0 1
k+1 − 1

k+1

 , Bk+1 =

 Bk 0k

− 2 − 3 − 4 . . .− k −(k + 1)


writing uk+1 for the bottom left block of Ak+1, and vk+1 for the bottom left block of Bk+1, their
product is

Ak+1Bk+1 =

 AkBk + 0kvk+1 Ak0k + 0k[−(k + 1)]

ukBk + (− 1
k+1)vk uk0k + (− 1

k+1)(−(k + 1))


All cells are easily computed, but the bottom left cell needs a little explanation. We note that uk
consists of only one non-zero value 1/(k+1), in the last place, so that ukBk essentially multiples
the last row of Bk by that non-zero value. But the last row of Bk and vk are the same vector,
so the bottom left cell is

1

k + 1
vk +

(
− 1

k + 1

)
vk = 0.

Thus

Ak+1Bk+1 =

 I 0k

0Tk 1





which is the (k + 1)× (k + 1) identity matrix.
Since the limiting age of the barrels in the solera row has been shown to be

−(A− I)−1X

where X is a column vector starting with 3/2 but all other values are 1's. This is then equal to

−


−2
−2 −3
−2 −3 −4
...

−2 −3 −4 · · · −k




3/2
1
1
...
1

 =


3
3 + 3
3 + 3 + 4

...
3 + 3 + 4 + . . .+ k

 =


3
6
10
...

k2+k
2


The �nal value shows that the limiting age of the solera barrels in a system with k layers is
(k2 + k)/2.

5 Other fractions

Up until now, we have been moving one compete barrel between rows, thus leaving the top
barrel completely empty each time. But suppose we move some fraction p of a barrel instead,
where 0 < p ≤ 1.

As before, we'll start with a four-tier system. Emptying a total of p barrels from the solera
reduces each barrel by p/4. This amount needs to be replaced from the third row, thus reducing
each of those barrels by p/3. Similarly, p/2 barrels will be taken from each of the barrels in the
second row, and as described at the beginning of this section, p from the top barrel.

Since the top barrel is not necessarily completely emptied, it will need to be considered. The
recurrence relation relating ages in each barrel are then:

an+1 = (1− p)an + 1

bn+1 = (1− p

2
)bn +

p

2
an + 1

cn+1 = (1− p

3
)cn +

p

3
bn + 1

dn+1 = (1− p

4
)dn +

p

4
cn + 1

If p = 1 these equations are equal to our original equations.
It is in fact easy to solve these using matrix methods, with

an+1

bn+1

cn+1

dn+1

 =


1− p 0 0 0

p
2 1− p

2 0 0
0 p

3 1− p
3 0

0 0 p
4 1− p

4



an
bn
cn
dn

+


1
1
1
1


If we write this as

xn+1 = Axn + b

then, as before

xn = Anx0 + (An − I)(A− I)−1b (10)



and so the solution reduces to �nding An. But again we have an easily diagonalizable matrix,
with 

1− p 0 0 0
1− p

2
p
2 0 0

0 1− p
3

p
3 0

0 0 1− p
4

p
4



=


−6 0 0 0
6 1 0 0

−3 −2 −1 0
1 2 3 1



1− p 0 0 0
0 1− p

2 0 0
0 0 1− p

3 0
0 0 0 1− p

4



−6 0 0 0
6 1 0 0

−3 −2 −1 0
1 2 3 1


−1

Also,

(A− I)−1 =


−1

p 0 0 0

−1
p −2

p 0 0

−1
p −2

p −3
p 0

−1
p −2

p −3
p −4

p


Substituting into equation (10), and with a0 = 1, b0 = c0 = d0 = 0 produces

an =

(
1− 1

p

)
(1− p)n +

1

p

bn =

(
−1 +

1

p

)
(1− p)n +

(
1− 4

p

)(
1− p

2

)n
+

3

p

cn =

(
1

2
− 1

2p

)
(1− p)n +

(
−2 +

8

p

)(
1− p

2

)n
+

(
3

2
− 27

2p

)(
1− p

3

)n
+

6

p

dn =

(
−1

6
+

1

6p

)
(1− p)n +

(
2− 8

p

)(
1− p

2

)n
+

(
−9

2
+

81

2p

)(
1− p

3

)n

+

(
8

3
− 128

3p

)(
1− p

4

)n
+

10

p

We can see that the limiting values in the solera row, in a criederas with k layers, will be

k2 + k

2p
.

