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Abstract

This position paper claims that the way a mathematical problem is solved depends on 
the technology available to the problem-solver then. Drawing on the authors’ mathematical 
experience of finding a  n ew s olution t o a n o ld p roblem –  t he G eneralised Fermat Point 
Problem, salient observations are drawn to illustrate how a problem solver’s experience 
can shaped by technological affordances.

1 Introduction

A recent exploratory joint-work with the second author marks the genesis of this paper. The
long and short of it is that we were re-visiting an old geometry problem called the Fermat Point
Problem (original version involves 3 points in the 2D-plane) and could not satisfy ourselves with
the well-known Torricelli’s geometrical solution – it cannot be modified to solve the generalised
Fermat Point Problem (which involves n points, n ≥ 3). Our probe for a solution to the
generalised Fermat Point Problem led us to unearth various existing solutions – each emerged
from a unique time period in history and supported by distinctive technology available at
that time – and, finally, landed us on our own approach that makes use of Particle Swarm
Optimisation, something of the present time.

The Fermat Point Problem and its generalisation are, after all, not new. Despite this lack
of novelty, two things fuelled our exploration of this old problem. Firstly, we discovered that
each existing solution in the literature fails to address some aspect of the problem. Secondly,
we observed that what was available and accepted as a solution to the problem depended on
the mathematics and technology available at that point of time in history. In this paper, we use
the word ‘technology’ in a rather loose manner – that is, it is meant to encapsulate both the
mathematical machinery and the physical technology associated to it. For example, geometry



is the body of mathematical knowledge that deals with points, lines and curves in space, while
the technology associated with geometry consists of straightedge, compass, and mechanical
construction devices. 1 With these two points in mind, we set off to look for a new solution
that would overcome the identified short falls. As we actively create new solutions to an old
problem, our mathematical problem solving experience was continually enriched and shaped
by the technological affordances available to us in this present computer age.

This paper (a) records our problem-solving experience as we look for a new solution to
the Generalised Fermat Point Problem, and (2) draws out salient connections between how a
problem can be solved and the technology that avails to the problem solver(s) at that moment of
problem-solving. From these connections, we hope to gain some insights into how creative and
innovative mathematical thinking take place through currently available technology.

We organize this paper as follows. Firstly in Section , we state clearly the Fermat Point
Problem and recall Torricelli’s geometrical characterisation of the Fermat point of a triangle.
After a self-contained exposition of the existing solutions of the Fermat Point Problem (and
its generalisation) in Section 3, we proceed to critique the pros and cons of these solutions.
With these shortcomings in mind, we present in Section 4 our solution of the Generalised
Fermat Point Problem using Particle Swarm Optimisation (as the present-day technology). In
Section 5, we give a short exposition on the connection between the way a problem is solved and
the available technology to the problem-solver then. Based on this connection, we discuss some
implications on mathematics education, e.g. mathematics problem-solving and mathematics
curriculum in schools.

2 The Fermat Point Problem (FPP)

In the early 17th century, Pierre de Fermat (1601–1665) posed a problem to Evangelista Torri-
celli (1608-1647), asking him for the location of the Fermat point X of a given △A1A2A3, i.e.,
the point X in the same plane as △A1A2A3 for which the sum of its distances from each of
the vertices (A1, A2 and A3) is the minimum (see Figure 1). We term this the Fermat Point
Problem, or FPP for short.

Figure 1: Determine X for which A1X + A2X + A3X is minimum for △A1A2A3.

The existence of the Fermat Point of an arbitrarily given triangle was first established
geometrically by Evangelica Torricelli. We state and prove this result.

Theorem 1 (Fermat-Torricelli Point) Let △A1A2A3 be given.

1We therefore caution all ATMC participants to be wary of this broader sense of the word ‘technology’ we are
using here in this paper as opposed to the usual understanding that technology refers to computer technology.



