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Abstract: Based on our knowledge of conics and my previous work, I will detail the algorithms for constructing conics 
tangent to the three sides of a triangle, internally and externally. These constructions developed in a dynamic geometry 
environment (here the new Cabri) largely using the “Macro Construction” tool (which is none other than a program of 
this environment) will make it possible to visualize all these conics in motion and to highlight evidence of some surprising 
properties of these families of conics: in particular, we will be led to conjecture a classification of conics tangent to the 
three sides of a triangle according to the position of one of their foci. This work requires for each type of conic an 
introduction concerning the construction algorithms of their characteristic elements as well as of their tangents lines 
within a dynamic geometry environment. 
 
1. First work around ellipses  
 

1.1. Construction algorithms of the center, axes and foci of an ellipse 
For an ellipse given in a dynamic geometry environment, here are the different constructions needed 
to obtain: 
1.1.1. The center of the ellipse (Figure 1 left): (E) is a given ellipse and A, B and C are three points 
of this ellipse. An algorithm to construct the center O of this ellipse is as follows: 
 

1. Construct line (AB) 
2. Construct line (CD) parallel to (AB) through C 
3. Line (IJ) (I and J midpoints of [AB] and [CD] 
4. Construct the points L and R intersection points between (E) and (IJ) 
5. construct O midpoint of [LR] which is the center of ellipse (E)   

 

This construction is recorded as a macro construction called center ellhyp for which the initial 
object is an ellipse (or a hyperbola) and the final object is the center of the given conic. 
1.1.2. The axes of the ellipse (Figure 1 center): (E) is a given ellipse and the previous macro center 
ellhyp is available. An algorithm to construct the axes of this ellipse is as follows: 
 

1. Construct center O of ellipse (E) in using the macro center ellhyp  
2. Select any points r1 and r2 on (E) 
3. Evaluate the distance between r1 and r2: d 
4. Display number 90 as the result of 90 ∗   
5. Ellipse (E') image of ellipse (E) with rotation centered at O  
and which angle is the previous calculated number 90  

6. Points i1, i2 and i3 three first intersection points between (E) and (E') 
7. j1 and j2, midpoints of [i1 i2] and [i2 i3] 
8. Lines (O j1) and (O j2) are the axes of ellipse (E) 

 

This construction is recorded as a macro construction called axes ellipse with the initial object an 
ellipse and the final objects the axes of that given ellipse. Note that this construction does not work 
to display the axes of a hyperbola. 



 
1.1.3. The two foci of the ellipse (Figure 1 right): (E) is a given ellipse and the previous macros 
center ellhyp and axes ellipse are available. An algorithm to construct the axes of this ellipse is as 
follows: 
 

1. Construct center O of ellipse (E) in using the macro 
center ellhyp  
2. Construct the axes of ellipse (E) in using the macro 
axes ellipse 

3. Create points s2, r2, t1 and t2, intersection points 
between these axes and the ellipse 
4. Display distances Os2 (a) and Ot2 (b) and evaluate 
𝑐 = √𝑐  where 𝑐 = (𝑎 − 𝑏 )  

5. Create triangle Os2t2 and m midpoint of [s2t2] 
6. Create point n intersection between the triangle Os2t2 
and the perpendicular to s2t2 at m 
7. Create vector On 
8. Measurement transfer of c (as calculated in the table 
below) to get point f1 which is a focus of (E) 
9. f2, symmetric point of f1 with respect to O is the 
second focus 

 

This construction is recorded as a macro construction called foci ellipse with initial object an ellipse 
and final objects the foci of that given ellipse.  
 

    
 

Figure 1: Center, axes and foci of an ellipse 
 

1.2. Construction algorithm of the tangent lines to an ellipse from a given point (Figure 2 left): 
(E) is a given ellipse and the previous macro axes ellipse is available. M is a given point outside the 
ellipse. An algorithm to construct the two tangent lines to this ellipse passing through M is as follows: 
 

1. Construct the two foci f1 and f2 of ellipse (E) in 
    using the macro foci ellipse  
2. Construct line (f1f2) and points e1 and e2 its 
    intersection points with (E) 
3. Create segment [e1 e2] and cercle (C1) centered 
    at f2 of radius e1e2 
4. Create circle (C) centered at M passing through 
    f1 

5. Create points h1 and h2, intersection points between 
(C1) and (C) 
6. (T1) is the perpendicular bisector of [f1h1] 
7. (T2) is the perpendicular bisector of [f1h2] 
8. t1 is the intersection point between (T1) and 
segment[f2h1] 
9. t2 is the intersection point between (T2) and 
segment[f2k] where k is the symmetric point of f2 with 
respect to (T2) 

 

This construction is recorded as a macro construction called tangent lines ellipse with initial objects 
an ellipse and a point and final objects the two tangent lines to the ellipse passing through the given 
point.  
 



 
 

Figure 2: Tangent lines to an ellipse through a given point 
 

1.3. Little Poncelet Theorem. Consequences 
The Little Poncelet Theorem states that the angle bisector of f1Mf2 (Figure 2 left) is also the angle 
bisector of the two tangent lines (T1) and (T2). Therefore, the angle bisector can be interpreted as an 
axis of symmetry. We can use this property for the following constructions. 
 