And this can be easily shown by noting the general form of (A− I)−1, which can be established
by induction. Let Ak be the matrix A − I of size k × k. Then we can express Ak+1 as a block
matrix:

Ak+1 =


Ak 0k

0 0 0 . . . 0 p
k+1 − p

k+1





If Bk is the inverse of Ak, then

Bk+1 =


Bk 0k

−1
p − 2

p − 3
p . . .−

k
p −k+1

p


Writing the lower left block of Ak+1 as uk and of Bk+1 as vk, we have:

Ak+1Bk+1

 AkBk + 0kvk Ak0k + 0k(−k+1
p )

ukBk + (− p
k+1)vk uk0k + (− p

k+1)(−
k+1
p )


By the induction hypothesis, AkBk = I. For the bottom left, we note that by construction, vk
equals the bottom row of Bk. And since uk consists of zeros except for a �nal value of p/(k+1),
the results of the �rst product is simply this value multiplied into every element of the last row
of Bk. Thus:

ukBk +

(
− p

k + 1

)
vk =

(
p

k + 1

)[
−1

p
− 2

p
− 3

p
. . .− k

p

]
+

(
p

k + 1

)[
−1

p
− 2

p
− 3

p
. . .− k

p

]
= 0

All other products are more straightforward; in the end we have

Ak+1Bk+1 =

 I 0k

0 0 0 . . . 0 1


which is the identity, as required.

The limiting value of the age in the solera row is then

−(A− I)−1b

and since b consists entirely of 1's, this product is

1
p

1
p + 2

p

1
p + 2

p + 3
p

...

1
p + 2

p + 3
p + · · ·+ k

p


=



1
p

3
p

6
p

...

k2+k
2p


6 General arithmetic sequences

In the previous section, the number of barrels in row k (starting with the top row numbered 1)
is k. We now consider a more general system where the k-row contains g + (k − 1)h barrels,



where g, h ≥ 1 (and are integers). And at each stage m barrels are moved into the top row and
between other rows, with m ≤ g.

In the �rst row, assuming all barrels to be full, m barrels are moved to row 2, and g − m
barrels are left. We are thus moving a fraction of m/g material between rows. But in this more
general situation, we have 1 − m/g material left in each of the top barrels. This will then be
aged between periods, so that:

an+1 =

(
1− m

g

)
an + 1. (11)

Here the fraction m/g corresponds to the fraction p in the previous section. This means that we
can re-purpose the equations given at the beginning of section 5 to obtain the other equations:

bn+1 =

(
1− m

g + h

)
bn +

m

g + h
an + 1

cn+1 =

(
1− m

g + 2h

)
cn +

m

g + 2h
bn + 1

dn+1 =

(
1− m

g + 3h

)
dn +

m

g + 3h
cn + 1

(12)

Multiplying out to clear the fractions produces:

gan+1 = (g −m)an +man−1 + g

(g + h)bn+1 = (g + h−m)bn +man + g + h

(g + 2h)cn+1 = (g + 2h−m)cn +mbn + g + 2h

(g + 3h)dn+1 = (g + 3h−m)dn +mcn + g − 3h

The �rst two can be entered into SymPy as:

In[]: n,m,g,h = sy.var('n,m,g,h')

In[]: an = sy.rsolve(g*a(n+1)-(g-m)*a(n)-g,a(n),{a(1):1})

In[]: bn = sy.rsolve((g+h)*b(n+1)-(g+h-m)*b(n)-sy.simplify(m*an)-g-h,\

b(n),{b(1):0})

These turn out to have the splendid solutions:

an = −
g
(
g−m
g

)n

m
+

g

m

bn =

(
g+h−m
g+h

)n (
−g3 − 3g2h+ g2m− 3gh2 + ghm− h3

)
ghm+ h2m− hm2

+
g2

(
g−m
g

)n
+ h (2g + h)

hm

With a little bit of algebra (helped by SymPy) this last can be written as:

bn = −(g + h)(g2 + 2gh− gm+ h2)

hm(g + h−m)

(
g + h−m

g + h

)n

+
g2

hm

(
g −m

g

)n

+
2g + h

m

=
g2 + 2gh− gm+ h2

hm

(
g + h−m

g + h

)n−1

+
g2

hm

(
g −m

g

)n

+
2g + h

m



Already we see that we're obtaining expressions of considerable complexity. It turns out that
the mechanisms of SymPy are unable to solve the comparable equation of cn directly, but we
can give it some help.