1. If ∠Ai ≤ 120◦ for i = 1, 2, 3, then the Fermat Point X satisfies the condition ∠A1XA2 =
∠A2XA3 = ∠A3XA1 = 120◦.

2. If ∠Ai > 120◦ for some i = 1, 2, 3, then X is located at that obtuse angle.

Proof. 1. First we establish that the Fermat point X, if exists, must lie inside △A1A2A3.
Suppose on the contrary that X lies outside △A1A2A3. Without loss of generality, assume
that X and A1 lies on opposite sides of the line segment A2A3 (see Figure 2). Since X ′ is the

Figure 2: X ′ is the reflection of X in A2A3.

reflection of X in A2A3, we have that A2X = A2X
′ and A3X = A3X

′. Because A and X ′ lies
on the same side of A2A3 and X is on the opposite side, A1X

′ < A1X. Consequently,

A1X
′ + A2X

′ + A3X
′ < A1X + A2X + A3X,

contradicting that X is the Fermat point of △A1A2A3. Thus, the Fermat point X, if exists,
must lie inside △A1A2A3.

Suppose that ∠A1 is acute. Denote by Y ′ the image of any given point Y under clockwise
rotation of 60◦ about A1. Then A1A3 = A1A

′
3 and ∠A3A1A

′
3 = 60◦. Thus, △A1A3A

′
3 is

equilateral. Now, consider a variable point X inside △A1A2A3. Then A1X = A1X
′ and

∠XAX ′ = 60◦. Hence A1X = XX ′ (see Figure 3).

Figure 3: ∠A1 ≤ 120◦.

Thus, we have A1X +A2X +A3X = A2X +XX ′ +A′
3X

′ because A3X = A′
3X

′. One may
further assume that ∠A2 ≤ ∠A3. Note that ∠A2A3A

′
3 ≤ 180◦. Since A2 and A′

3 are given
points that are fixed, the straight line distance between A2 and A′

3 is the shortest one and thus
A1X +A2X +A3X = A2X +XX ′ +A′

3X
′ ≥ A2A

′
3. In particular, equality holds if and only if

X and X ′ lie on A2A
′
3. In other words, the minimum value of the sum A1X + A2X + A3X is

achieved exactly when ∠A1XA′
3 = 60◦ since in that case X ′ lies on A′

3X (see Figure 4).
Since ∠A1XA′

3 = ∠A1A3A
′
3 = 60◦, by the converse of the inscribed angle theorem we

have that A1XA3A
′
3 is a cyclic quadrilateral. Thus, X lies on A2A

′
3. In summary, X is a

Fermat point of △A1A2A3 if and only if X is the intersection of the circumcircle A1A3A
′
3 and



Figure 4: A1X + A2X + A3X is minimum exactly when X ′ lies on A′
3X.

A2A
′
3. As ∠A1XA′

3 = ∠A3XA′
3 = 60◦, it holds that ∠A1XA3 = 60◦. Similarly, ∠A3XA2 =

180◦ − ∠A3XA′
3 = 120◦. Thus X is the required Fermat point exactly when ∠A1XA2 =

∠A2XA3 = ∠A3XA1 = 120◦.
2. Without loss of generality, assume that A1 exceeds 120

◦. Again, denote by Y ′ the image
of any given point Y under clockwise rotation of 60◦ about A1. As in the preceding part, form
△A1A

′
3A3 and for any point X inside △A1A2A3 form △A1X

′X (see Figure 5).

Figure 5: ∠A1 > 120◦.

Note that △A1AA3 is congruent to △A1X
′A′3. As before, we have that A1X + A2X +

A3X = A′
3X

′ + X ′X + XA2. Without loss of generality, assume that ∠A2 ≤ ∠A3 so that
A1A3 ≤ A1A2. Since X is inside △A1A2A3, it holds that X

′X +XA2 = A1X +XA2 ≥ A1A2

and so A′
3X

′ +X ′X +XA2 ≥ A′
3X

′ +A1A2 = A1A3 +A1A2. Now if X lies outside △A1A2A3.
Employ the reflection trick used earlier (see Figure 2), there exists a point X ′ insides △A1A2A3

such that A1X + A2X + A3X > A1X
′ + A2X

′ + A3X
′. In our preceding consideration, since

X ′ is inside △A1A2A3 it follows that

A1X
′ + A2X

′ + A3X
′ ≥ A1A1︸ ︷︷ ︸

=0

+A1A2 + A1A3.