1.3.1. Ellipses tangent to the three sides of a given triangle (Figure 2 center and right): 
Here is an algorithm allowing such construction leading to a powerful macro construction 
 

1. Construct the first focus f1, lines (f1A) and (f1B), the 
angle bisectors of CAB and CBA, (D1) and (D2)  
2. Construct line (f1A) and line (f1B)  
3. Symmetric line of (f1A) with respect to (D1) and 
symmetric line of (f1B) with respect to (D2) 
4. Create f2 their intersection point 

5. Create points r1, r2 and r3 symmetric points of 
     f1 with respect to (AB), (BC)) and (CA) 
6. t1 intersection point between (r1f2) and (AB)  
7. t2 intersection point between (r2f2) and (BC) 
8. t3 intersection point between (r3f2) and (CA) 
9. (E) is the ellipse which foci are f1 and f2 passing 
through t1 

 

This construction is recorded as a macro construction called ellipse tritangent with initial objects a 
triangle and a point and final objects the ellipse tangent to the three sides of the given triangle, a 
second point which is the second focus of this ellipse (the first focus being the first given point) and 
the three contact points with the sides (in reality the lines supporting the sides). 
Important remark: The proposed algorithm works when the first point lies inside the triangle and 
also outside the triangle but only if outside the circumcircle of the triangle. Figure 2 right displays 
the use of this macro for a point inside the triangle and three points outside the triangle but inside the 
circumcircle 
Another remark: it seems that it is impossible to construct an ellipse tangent to the three sides of a 
triangle when the first given focus lies outside the triangle and inside the circumcircle.  
 

1.3.2. Ellipses tangent to two given rays: 
We show now how to construct the ellipse tangent to two given rays, one given focus and a given 
contact point on one of the two given rays. Here is an algorithm allowing this construction (Figure 3 
left): 
 

1. Construct two rays (L1) and of (L2), a point t1 on (L1) 
and a point f1  
2. Angle bisector (B) of the two rays (L1) and (L2) 
3. Symmetric line of (Of1) with respect to (B): (S) 
4. Symmetric point of f1 with respect to (B): r1 

5. Intersection point between (r1t1) and (S): f2 
5. Symmetric point of f2 with respect to (L2): r2 
7. Intersection point between (f1r2) and (L2): t2 
8. Ellipse (E) which foci are f1 and f2 passing through t1 

 



This construction is recorded as a macro construction called ellipse tgt to 2 rays with initial objects 
two rays, a contact point on one ray and the first focus of the expected ellipse, and final objects the 
ellipse tangent to the two given rays, the second contact point and the second focus of the ellipse. 
Figure 3 right displays three red ellipses constructed with this macro: the given focus is a random 
point between the two rays and the chosen contact point is a contact point of one of the ellipses 
constructed with the macro ellipse tritangent.  
 

 
 

Figure 3: Ellipses tangent to two lines 
 

1.4. Tangent line to an ellipse. Conjugate directions 
In this paragraph, we show an algorithm to construct a tangent line to an ellipse at one of its points 
and then its conjugate directions (images by an affinity of two perpendicular diameters of a circle).  
The first case when the ellipse is defined by two foci and one of its point (Figure 4 left): Here is 
the algorithm to construct a tangent line. 
1.4.1. Tangent line to an ellipse 
 

1. Construct line ((f1f2) and its intersection points with (E): 
    e1 and e2 
2. Segment [e1e2] 
3. Point m on (E) 
5. Circle (C) centered at f1 and of radius e1e2  
6. Ray [f1m) intersecting (C) at n 
7. Line Tm perpendicular bisector of [f2 n] 

 

This construction is recorded as a macro construction called tangent ellipse 1 with initial objects the 
two foci and the point defining the ellipse and the point of the ellipse where we expect the tangent 
line and final object this tangent line. 
Second case when the ellipse is defined by five points: the algorithm construction is exactly the 
same as the previous one on the condition of adding a preliminary stage of construction of the foci 
of the ellipse in using the macro foci ellipse. 
Then, this construction is recorded as a macro construction called tangent ellipse 2 with initial 
objects the five points defining the ellipse, and the point of the ellipse where we expect the tangent 
line and final object this tangent line. 
1.4.2. Conjugate directions (Figure 4 center): Given an ellipse defined by five points and a point 
m1 on this ellipse, here is below is an algorithm to construct ray [Om1) and its conjugate [Om2) 
This construction is recorded as a macro construction called conjugate directions with initial objects 
the five points defining the ellipse and a point m1 of this ellipse and the final object [Om1) and its 
conjugate [Om2) where m2 lies on the ellipse. 
 
 



1. We use the macro "foci ellipse" to construct the   two 
foci of (E): f1 and f2 
2. Line ((f1f2) and one of its intersection points with 
   (E): e2 
3. Midpoint O of [f1f2] and circle (C) centered at O 
    and passing through e2 
4. Point m1 on (E). Ray [Om1) 
5. Line perpendicular to (f1f2) through m1 
    intersecting (f1f2) at h1 

6. Ray [h1m1) intersecting (C) at n1 
7. Evaluate distance d between f1 and f2. Display 
    number 90 as the evaluation of d-d+90  
8. Rotation of n1 around O (angle: the previous 90): 
    n2. Ray [On2) 
9. Line perpendicular to (f1f2) through n2 
    intersecting (f1f2) at h2 
10. Ray [h2n2) intersecting (E) at m2. Ray [Om2) 

 

1.4.3. Parallelogram circumscribed to an ellipse defined by five points and a point m1 on this ellipse 
(Figure 4 right). Here is an algorithm to construct the parallelogram circumscribed to the ellipse 
containing a point m1 and with sides parallel to [Om1) and its conjugate direction. 
 