First note that the form of the di�erence equation for cn is

cn+1 =

(
1− m

g + 2h

)
cn − m

g + 2h

(
A

(
1− m

g

)n

+B

(
1− m

g + h

)n

+ C

)
− 1

where A,B,C are the coe�cients from bn. We can write this more simply as:

cn+1 = tcn −Axn −Byn − C − 1

where A,B,C now include the multiplier m/(g + h). This can be solved:

In[]: from sympy.abc import t,x,y,A,B,C

In[]: cn = sy.rsolve(c(n+1)-t*c(n)-A*x**n-B*y**n-1,c(n),{c(1):0})

The output is too long to be shown, but all we need to is to extract from the expression for
bn the papers corresponding to A,B,C,X, y and substitute them into the expression for cn just
obtained, along with the de�nition for t.

We have seen that the expression for bn is reasonably hideous, but the coe�cients can be
extracted by setting various of the powers to zero with a little function:

In[]: def power_sub(i,j):

....temp = {((g-m)/g)**n:i,((g+h-m)/(g+h))**n:j})

....return(temp)

In[]: C1 = bn.subs(power_sub(0,0))

In[]: A1 = (bn - C1).subs(power_sub(1,0))

In[]: B1 = (bn - C1).subs(power_sub(0,1))

Here C1 is the constant term of bn, and A1, B1 are the coe�cients of(
g −m

g

)n

,

(
g + h−m

g + h

)n

respectively. Finally all of this can be put into the expression for cn:

In[]: x1 = (g-m)/g

In[]: y1 = (g+h-m)/(g+h)

In[]: t1 = (g + 2*h - m)/(g + 2*h)

In[]: A1 *= m/(g+2*h)

In[]: B1 *= m/(g+2*h)

In[]: C1 *= m/(g+2*h)

In[]: cn1 = cn.subs({A:A1,B:B1,C:C1,x:x1,y:y1,t:t1})

This is still a very complicated expression, but we can get a sense of it by noting that it will
have the form:

cn = C3

(
g + 2h−m

g + 2h

)n

+ C2

(
g + h−m

g + h

)n

+ C1

(
g −m

g

)n

+ C0 (13)

As for bn above, we can �nd the values of the coe�cients Ck by setting various of the powers to
zero, again with a small function:



In[]: def power_sub3(i,j,k):

....temp = {((g-m)/g)**n:i,((g+h-m)/(g+h))**n:j,

((g+2*h-m)/(g+2*h))**n:k}

....return(temp)

In[]: C0 = sy.simplify(cn2.subs(power_sub3(0,0,0)))

In[]: C1 = sy.simplify((cn2-C0).subs(power_sub3(1,0,0)))

In[]: C2 = sy.simplify((cn2-C0).subs(power_sub3(0,1,0)))

In[]: C3 = sy.simplify((cn2-C0).subs(power_sub3(0,0,1)))

These are:

C0 =
3(g + h)

m

C1 =
2g + h

g + 2h

C2 =
g4 + 4g3h− g3m+ 6g2h2 − 2g2hm+ 4gh3 − gh2m+ h4

h2m (g + h−m)

C3 =
−g4 − 8g3h+ g3m− 24g2h2 + 4g2hm− 32gh3 + 4gh2m− 16h4

2h2m (g + 2h−m)

Substituting these in equation 13 will provide the full solution for cn. Note that since all the
powers are of values less than 1, the limiting value as n increases is the constant term.

We can now turn our attention to the fourth row, given as the solution to the di�erence
equation for dn. However, given the complexities in trying to solve the previous equation for cn,
we will not try (although we could, if we felt like giving ourselves a hard time), but go straight
to determining the limit.

The equation is

dn =

(
1− m

g + 3h

)
dn +

m

g + 3h
cn + 1

and its solution will have the form

dn = A1

(
g + 3h−m

g + 3h

)n

+A2

(
g + 2h−m

g + 2h

)n

+A3

(
g + h−m

g + h

)n

+A4

(
g −m

g

)n

+A5

Our only concern is to �nd A5. We shall begin as we did for cn above, but without aiming to
determine any of the coe�cients, simply set all the powers to zero.