Thus, we conclude that A1 is the Fermat point of △A1A2A3.

3 How has the FPP been solved?

Having settled the existence of the Fermat Point, We now turn our attention to the various
approaches of locating it.



3.1 Geometrical technology

What kind of solutions were availed to mathematicians of Fermat and Torricelli’s times? Geom-
etry ! Geometry, along with arithmetic, stands as one of the oldest branch of mathematics. Until
the 19th century, geometry is solely devoted to Euclidean geometry which dealt with notions
of points, lines, planes, angles, surfaces, and curves. Euclidean geometry has a peculiar aspect
in that it can be expressly implemented by classical geometry construction relying on just a
compass and straightedge (i.e., an unmarked ruler). In a way, the mathematics of geometry is
defined and shaped by both the then-accepted body of geometrical axioms and results together
with the then-accepted technology of the geometrical tools of those times. Both pragmatic and
aesthetic in nature, geometry is a powerful tool in solving practical problems in elegance.

To locate the position of the unique Fermat Point X for the non-trivial case, that is, none of
the angles Ai’s exceed 120◦, Torricelli offered an elegant geometrical construction: (1) Construct
an equilateral triangle on each of two arbitrarily chosen sides of the triangle. (2) Draw a line
from each new vertex to the opposite vertex of the original triangle. (3) The two lines intersect
at the Fermat Point X (see Figure 6).

Figure 6: Constructing the Fermat Point X of △A1A2A3.

The above construction makes sense only if it results in only one point X irrespective of the
choice of the two sides of the triangle, and this is justified below:

• ∠V2A1A2 = ∠A3A1V3; V2A1 = A3A2 and A1A2 = A1V3. ∴ △V2A1A2 ≡ △A3A1V3.

• ∴ ∠A1V2X = ∠A1A3X. By the converse of the inscribed angle theorem applied to the
segment A1X, A1V2A3X is a cyclic quadrilateral.

• ∠A1XA3 = 180◦−∠A1V2A3 = 180◦−60◦ = 120◦. By the inscribed angle theorem applied
to the segment A2V3, we have ∠A1XV3 = ∠A1A2V3 = 60◦. So ∠A1XA3+∠A1XV3 = 180◦.
Thus, X lies on the line segment A3V3.

Therefore, X is the concurrent point of the lines A1V1, A2V2 and A3V3 (see Figure 7).

Remark 2 1. Lovers of Dynamic Geometry Softwares (DSG) will be delighted to know that
Geogebra, together with its automated reasoning tools, can be used to establish mathemat-
ically that the three lines A1V1, A2V2 and A3V3 are concurrent.

2. There are many mathematical topics related to the Fermat Point Problem, for example,
the Steiner Tree Problem. Readers who interested in the many geometrical musings related



Figure 7: X is the concurrent point of lines A1V1, A2V2 and A3V3.

to the Fermat Point Problem and the Steiner Tree Problem may look up the recent 2010
HOGMAA Student Paper by S. Streck ([9]).

We will run through a throughout geometry (Set 1) example now. Suppose we have 3
coordinates, A1(1,2), A2(3,0) and A3(0,0).

To locate the coordinates for V2(x2, y2), we form the following two equations:√
x2
2 + y22 =

√
5 (1)√

(x2 − 1)2 + (y2 − 2)2 =
√
5 (2)

Solving them simultaneously, we have x2 = −
√

13−4
√
3

4
= 1−2

√
3

2
and y2 = 1 +

√
3
2
. Now, we

proceed to find V1. As the x−coordinate of V1 is 3
2
, we have the following equation:

(3− 3

2
)2 + y2 = 32 (3)

giving us y = −
√
27
2
. Hence, V1 is (3

2
,−

√
27
2
).