1. Create point m1 on (E). 
2. Use the macro "conjugate directions" to construct 
    the two conjugate directions Om1 and Om2 
3. Point p1 symmetric of m1 with respect to O 
3. Point p2 symmetric of m2 with respect to O 
4. Lines passing through m1 and p1 parallel to [Om2) 
5. Lines passing through m2 and p2 parallel to [Om1) 
6. Parallelogram defined by these four lines 

 

This construction is recorded as a macro construction called circum parallelogram with initial 
objects the five points defining the ellipse and a point m1 of this ellipse and final object the 
parallelogram circumscribed to the given ellipse, tangent at m1.  
 

   
 

Figure 4: Tangent lines and conjugate directions of an ellipse 
 

1.5. Steiner ellipse 
1.5.1. Reminder of the construction of the Steiner ellipse (Figure 5 left) 
The Steiner ellipse (E) of a triangle ABC is the image of the inscribed circle of an equilateral triangle, 
and justifies the algorithm of its construction detailed below: 
 

1. Create medians [AA1], [BB1] and [CC1] 
2. Their intersection point I 
3. j midpoint of [IA] and k midpoint of [IB] and  
   l midpoint of [IC]  
3. Conic (E) passing through A1, B1, C1, j, and k. (E) is  
   the Steiner ellipse passing also through l centered at I 

 

This construction is recorded as a macro construction called steiner ellipse with initial object a 
triangle and the final objects the Steiner ellipse, its center (centroid of the given triangle) and the 
contact points (midpoints of the sides of the given triangle) 
 



 
 

Figure 5: Steiner ellipse 
 

1.5.2. A regression property of the Steiner ellipse  
We create first a macro called sum square triangle line with initial objects a triangle and a line and 
the final object the number evaluating the sum of the squares of the distances between the vertices of 
the triangle and the given line (Figure 5 center).  
Figure 5 (right) illustrates how it is possible to investigate in order to conjecture that the line joining 
the foci of the Steiner ellipse of the given triangle ABC is the one minimizing the sum of the squares 
of the distances between the vertices of ABC and a line. For the given triangle, use first the macro 
steiner ellipse to display the Steiner ellipse. Apply to this ellipse the macro foci ellipse to display its 
foci f1 and f2. Create line (f1f2) to which we apply macro sum square triangle line: we obtain the 
number 8.27 cm2. We create then a line with the number obtained with the same macro; Trying to 
decrease the value of this number in changing the position of the line leads to approach the position 
of (f1f2). This investigation can be conducted for any triangle and always leads to the same 
conjecture. In fact, the result stated by this conjecture is a known property of the Steiner ellipse. 
 

1.6. Isoptic curves of an ellipse 
1.6.1. Definition of an isoptic of an ellipse 
Set of points from which an ellipse can be seen under a given angle. 
1.6.2. Construction algorithm of the isoptics of an ellipse given by two foci, a point, and an angle 
beween 0° and 180°. Here is an algorithm for this construction: 
 

1. Create a point t1 on the given ellipse and the 
    tangent line (T1) to the ellipse at t1 in using the 
    macro tangent ellipse 1 
2. Measurement of f1f2 and display number 90 as 
    the result of f1f2 - f1f2 + 90 
3. p image of O (center ellipse) by the rotation 
    centered at t1 and of angle the previous 
     calculated number 90 
4. p1, orthogonal projection of p on (T1) 
5. Create vector t1p1 
6. Point q, measurement transfer of f1f2 on the 
    previous vector from t1  
7. Create a slider whose boundaries are 0 and 180  
    commanding a number so so-called angle 
8. s1 image of t1 by the rotation centered at q and 
    of the angle the previous number angle 

9. Create Ray 1 = [q,s1) 
10. Ray 2 image of Ray 1 by the translation 
      mapping q onto O 
11. c1 intersection point between Ray 2 and the 
      ellipse 
12. Hide all the previous constructions. Dont hide 
      the ellipse, t1, (T1) and c1 
13. Create 5 points on the ellipse in order to use 
      macro conjugate directions and obtain rays 
      [O,c1) and [O,c2) 
14. (T2) is the parallel line to [O,c1) through c2 
15. m intersection point between (T1) and (T2) 
16. Measurement of angle t1mc2 (equal to angle) 

17. Locus of point m when t1 moves along the 

      ellipse provides the isoptic related to the angle 
     commanded by the slider 

 

Stages from 1 to 11 are illustrated by Figure 6 left. Stages from 12 to 16 are illustrated by Figure 6 
center. Stage 17 is illustrated by Figure 6 right. 
Remark: in Figure 6 right, changing the value commanded by the slider automaticaly changes the 
shape of the isoptic. Especially, when angle is equal to 90°, we obtain a circle. To check 



experimentally this result, construct a conic passing through five points of the displayed isoptic, then 
the software recognizes a circle. 
 