In[]: A,B,C,D,x,y,z = sy.var('A,B,C,D,x,y,z')

In[]: dn = sy.rsolve((g+3*h)*d(n+1)-(g+3*h-m)*d(n)-\

m*(A*x**n+B*y**n+C*z**n+D)-g-3*h,d(n),{d(0):0})

In[]: dn1 = sy.simplify(dn)

In[]: const_d = dn1.subs({((g+3*h-m)/(g+3*h))**n:0,x**n:0,y**n:0,z**n:0})

Here the expression Axn + byn +Czn +D stands for cn; the values of A, b and C are irrelevant
because each of x, y, z ae less than 1. This produces:

Dm+ g + 3h

m



But the D is in fact the constant term from cn, and substituting this for D produces the limiting
age for the material in the fourth row:

4g + 6h

m
.

Note that if we set m = g = h = 1 corresponding to the original setup, then this value is equal
to 10 (as it should).

The limiting values in the �rst four rows are:

a∞ =
g

m

b∞ =
2g + h

m

c∞ =
3g + 3h

m

d∞ =
4g + 6h

m
.

A pattern is now apparent, and can be continued for increasing n. Note that if all variables are
equal to 1, these limiting values are 1, 3, 6, 10, as previously.

We can demonstrate this by considering the general solution of a di�erence equation, for
example

xn+1 = λxn + pzn + qwn + r.

Assuming that all of λ, z, w are distinct, and using the method of undetermined coe�cients,
then the homogeneous solution will be of the form xn = Aλn and the particular solution of the
form yn = Pzn +Qwn +R.

Substituting yn into the di�erence equation produces

Pzn+1 +Qwn+1 +R = λ(Pzn +Qwn +R) + pzn + qwn + r.

We can now equate the coe�cients of zn, wn, and the constant term on both sides; these
equations are, respectively:

Pz = λP + p

Qw = λQ+ q

R = λR+ r

It is the last value which concerns us, and so

R =
r

1− λ
.

This is clearly generalizable to particular solutions of any length. In our context, all values
λ, z, w are less then 1, so that in the limit only the constant term matters.

Going back to the original set of di�erence equations 11 and 12 we have that the constant
term for an is g/m.

This means that the constant term in the equation for bn is

r =
m

g + h

( g

m

)
+ 1 =

g

g + h
+ 1.



For this equation,

λ = 1− m

g + h

and so

r

1− λ
=

2g + h

m

as we found previously. For the next equation (for cn), we have

r =
m

g + 2h

(
2g + h

m

)
+ 1 =

2g + h

g + 2h
+ 1

Since here, λ = 1−m/(g + 2h), we have

r

1− λ
=

3g + 3h

m
.

In general, suppose that ki is the constant term corresponding to the i-th row. We then have

ki =

(
m

g + (i− i)h
ki−1 + 1

)/(
m

g + (i− 1)h

)
= ki−1 +

g + (i− 1)h

m
.

Since k1 = g/m, we have, in general,

ki =
ig + i(i− 1)h/2

m
=

2ig + i(i− 1)h

2m
=

i

2m
(2g + (i− 1)h).

7 A �nal generalization

Suppose now that the numbers of barrels in row i is gi, where these values form a non-decreasing
sequence.

1 ≤ g1 ≤ g2 ≤ g3 ≤ . . .

Again we use m for the number of barrels-worth of liquid moved each time. We won't attempt
to try and �nd solutions to the di�erence equations, but simply determine the constant values
for each row. As before, the �rst constant value will be

k1 =
g1
m

.

A di�erence equation, say for row 4, will look like this:

dn+1 =

(
1− m

g4

)
dn +

m

g4
cn + 1

so that in all equations, g + (i− 1)h will be replaced with gi. Then for row i > 1, we will have

ki =

(
m

gi
ki−1 + 1

)/(
m

gi

)
= ki−1 +

gi
m
.



This means, for example, that

k4 =
g1 + g2 + g3 + g4

m

and so in general,

kn =
1

m

n∑
i=1

gi.

This generalizes the results of previous sections.

8 Final remarks

Although this work was inspired by a �real-life� situation (the visit of the author to a friend's
winery and distillery), it is in fact a nice example of the use of a computer algebra system to
solve systems of di�erence equations, both by standard techniques and also by the use of matrix
algebra. Even when the complexities were such that individual solutions could not be (easily)
obtained, we showed how to �nd the limiting values, which is in fact what counts in the world
of �ne wines and spirits. As a multi-billion dollar industry covering much of the world, this is
clearly an industry worth considering, at least mathematically. We note that fractional blending
is most often used for alcohol, and so might seem of no interest to people who don't or can't drink
alcohol. However, it is also used for non-alcoholic purposes such as for �ne balsamic vinegars.
We thus note that fractional blending systems have a very wide usage, and the science of them
may thus have a wide appeal.
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