Constructing a straight line l1 passing through V1(1.5,−
√
27
2
) and A1(1, 2) and l2 passing

through V2(
1−2

√
3

2
, 1 +

√
3
2
) and A2(3, 0), we have the following

l1 : y = (−4− 3
√
3)x+ 6 + 3

√
3 (4)

l2 : y = −4 +
√
3

13
x+

12 + 3
√
3

13
(5)

Solving equations 4 and 5 simultaneously, we obtained our Fermat point X(234+195
√
3

507
, 351+39

√
3

507
),

in exact form.

3.2 Mechanical technology

Moving ahead into the 18th century, mechanics has developed into a fairly mature field of
mathematics. In particular, the Italian-French mathematician and astronomer Joseph-Louis
Lagrange introduced Lagrangian mechanics in his 1788 work, Mécanique analytique, which



founded classical mechanics on the stationary-action principle (also known as the principle of
least action). Lagrangian mechanics characterises a mechanical system as a pair (M,L) com-
prising a configuration space M and a smooth function L within that space called a Lagrangian.
For most systems, L := T − V , where T and V the kinetic and potential energy of the system,
respectively. The stationary action principle asserts that the action functional of the system
derived from L must remain at a stationary point throughout the time evolution of the system.
This constraint then gives rise to the equations of motion of the system via the Lagrange’s
equations.

The FPP can be cast into a classical mechanics problem. Construct the △A1A2A3 on a
horizontal frictionless plane and place holes at each vertex A1, A2, A3. Consider a system of
three separate equal masses, each connected by long massless strings to a pivot point in the
triangle (see Figure 8). Pass one string through one of the holes that hangs a mass positioned
under each vertex, and let the system come to equilibrium.

Figure 8: Mechanical set-up for FFP.

Lemma 3 At equilibrium, the pivot point is exactly at the Fermat point X of △A1A2A3.

Proof. By the stationary-action principle, the above mechanical system looks for the stationary
state of L, where L = T − V , where T and V the kinetic and gravitational potential energy
of the system, respectively. Since the system is at static equilibrium, T = 0. Hence the
stationary value of L is attained when the gravitational potential energy is minimized, which
can be achieved by setting the weights closest to the ground. For each weight, the length of
string below the vertex would be as long as possible, or equivalently, the length of string on the
triangle is as short as possible. Hence the minimum V occurs the total string lengths on the
triangle is minimized – precisely when the pivoting point is at the Fermat point.

Theorem 4 The Fermat point X of △A1A2A3 satisfies the condition

∠A1XA2 = ∠A2XA3 = ∠A3XA1 = 120◦.

Proof. At equilibrium, the vector sum of the three forces acting on the pivot point is zero.
Since each mass is equal, these forces must be exactly 120◦ away from each other.



3.3 Vectorial technology

A systematic study and use of vectors were a 19th and early 20th century phenomenon. With
the vectorial machinery available to us, what type of solution for the FPP can emerge? A vecto-
rial solution of the FPP was put forth by Titu Andreescu and Oleg Mushkarov ([1]). Herein, we
first state a simple extension of the Fermat Point Problem to the so-called Generalised Fermat
Point Problem, and then give a vectorial proof that extends Andreescu and Mushkarov’s.

Definition 5 (Generalised Fermat Point Problem) Let n ≥ 3 be a positive integer. Given
n distinct co-planar points A1, · · · , An, locate a point X (if it exists), co-planar with the points
Ai’s, for which

A1X + · · ·+ AnX

is minimum. We use the acronym GFPP for Generalised Fermat Point Problem.

Theorem 6 The point X co-planar to the given points A1, A2, . . . , An, where n ≥ 3, for which
the unit vectors from X to each of the Ai’s sum up to the zero vector is the Fermat point of
A1, A2, . . . , An.