 
 

Figure 6: Isoptic curves of an ellipse 
 
2. Second work around parabolas  
 
2.1. Algorithm construction of the focus, the axis and the directrix of a parabola 
Here is an algorithm for this construction (Figure 7 left): 
 

1. Create three points m1, m2 and m3 on (P) and 
    segment [ m1, m2] 
2. Construct m4 such as (m1 m2) // (m3 m4) 
3. i1 midpoint of [m1, m2] and i2 midpoint of [m3, m4] 
4. Line (i1 i2) intersects (P) at t 
5. (T) parallel line to [m1, m2] through t 
6. Line (i1, i2) and its perpendicular (Pe) through m3 
    cutting (P) at m5 

7. Perpendicular bisector (Pb) of [m3 m5] 
8. Line (R) symmetric line of (i1 i2) with respect to  
   (T) 
9.  f (focus) of (P) intersection point of (R) and (Pb) 
10. s intersection of (P) and (Pb) 
11. h symmetric of f with respect to s 
12. (D) (directrix of (P)) perpendicular to (Pb) at h 

 

This construction is recorded as a macro construction called param parab with initial object a 
parabola and final objects the focus, the directrix, the summit and the symmetric point of the focus 
with respect to the summit. 
 

2.2. Algorithm construction of the two tangent lines to a parabola through a given point  
In Figure 7 center, a parabola (P) is given by its focus f and its summit s. The following algorithm 
describes how to obtain the two tangent lines (T1) and (T2) to (P) through the given point m. We also 
obtain the contact points t1 and t2 of the tangent lines with (P). 
This construction is recorded as a macro construction called 2 lines tg parab with initial objects the 
points f, s and m and final objects the two tangent lines through m to the parabola with focus f and 
summit s and the two contact points. 
 

1. Create parabola (P) with its focus f and its 
    summit s  
2. Create m outside (P) 
3. Create circle (C) centered at m passing through f 
4. Perpendicular line (D) to (fs) through h symmetric 
    point of f with respect to s 

5. s1 and s2 intersection points between (C) and (D) 
6. (P1) perpendicular line to (D) through s1, cutting 
    (P) at t1  
7. (P2) perpendicular line to (D) through s2, cutting 
    (P) at t2  
8. (T1) perpendicular bisector of [f s1]  
9. (T2) perpendicular bisector of [f s2] 

 



  
 

Figure 7: Parabolas 
 

2.3. Construction algorithms of the parabolas tangent to two given lines (Figure 7 right) 
Given two lines (L1) and (L2) crossing at O and a point f not lying on these lines, the following 
algorithm returns the parabola with focus f that is tangent to (L1) and (L2) at t1 and t2. 
 

1. Create lines (L1) and (L2) passing through O  
    and a point f  
2. f1 symmetric of f with respect to (L1) 
3. f2 symmetric of f with respect to (L2) 
4. Line (D) = (f1f2) 
5. Line (Axis) perpendicular line to (D) through f  

6. (Axis) cuts (D) at h 
7. Construct s midpoint of [h f] 
8. Construct parabola (P) with f as a focus and s  
    as a summit 
9. Perpendicular line to (D) at f1 intersects (L1) at t1  
10. Perpendicular line to (D) at f2 intersects (L1) at t2 

   

This construction is recorded as a macro construction called parab bitg with initial objects two lines 
(L1) and (L2) passing through point O, a point f and two points t1 and t2 on (L1) and (L2), and final 
objects the parabola with focus f tangent to these two lines at t1 and t2. 
 

2.4. Construction algorithm of the parabolas tangent to the three lines supporting the three 
sides of a triangle (relation with the circumcircle and the Simson and Steiner lines) 
2.4.1. Reminder (Figure 8 left): Given a triangle ABC, its circumcircle (C) and a point M. Let us call 
H1, H2, and H3 the orthogonal projections of M respectively on the three sides of the triangle and 
M1, M2, and M3 the symmetric points of M with respect to the three sides of the triangle. We know 
this result ([5]): 
Points H1, H2, and H3 (respectively M1, M2, and M3) are colinear if and only if M belongs to (C). 
In this case, the line joining H1, H2, and H3 (respectively M1, M2, and M3) is called the Simson line 
of M (respectively the Steiner line of M) for the triangle ABC. 
Remark: The Steiner line contains the orthocenter of the triangle 
Creating Figure 8 left gives the opportunity to create two other macros: 
Macro Circumcircle that returns the circumcircle of a triangle with its center. 
Macro Steiner line that returns the Steiner line of a given triangle and a given point (chosen on the 
circumcircle). 
2.4.2. The construction algorithm (Figure 8 center) 
 

1. Create a point f on the circumcircle of the 
    triangle ABC defined by the three given lines 
2. Create a triangle ABC  
3. Use the macro Steiner line to obtain the  
    Steiner line (S) of point f for ABC 
4. Perpendicular line (Axis) to (S) through f  
5. r intersection point between (S) and (Axis)  

6. s midpoint of [fr]  
7. f1, f2, and f3 symmetric of f with respect to the  
three given lines (on the Steiner line) 
8. Perpendicular line to (S) at f1 cuts (L1) at t1  
9. Perpendicular line to (S) at f2 cuts (L2) at t2 
10. Perpendicular line to (S) at f3 cuts (L3) at t3 
11. Parabola (P) which focus is f and summit r 

 



This construction is recorded as a macro construction called parab tg 3 lines with initial objects three 
lines (defining a triangle) and a point on the circumcircle of the triangle and final objects the parabola 
tangent to these three lines, its summit, and the three contact points. 
Another macro can also be recorded in changing the initial objects of the three lines with a triangle. 
In this case, the macro is called parab tg triangle. 
Figure 8 right displays three parabolas obtained thanks to macro parab tg 3 lines from the three 
points focus 1, focus 2 and focus 3 chosen on the circumcircle of the triangle defined by the three 
given lines. 
 