Proof. Let X be such a point. Denote by ai the position vector of Ai with respect to X, and
by ui its corresponding unit vector. By the definition of dot product of vectors, it holds that
|ai| = |ai||ui| cos 0 = ai · ui for all i = 1, 2, · · · , n.

Pick an arbitrary point P coplanar with A1, A2, . . . , An, and let its position vector with
respect to the Fermat point X be p. Thus, for each i = 1, 2, . . . , n, we have that

|ai| = ai · ui = (ai − p) · ui + p · ui ≤ |ai − p||ui|+ p · ui = |ai − p|+ p · ui.

Adding all these quantities together, we arrive at

|a1|+ · · ·+ |an| ≤ |a1 − p|+ · · ·+ |an − p|+ p · (u1 + · · ·+ un).

Since X satisfies the condition u1 + · · ·+ un = 0, it follows that |a1|+ · · ·+ |an| ≤ |a1 − p|+
· · ·+ |an − p|, which is equivalent to

A1X + · · ·+ AnX ≤ A1P + · · ·+ AnP.

Since P is an arbitrary point coplanar with Ai’s, X is the Fermat point of Ai’s.

Corollary 7 (GFPP for n = 4) Let A1, A2, A3 and A4 be four distinct coplanar points. Then
the Fermat point X of these four points is exactly the intersection of the diagonals of the
quadrilateral A1A2A3A4.

4 How can the FPP be solved now?

In this section, we briefly review each of above existing solutions of the FPP. Arguing that all
these solutions were inspired and supported by technology available at specific points of time,
we show how the GFPP can be solved in yet different ways by exploiting given technology of
present times. The technology we use is that of Particle Swarm Optimisation (PSO).



4.1 Discussion about the existing solutions

Torricelli’s solution relied on geometrical construction which is expectedly the approach used
during his time. This is particularly so since a geometrical problem naturally asks for a geomet-
rical solution. Indeed, Fermat anticipated this from Torricelli. Examining the details presented
in Theorems 1 and 4, one must agree, in spite of the ingenuity of the proof and the aesthetics
of the geometrical construction, that the manner of locate the Fermat point is way too compli-
cated, and fairly tedious using compass and straightedge construction. More importantly the
Torricelli’s construction cannot be easily extended to solve the n-point GFPP (n > 3).

The proof inspired by Lagrangian mechanics is remarkably terse and leverages on the some-
what mystical prowess of theoretical mechanics. Furthermore, the technology is visible: you
can set up a physical experiment using weights, strings and a triangle lamina to locate of the
Fermat Point with a bit of trial-and-error. “Is this a mathematically legitimate solution?”, you
may ask. We do not have an answer here, but might just want to borrow a remark enunciated
by Philip Davis in his paper “When Is A Problem Solved?”:

Is such and such really a solution? ... Apparently, the meaning of the word
“solution” can be stretched quite a bit. The elastic quality of mathematical terms
or definitions is remarkable, and is often achieved through context enlargement.
([3])

Unlike the two preceding solutions, the vectorial technology is pegged at a desirable level of
abstraction that simultaneously veers us away from the geometrical intricacy and requires only a
light mathematical overhead as compared to Lagrangian mechanics. Despite its advantages, the
vectorial method is not constructive, i.e., it does not compute the position vector of the Fermat
point X in terms of the given points Ai’s – many would agree that this is a major defect of the
vectorial method in contrast to Torricelli’s geometrical method and the mechanical method.
Nevertheless, the zero vector sum criterion provides us a computable test of accuracy for any
candidate Fermat point.

Given the present-day computer technology, would we be able to create an alternative
solution to the GFPP that can possibly help us overcome the shortcomings we have discussed
so far. In the next subsections, we develop the theory and implementation of our proposed
modern technology.