   
 

Figure 8: Parabolas tangent to three given lines 
 

2.5. Isoptic curves of a parabola 
The following algorithm will make it possible to construct the set of points from which a parabola 
can be seen under an angle given by a slider commanding a number that can vary from 0° to 180°. 
The parabola (P) is given with its focus f and its summit s. 
This construction algorithm shows how to obtain two points l1 and l2 from where the parabola (P) is 
seen under a constant angle defined by the slider (Figure 9 left). Then we construct the loci of l1 and 
l2, called (H1) and (H2). By combining these two loci, we obtain the sought isoptic (Figure 9 center). 
A glimpse of the displayed result allows us to conjecture that this isoptic could be a branch of 
hyperbola. We will explain how to reach such conjecture and how to find the parameters of such a 
hyperbola (foci and directrix). 
 

1. Ray (R1) = [sf)  
2. Evaluate sf and then 90 as the result of sf-sf+90 
3. (R2) image of (R1) by the rotation centered at s  
    and of angle sf-sf+90 
4. m point on (R1) and (R3) image of (R2) by the  
    translation mapping s onto m 
5. t intersection point between (P) and (R3)  
6. h symmetric point of f with respect to s  
7. Perpendicular line (D) to (R1) through h 
8. r orthogonal projection of t on (D) 
9. (L1) perpendicular bisector of [rf ], (tangent line 
    to (P) at t  
10. Evaluate 4.sf. Create a point p on (L1) 
11. q obtained by measurement transfer of 4.sf on 
     (L1) from p 
12. t1 image of t by translation mapping p onto q 

13. Create a slider (from 0 to 180) and call the  
      number displayed slider 
14. Evaluate ang = sf - sf +slider and then -ang 
15. t2 image of t1 by the rotation centered at t and 
      of angle -ang  
16. Ray (S1) = [t t2) intersecting (P) at u 
17. Ray (S2) image of (S1) by the translation 
      mapping t onto t1 
18. v and w intersection points between (P) and (S2) 
19. i and j midpoints of [t u] and [v w] 
20. Line (ij) intersects (P) at k 
21. Line (L2) parallel to (S1) at k 
22. l1 intersection between (L1) and (L2) 
23. (H1) locus of l1 (commanded by m) 
24. (H2) locus of l2 (commanded by m) where 
      l2 is the symmetric of l1 with respect to (R1) 

 

In using the slider, we can check that for a value of 90° given by the slider, l1 belongs to (D) which 
is a known result and the isoptic for 90° is not an hyperbola but a line, the directrix of the parabola. 
In Figure 9 right, we have created point e intersection between (H1) and ray (R1’) which is the 
symmetric ray of (R1) with respect to s. Then we create a point f’ on the ray (R1’). At last we construct 



the hyperbola (H) whose foci are f and f’ and passing through e. We can state that, in changing the 
position of f’, there is a moment when (H) can be superimposed to (H1) and (H2) which means that 
the isoptic we have constructed is possibly a hyperbola. The idea we could have at this moment of 
our investigation is that this hyperbola has one of its foci which is the focus of the parabola and one 
of its directrix which is the directrix of the parabola. This conjecture will be corroborated below.  
 

  
 

Figure 9: Isoptic curves of a parabola 
 

Other investigations to grab the final property experimentally (Figure 10 left): 
A useful formula:  with the notations of Figure 10 left representing a hyperbola whose foci are f and 
f’, whose center is O and one summit e, we know that:  

𝑜ℎ =  and as 𝑜𝑒 = 𝑜ℎ + ℎ𝑒 and 𝑜𝑓 = 𝑜ℎ + ℎ𝑓 we can deduce that ℎ𝑜 =  . This formula is 

available when e is on the right side of h. In the other case, the formula becomes ℎ𝑜 =  . A 

formula encompassing the two previous cases could be ℎ𝑜 =
. .

 where 𝑠𝑙 = 𝑠𝑖𝑔𝑛(90 −

𝒔𝒍𝒊𝒅𝒆𝒓). Note that slider is a number displayed by a slider of the software, more than 90 when e is 
on the right of h and less than 90 when e is on the left of h. 
From that formula we can create a construction algorithm for the center O of an hyperbola knowing 
one focus f, one summit e and the foot of the directrix h. 
The construction algorithm: 
 

1. Create two points h and f and ray [ f h)  
2. Create e on this ray 
3. Create expression sign(90-x) 
4. Create a slider (bounds: 0 and 180). Number 
    displayed: slider 
5. Evaluate the previous expression for slider to get sl  

6. Evaluate he and hf and then ℎ𝑜 =
.𝒔𝒍.

  

7. Construct ray (R) symmetric of ray [hf) with 
    respect to h 
8. Circle (C) centered at h and of radius ho  
9. O intersection point between (C) and (R)  
10. f ' symmetric point of f with respect to O 
11. (H) hyperbola defined by the two foci f and f ' 
       and passing through e 
 

 