4.2 A short primer on PSO

Particle Swarm Optimisation (PSO, for short) refers to a characteristic class of mathematical
algorithms – first created by James Kennedy and Russell Eberhart ([5]) – inspired by the
movements of birds flying in a flock, where members of the flock benefit from the experience of
other members. For instance, when searching for food a flock of birds can share their discoveries
and the entire flock can use the information to locate the place where more food can be found.
The individual bird will then fly in a vector which is based on information from the flock and
information it has gathered individually. This vector changes every day, as the flock finds
better hunts, and the individual bird also finds better hunts. Eventually, all the flock of birds
will converge on a single point, which is the position of the best hunt obtainable. Our idea
is to exploit the swarm movement to solve the GFPP, where particles move as a swarm and
eventually converge to the Fermat point.



Certain mathematical terminologies used in PSO must first be established. Imagine a swarm
of birds (swarm particles) flying in the same plane as the polygon A1 . . . An, where A1, . . . , An

are distinct points having position vectors ak (k = 1, . . . , n) in search of the Fermat pointX with
position vector x, i.e., where the fitness function or objective function f : R2 −→ R, f(x) =∑n

k=1 |x− ak| is to be minimised. This function f calculates the sum of the distances between
X and each of the vertices A1, A2, . . . , An.

A swarm consists of N birds, and each ith bird archives an aerial log of its position vector
xd
i on the dth day. Given that the daily velocity vd

i of the ith bird on the (d+1)th day, the daily
position vector xd

i of the ith bird is determined recursively by xd+1
i = xd

i +vd+1
i for i = 1, . . . , N .

The key business in PSO is to model the daily velocity of each bird, which is determined by
three components: (i) inertia component, (ii) cognitive component, and (iii) social component.
We explain this now.

Inertia component. The ith bird’s velocity, denoted vd
i , gives rise to a certain scalar multiple

wvd
i of it which is then its inertia component of the velocity on the (d+ 1)th day. This inertia

component represents the ith bird’s degree of reluctance to change its previous day’s velocity.

Cognitive component. Each ith bird keeps a record of its personal best position, i.e., the
position vector Pd

i at which the smallest value of the objective function f has been achieved up
to and including the dth day. A randomized scaling of the directional vector Pd

i − xd
i models

the cognitive component of the velocity of the ith bird on the (d+ 1)th day.

Social component. Each ith bird also keeps in its aerial log book the global best position,
i.e., the position vector Gd of the location found by one of the N birds in the course of the
swarm’s flight up to and including the dth day. A randomized scaling of the directional vector
Gd − xd

i models the social component of the velocity of the ith bird on the (d+ 1)th day.

Figure 9: Daily velocity comprises three components.

Thus, the velocity vd+1
i is the resultant of the aforementioned component vectors:

vd+1
i = wvd

i︸︷︷︸
inertia

+ c1r1(P
d
i − xd

i )︸ ︷︷ ︸
cognitive

+ c2r2(G
d − xd

i )︸ ︷︷ ︸
social

, (6)

where i = 1, . . . , N (see Figure 9). Certain constants, parameters, and randomized numbers
appear in the above recursive equation, whose details are described below:



1. The bounded random constant w in the term wvd
i tunes the scope of exploration of the

ith bird, modelling the distance it covers each day. A large value of w signifies that the
bird leans towards exploring further along yesterday’s velocity.

2. The parameter c1 in the term c1r1(P
d
i−xd

i ) is the impact factor of the cognitive component.
An increase in the value of c1 indicates a higher cognitive impact, i.e., the velocity of flight
is influenced more by the bird’s own belief system based on its own personal best records.
The parameter c2 in the term c2r2(G

d−xd
i ) is the impact factor of the social component.

An increase in the value of c2 indicates a higher social impact, i.e., the velocity of flight
is influenced more by the swarm’s global bests.

3. r1 and r2 are just random numbers uniformly distributed in the unit interval [0, 1].

For more detailed account of the theory and applications of PSO, readers may refer to ??.