This construction is recorded as a macro construction called hyper from h f e with initial objects 
three points h, f, e, a number between 0 and 180 and the expression sign(90-x) and final objects the 
hyperbola whose foci are f and f’ and passing through e and f’. 
Final investigations: in Figure 10 right, we start from a simplified version of Figure 9 center. We 
kept parabola (P), its focus f, its summit s, its directrix (D) and the point h of (D) colinear with f and 
s. We kept also (H1) and (H2) which combination represents the isoptic of (P) corresponding to the 
number   displayed by the slider (here 110). Eventually we also kept point e which is the intersection 
point between (H1) and line (fs). Now we apply macro hyper from h f e to the points h, e and f to 
get the hyperbola (H) with foci f and f’, centered at O and passing through e. We can state immediately 
that (H) seems to be superimposed to (H1) and (H2). This observation persists when we change the 



value of the slider. To increase the level of the corroboration we create a point q on (H) to which we 
apply macro 2 lines tg parab to get the two tangent lines to (P) passing through q. We measure and 
display the angle between these two lines and we obtain the same number as the one displayed by 
the slider; this observation persists when we move point q along the right branch of hyperbola (H). 
Same observations can be made for other values returned by the slider. 
 

    
 

Figure 10: Corroboration of the conjecture about isoptic curves of a parabola 
 
3. Third work around hyperbolas 
 
3.1. Construction algorithm of the axes of a hyperbola 
(H) is a given hyperbola, the following construction algorithm allows us to obtain its axes and its 
center (Figure 11 left). 

1. Apply macro center ellyp to get the center O of (H) 
2. Circle (C) centered at O passing through a point l  
    chosen on the left branch of the hyperbola 
3. n symmetric point of l with respect to O  
4. m third point of intersection between (C) and (H) 
5. i midpoint of [lm] and j midpoint of [mn] 
6. Axis1 is line (Oi) and Axis2 is line (Oj) 

 

This construction is recorded as a macro construction called axes hyper with initial object a 
hyperbola and whose final objects are the two axes and the center of the given hyperbola. 
 

3.2. Construction algorithm of the foci (and the center) of a hyperbola 
For (H) is a given hyperbola, the following construction algorithm allows us to obtain its foci (Figure 
11 center): 
 

1. Apply macro axes hyper to get the two axes of  
   (H) and its center O. Construct summits A1, A2 
2. (C) centered at O passing through a point q 
    chosen on the left branch of (H)  
3. Xq orthogonal projection of q on Axis1  
4. Measure OXq = x, OA1 = a and Oq = r 

5. Evaluate 𝑎 .  which is b2  

6. Evaluate √𝑏  which is b 
7. B intersection point between Axis2 and circle  
    centered at O and of radius b 
8. C image of A2 by translation mapping O onto B 
9. f1 and f2 intersection points between Axis1 and 
   circle centered at O and passing through B 
 

 

This construction is recorded as a macro construction called foci hyper whose initial objects are a 
hyperbola and a point on its left branch and whose final objects are the two foci of the given 
hyperbola. We can check on Figure 11 right that line (OC) is an asymptotic line of the hyperbola. 
The second one is its symmetric with respect to Axis1. 



So, we have recorded the macro construction called asympt hyper whose initial objects are a 
hyperbola and a point on its left branch and final objects the asymptotic lines of the hyperbola. 
 

  
 

Figure 11: Construction of center, axes, foci and asymptotic lines of a hyperbola 
 

3.3. Construction algorithms of the tangent line at a point of a hyperbola (two cases) 
A hyperbola (H) is given by its two foci f1 and f2 and a point q defining the left branch of (H). 
Here are the algorithms for construction of the tangent line (T2) at a point t2 of the right branch of 
the hyperbola (algorithm 1, Figure left) and the one of the tangent line (T1) at a point t1 of its left 
branch (algorithm 2, Figure right). 
 

Algorithm 1: 
1. Line (f1f2) and its intersection points a1 
    and a2 with (H) 
2. g2 symmetric point of f2 with respect to 
    a2 
3. Circle (C1) centered at f1 passing 
    through g2 
4. A point t2 on the right branch of (H) 
5. Ray [f1 t2) intersecting (C1) at m1 
6. (T2) perpendicular bisector of [f2 m1] 

Algorithm 2 
1. Line (f1f2) and its intersection points a1 
    and a2 with (H) 
2. g1 symmetric point of f1 with respect to 
    a1 
3. Circle (C2) centered at f2 passing 
    through g1 
4. A point t1 on the left branch of (H) 
5. Ray [f2 t1) intersecting (C2) at m2 
6. (T1) perpendicular bisector of [f1 m2] 

 

These constructions are recorded as two macro constructions: 
The first one is called tgt hyper right with initial objects the two foci of a hyperbola, the point 
defining it (same side of the first foci: left side) and a contact point on the right branch of the 
hyperbola and final object the tangent line to the hyperbola at this last point. 
The second one is called tgt hyper left with initial objects the two foci of a hyperbola, the point 
defining it (same side of the first foci: left side) and a contact point on the left branch of the hyperbola 
and final object the tangent line to the hyperbola at this last point. 
 

   
 

Figure 12: Tangent line at a point of a hyperbola 



 

3.4. Construction algorithms of the tangent lines to a hyperbola from a given point (two cases) 
Here are the two algorithms (Figure 13): 
 

Case 1 (from U1) 
1. Hyperbola (H) from f1, f2 and q 
2. Apply macro asympt hyper to get the  
   asymptotic lines Asympt1 and Asympt2 
3. Circle (C) centered at f1 passing through 
    g2, symmetric point of f2 with respect to 
    a2 
4. Circle (C1) centered at a point U1 
     passing through f2 intersecting (C) at r 
     and s 
6. (T1) perpendicular bisector of [f2 r]  
7. t1 intersection of (T1) and (f1 r) 

Case 2 (from U2) 
1. Hyperbola (H) from f1, f2 and q 
2. Apply macro asympt hyper to get the  
    asymptotic lines Asympt1 and Asympt2 
3. Circle (C) centered at f1 passing through 
     g2, symmetric point of f2 with respect to 
     a2 
4. Circle (C2) centered at a point U2 
    passing through f2 intersecting (C) at r 
     and s 
6. (T2) perpendicular bisector of [f2 s] 
7. t2 intersection of (T2) and (f1 s) 

 

These algorithms are recorded as two macro constructions: 
Macro tgt hyp 1 from pt whose initial objects are the two foci of a hyperbola (H), one of its point q 
on the left branch and a point U1 and final objects a tangent line (T1) to (H) at t1, tangent to the right 
branch if U1 is located under the right asymptotic line (Asympt1), to the left branch of (H) if U1 is 
located above the right asymptotic line (Asympt1).  
Macro tgt hyp 2 from pt whose initial objects are the two foci of a hyperbola (H), one of its point q 
on the left branch and a point U2 and final objects a tangent line (T2) to (H) at t2, tangent to the left 
branch if U2 is located under the left asymptotic line (Asympt2), to the right branch of (H) if U2 is 
located above the left asymptotic line (Asympt2). 

 

  
 

Figure 13: Tangent lines to a hyperbola from a given point 
 

Below in figure 14, are represented the four different positions of the tangent lines of (T1) and (T2) 
regarding the position of point U relativelely to the asymptotic lines of the hyperbola 
 

    
 

Figure 14: Tangent lines to a hyperbola according to the position of their origin 
 



3.5. Hyperbolas tangent to the three sides of a given triangle (Figure 2 center and right): 
3.5.1. Existence of such hyperbolas: using the previous construction algorithm (macro tgt hyp right), 
it is possible to construct three tangent lines to the same branch of a given hyperbola, these three lines 
defining a triangle ABC. It is easy to check that one of the foci of this hyperbola is always inside the 
circumcircle of triangle ABC. (See Figure 15 left). 
 

 
 

Figure 15: Hyperbolas tangent to the three sides of a triangle 
 

3.5.2. Construction algorithm of a branch of hyperbola tangent to the three sides of a given triangle 
ABC is a given triangle and f1 a given point outside the triangle (Figure 15 center). If a branch of 
hyperbola having f1 as one of its foci is tangent to the three lines supporting the sides of ABC, 
necessarily the symmetric points of f1 with respect to these lines, a, b and c belongs to the director 
circle (C2) ssociated with the second focus f2 which is the center of this circle. Necessarily, f1 must 
be inside the circumcircle of ABC because if not, f2 would be located inside (C2) which is impossible. 
If this branch of hyperbola exists the three contact points would be respectively the intersection points 
between ray [f2 a) and line (BC) for Ta, between ray [f2 b) and line (AC) for Tb and between ray [f2 
c) and line (AB) for Tc. 
Figure 15 right shows a case where the position of f2 allows the construction of an expected 
hyperbola. 
The hyperbola solution of our problem is defined by its two foci f1 (given point) and f2 (center of 
director circle) and one summit s (midpoint of [e f2] where e is the intersecion between [f1 f2] and 
(C2). 
To check positions of f1 allowing the existence of the three points Ta, Tb and Tc and by the way the 
existence of a branch of hyperbola tangent to the thee lines (AB), (BC) and (CA), we measure and 
display the distances oTa, oTb nd oTc and move f2 until a position where these three distances exist. 
 

3.5.3. Construction algorithm (Figure 15 center) 
 

1. Triangle (ABC) and point f1 
2. Lines (AB), (BC) and (CA) 
3. Points c, a and b symmetric of f1 with  
    respect to these lines 
4. Circle (C2) centered at a point f2 
    passing through a, b and c 
5. e intersection of (C2) and [f1 f2] 

6. s midpoint of [e f1]  
7. Hyperbola with foci f1 and f2 passing  
    through s 
8. Ta intersection of [f2 a) and (BC) 
9. Tb intersection of [f2 b) and (AC) 
10. Tc intersection of [f2 c) and (AB) 

 

This construction is recorded as a macro construction called tri tgt hyp with initial objects a triangle 
and a point inside its circumcircle (but outside the triangle) and whose final objects are the hyperbola 
which first focus is the given point and the the triangle linking the contct points 
 



3.5.4. Possible locations of the first focus 
If we move point f1 where it is allowed by the previous macro we can state quickly that the hyperbola 
does not always exist: in fact, this result can be reached by observing when the triangle linking the 
contact points appears or disappears. I had the idea to move point f1 along segments parallel to 
the sides of the given triangle. That was an amazing idea because I could quickly conjecture that 
the hyperbola exists when f1 is located inside the circumcircle but outside a special triangle which 
seemed to be similar to the given triangle. The measurements taken during my experiments led to 
obtain a ratio close to 1.60 (I suspected the golden ratio) and the center of the dilation transforming 
the given triangle onto this one being the orthocenter of the given triangle. To corroborate this 
conjecture, starting from a triangle ABC, I constructed its orthocenter h and transformed it by the 

dilation centered at h and with ratio equal to √  (close to 1.618). Then, I applied the previous macro 

to ABC and a point f1 in the previous suspected part of the plane where I expected the hyperbola to 
exist. And it works! 
 