4.3 Sample runs of PSO algorithm

Equation (6) is a recursive equation that can be easily implemented in Python. The Python
codes2 of the PSO algorithm for locating the Fermat point of the set of points A1, A2, . . . , An

(n ≥ 3) can be found at the Github repository (https://github.com/howengkin/pso.io.
git).

We ran the PSO algorithm over many sets of data – different sets of points (with various
sizes). Figures 10 and 11 shows animation clips of a swarm movement observed in a particular
run of this PSO algorithm for two sample sets of data:

1. Set 1.

• Number of points: 3

• Data set: A1(1,2), A2(3,0) and A3(0,0).

• Number of swarm particles: 100

• Number of iterations: 100

• PSO Fermat point: X(1.12771183, 0.8255423)

• Exact Fermat point:234+195
√
3

507
, 351+39

√
3

507

• Percentage error by Euclidean metric:

x− coordinate :

∣∣∣∣1.12771183− 234+195
√
3

507

234+195
√
3

507

∣∣∣∣× 100% = 0.00000169%

y − coordinate :

∣∣∣∣0.8255423− 351+39
√
3

507

351+39
√
3

507

∣∣∣∣× 100% = 0.00000846%

• Sum of unit vectors ui:
uA1X + uA2X + uA2X

=

(
0.1081038411
−0.9941396077

)
+

(
−0.9150020989
0.4034490787

)
+

(
0.8068982404
0.5906904685

)
=

(
−0.0000000174
−0.0000000605

)
2Readers may also make an email request for the Python codes from the authors.

https://github.com/howengkin/pso.io.git
https://github.com/howengkin/pso.io.git


Figure 10: Swarm movement for Set 1.

2. Set 2.

• Number of points: 5

• Data set: A(2, 1), B(1, 2), C(2, 2.5), D(3, 2), E(3, 1).

• Number of swarm particles: 100

• Number of iterations:100

• PSO Fermat point: Y (2.26885941, 1.67413429)

• Exact Fermat point:

• Percentage error by Euclidean metric:

• Sum of unit vectors ui:

uAY + uBY + uCY + uDY + uEY

=

(
0.3704470089
0.9288536018

)
+

(
0.9685688202
−0.2487457348

)
+

(
0.3095578354
−0.9508806164

)
+

(
−0.9133871240
−0.4070920802

)
+(

−0.7351865730
0.6778648117

)
=

(
−0.0000000325
−0.0000000178

)




Figure 11: Swarm movement for Set 2.

4.4 Performance evaluation

We summarise the performance evaluation of the PSO algorithm for GFPP here.

Few design parameters. The PSO algorithm involves relatively few parameters, and this
makes the programming task very simple. This has the advantage that anyone who wants to
learn and apply the PSO method finds the codes easy to understand or write.

Concurrent applications of efficient global search. Running the PSO algorithm concur-
rently over many data sets of various sizes, we observed that the global search for the Fermat
point in each of these runs is very efficient and accurate with convergence occurring under 100
iterations on the average. While the PSO method cannot be strictly classified as constructive
because the point of convergence of the swarm is not the exact Fermat point in general, it
nonetheless is very fast in locating a highly accurate approximation to the actual Fermat point,
and would have sufficed in most practical situations.




Problem Solving Component Impact of (Computer) Technology
Resource Dramatic increase in

the accessible knowledge base
Heuristics More opportunities for effective

use of heuristic: making a table,
drawing a graph

Control Provides more effective
management strategies

Beliefs Develops beliefs that are specific
to the context in which
(computer) technology was used

Table 1: Contribution of the (computer) technology to problem solving.

Insensitive to scaling of design parameters. In cases where the given set of points
A1, A2, . . . , An are spaced far apart, appropriate scaling incorporated into the Python codes
did not dampen the speed of convergence to the Fermat point(s). This suggests that the PSO
method is insensitive to scaling of the variables.

Derivative-free and naturalistic. The PSO solution is completely different in nature from
the geometrical solution of Torricelli. Compared to the mechanical method, there is one com-
monality. That is, both rely on some physical phenomena to get as close to the exact Fermat
point as possible: the PSO method exploits the collective wisdom of the swarm particles to
search for the solution while the mechanical method relies on the forces in the system and some
careful adjustments of the pivoting point. Another important characteristic of the PSO method
is that it is derivative-free, i.e., it does not make use of any differentiation techniques in the
whole process.

5 How can a problem be solved?

According to Alan Schoenfeld ([7]), four categories of knowledge and skills are required to
be successful in mathematics problem solving: (1) resources – proposition and procedural
knowledge of mathematics, (2) heuristics – strategies and techniques for problem solving such
as working backwards, drawing figures, (3) control – decisions about when and what resources
and strategies to use, and (4) beliefs – a mathematical “world view” that determines how the
problem-solver approaches a problem. To these four categories, we propose to add on one more:
technology.

Already, in [4], the impact of technology (in particular, computer technology) on each of
these above categories has long been identified (see Table 5, reproduced/modified from [4, p.4]).

One important reality teased out from [4, p.5] is that “problem-solving strategies are depen-
dent on the context of the problem, goal and motives of the problem-solver, and the accessible
tools3” This reality is of particular relevance to us in this paper concerning our experience of
solving the GFPP using PSO, and we develop it further.

3The emphasis has been added by the authors of this paper.



Context of the problem. The GFPP involves optimisation with a geometrical backdrop.
The task of GFPP focuses on locating the Fermat point, but does not restrict the problem-
solver to employing only calculus techniques and/or geometrical constructions. Additionally,
optimisation problems occurring in practice demand efficiency in obtaining an approximate
solution that satisfies a certain level of accuracy, not necessarily an exact one.

Goals and motives of the problem-solver. In the case of GFPP, we wanted to look for an
alternative solution while having a relatively light theoretical overhead must be versatile and
quick enough to locate the Fermat Point, given more than 3 points. It is the problem-solver’s
goal to overcome the shortcomings of the existing solutions using this new solution.

Accessible tools. To be able to meet the goals and motives of the problem-solver, it is of
paramount importance that a suitable tool is in existence and made available to the problem-
solver. Notice that the existing method of vectors already prepared the way for the PSO method
since the search space can be taken as the 2D plane, and the swarm particles are nothing but
probes moving in the search space and searching for the point of optimisation. The computer
that processes the PSO algorithm gives the problem-solver the required speed and accuracy.
The problem-solver did not develop the PSO method but knows of it – this knowledge is counted
as problem-solving resource, and applies it as a powerful tool which is suitable to satisfy the
requirements of the task set in the GFPP.

Remark 8 For more recent works of the role of technology on mathematics education, we point
the reader to [2].

6 Conclusion

Technology has improved the teaching and learning of mathematics over the past decades by
actively transforming pedagogy, policy and practice. These transformations are informed by
a growing body of meta-analytic research examining how the affordances of technology shape
mathematical experiences ([11]). Our experience in applying the Particle Swarm Optimisation
method in locating the Fermat point in the context of the Generalised Fermat Point Problem
reinforces the claim that the way a problem is solved crucially depends on the accessible tech-
nology that came at the right time and the right place to meet certain goals and motives of the
problem solver, given the context of the problem itself.

There remain skeptics who would question whether our way of solving the GFPP using PSO
is even mathematically legitimate in the first place. After all, it looks like the PSO method
is a guess-and-check method that has been performed quickly by a computer! Are students,
teachers and mathematicians ready to enlarge the context of understanding what a solution to a
mathematics problem so as to embrace the thesis that technology – when it becomes accessible
to the problem-solver – will, in part, determine the way how a problem is solved? An answer
to this question will fundamentally change the way we teach and learn mathematics at schools,
allowing us to be more open-minded in applying available technology in creative and innovative
ways!
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