3.5.5. Final conjectures (Figure 16 right) 
About hyperbolas tangent to the three sides of a triangle 
ABC is a triangle, (C) its circumcircle, h its orthocenter, A’B’C’ the image of triangle ABC by the 

dilation centered at h and of ratio, the golden ratio √ . Each point belonging to (C) but outside 

A’B’C’ is one of the foci f1 of a hyperbola tangent to the three lines supported by the sides of ABC. 
About conics tangent to the three sides of a triangle 
ABC is a triangle, (C) its circumcircle, each point f1 of the plane except the points of the sides of the 
triangle and the points of the three portions of planes opposite to angles A, B and C are the first 
focus of a conic tangent to the three lines supported by the sides of ABC. More precisely: 

This conic is an ellipse when f1 is inside ABC or outside its circumcircle  
This conic is a parabola when f1 is on its circumcircle  
This conic is a hyperbola when f1 is inside its circumcircle but outside the image of triangle 

ABC by the dilation centered at the orthocenter of ABC and of ratio, the golden ratio √ . 

The plane portions corresponding to these three cases are visible in figure 16 right. 
 

 
 

Figure 16: Locations of hyperbolas tangent to a “triangle” and final conjectures 
 

3.6. Isoptic curves of a branch of hyperbola 
The following algorithm will make it possible to construct the set of points from which a branch of 
hyperbola is seen under a given angle. 



 

1. Points A1 and A2 intersection of (H)  
    with [f1 f2] 
2. Asymptotic lines in applying macro  
   asymp hyper 
3. Edit a number d and evaluate 2d 
4. Create points e and g by measurement  
    transfer of d and 2d on vector f1O 
5. Ray [e g) and a point m on it 
6. B2 intersection between Asympt1 and the 
    perpendicular to (f1O) at A2 
7. Ray [m b2) where b2 is the image of  
   B2 by translation mapping A2 onto m 
8. Apply macro tgt hyp right to get the  
    tangent line (T2) to (H) at t2 (on (H) and  
    [m b2)) 
9. Evaluate and display distance between 
   f2 and (T2) called h 

10. Create a point s2 on (T2) by 
      Measurement transfer of h (on the 
      right of t2) 
11. Create a slider between 0 and 180 
12. Evaluate the opposite of the number  
     displayed by the slider 
13. Use this last number to rotate s2  
      around t2 to get w2 
14. Ray [t2 w2) and its intersection t2' 
      with (H) 
15. Midpoint i of [t2 t2'] 
16. Intersection j between (H) and ray 
     [O i) 
17. (T2) parallel to (t2 t2') through j 
18. Intersection l between (T2) and 
      (T2') 

 

Figure 17 left illustrates the stages from 1 to 11 and Figure 17 center the stages from 12 to 18. 
The locus of point l is the part of the isoptic generated by the tangent lines to (H) associated to the 
points m of ray [e g). Points l exist until ray [t2 w2) becomes parallel to Asympt 2. The position of e 
(commanded by d) allows to avoid positions of m where (T2’) does not exist. 
To be sure to obtain the complete isoptic related to the right branch of the hyperbola, we complete 
the locus of l by the locus of l’ its symmetric point with respect to (f1f2): see Figure 17 right where 
different isoptic curves are visible, obtained by changing the values of the slider without choosing a 
value superior to the angle between the two asyptotic lines and letting their trace be active. 
 

   
 

Figure 17: Isoptics of hyperbolas  
 

About the limit position of point e: 

The equation of the hyperbola (H) is 
𝒙𝟐

𝒂𝟐 −
𝒚𝟐

𝒃𝟐 − 1 = 0 in a system of axes centered at O. This equation 

is equivalent to 𝑦 = . √𝑥 − 𝑎  and we know that = .
√

 . Therefore, the slope of the 



tangent line at M0 (x0, y0) is  .  = tan(u). Let us evaluate the slope of [t2 w2) (v is the angle 

displayed by the slider) which is: 

tan(u-v)=
( )  ( )

( ).  ( )
 . If we call m the value -   which is the slope of Asympt2, we want to find 

the position of M0, when [t2 w2) is parallel to Asympt2, that is to say: 
( )  ( )

( ).  ( )
= 𝑚 or 𝑡𝑎𝑛(𝑢) =

 ( )

.  ( )
 or . =  

  ( )

 .  ( )
 , from which we obtain 

=  
.  ( )

.  ( )
 = M equivalent to 𝑥 =  and 𝑥 =  . 

 

Eventually the limit value of x0 to construct a point viewing the right branch under an angle of v is 
the previous value. x0 is the distance Oe. 
 
4. Conclusion 
 
This article was the occasion of an original visit of the conics centered on the problem of their 
tritangency. Almost every construction gives the opportunity to create a detailed macro construction 
which will be used for the following investigations. The purely geometric construction of tritangent 
conics led to the discovery of two original conjectures on the classification of such conics, one 
including the golden ratio. Once again, the experimental approach mediated by dynamic geometry 
has shown its power for the illustration of known results with some of their lesser known 
consequences and the discovery of original and highly plausible conjectures. The reader will find 
there detailed all the algorithms of the purely geometric constructions used in order to realize that the 
initiation to programming can and must go through the stage of geometric macro constructions before 
approaching more complex formalizations. 
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