
Linear Algebra Computational Tool for LaTeX

Ajit Kumar∗1 and Chetan Shirore2

1Department of Mathematics, Institute of Chemical Technology, Mumbai,
India

2Department of Mathematics, Institute of Chemical Technology, Mumbai,
India

Abstract

Linear algebra is used in different branches of science, engineering, and data science.
There are many tools for doing computations on vectors and matrices. LaTeX is one of the
most widely used typesetting systems for scientific publications, and there is often a need
to type vectors and matrices inside LaTeX documents and perform different operations
on them. We have developed a computational tool for linear algebra to deal with standard
operations on vectors and matrices inside LaTeX. The standard practice of LaTeX users
is to export computational results from other software and compile them inside LaTeX.
This may be cumbersome when there are vast computations. The exported output from
other software may need some editing before importing it into LaTeX as it may not be in
LaTeX-compatible format or in the format that the user expects. The main aim of this
paper is to give a brief introduction to the computational tool of linear algebra developed
by us. This paper extends the series of basic computational tools that we developed [2, 3,
4, 5, 8, 10, 7]. It will reduce the dependence of LaTeX users on external software and
can also be deployed for pedagogical uses.

1 Background and Introduction
Lua programming language is a scripting language which can be embedded across platforms.
With LuaTeX [9] and luacode [1] packages, it is possible to use Lua in LaTeX. TeX or LaTeX
has scope for programming [12]. However, with the weird internals of TeX, there are several
limitations, especially for performing calculations on numbers in LaTeX documents.

There is a good scope to perform basic mathematical computations in LaTeX using Lua.
This approach is suitable for performing standard operations on real and complex numbers, sets,
integers, vectors, and matrices. It involves some complex intermingling of Lua and TeX. We
have developed the luamaths [4], luacomplex [2], luaset [8], luagcd [3], luamodulartables
[5], luanumint [7] and luatruthtable [10] packages based on this approach. These packages
are designed from a pedagogical perspective and enhance the computational aspect of LaTeX.

∗Corresponding Author, Email: a.kumar@ictmumbai.edu.in

We are extending the series by introducing a Lua-based linear algebra computational tool. It
covers most of the numerical computations on vectors and matrices. No particular environment
in LaTeX is required to use this tool. The time required for performing operations on vectors
and matrices using the tool is not an issue due to dynamic memory management and garbage
collection facility of Lua.

The article is organized in different sections. The methodology used for the development
of the tool is discussed in the second section. The license and instructions for installation are
given in the third section. The fourth section summarizes the key features of the tool. The
pedagogical applications with a few illustrations are given in the fifth section. The resources
used in the development of the tool are covered in the sixth session. The seventh section
provides some limitations of the tool. The future plans and prospects of the research work are
in the eighth section.

2 Development of the tool
The development of the linear algebra computational tool can be described in the following
steps.

• The resources available in Lua are used for writing small blocks or chunks in Lua IDE.
The abstraction of chunks is done by writing functions in Lua. These functions are put
into a single Lua module.

• In the next step, the module is thoroughly tested in Lua independently of LaTeX. The
necessary changes are made and restructuring of algorithms is done wherever required.
The error handling mechanism is added to ensure the appropriate input from users.

• After testing stand alone Lua modules, the luacode package [1] is used to integrate the
Lua module with LaTeX. This integration often gets complex as the intermingling of TeX
and Lua is not straightforward. The customized environments and customized commands
are written in the LaTeX package file to execute functions in the Lua module through
LuaTeX. The xkeyval [14] package is also used in the development of the tool.

• Lua based LaTeX package is again thoroughly tested with its output in PDF file. TeX
commands are modified as required.

3 Licensing and deployment of the tool
Lua is certified open-source software available. Its license is simple and liberal, which is com-
patible with GPL. This license allows users to freely copy, modify and distribute the file for any
purpose and without restrictions. The tool is released under the LaTeX Project Public License
v1.3c or later.

The installation of the linear algebra computational tool is similar to the plain latex package.
It can be loaded with \usepackage{lualinalg} command in the preamble of the LaTeX
document. The TeX file is to be compiled using the LuaLaTeX engine.

The lualinalg package is available on the CTAN repository and bundled with standard
TeX distributions such as MikTeX and TeXLive. It can easily be used in the Overleaf online
LaTeX editor. The source files of the tool need to be placed in the working directory of Overleaf.

4 Features of the tool
The tool mainly consists of two parts: operations on vectors and operations on matrices. This
section summarizes key features of each of the part.

4.1 Operations on vectors
The vectors of reasonable size can be handled with ease. It supports vectors defined over
the field of real and complex numbers. The meta-operations are used to evaluate complex
expressions involving vectors. The following are some features in the vector part of the tool.

• Defining vectors : vectors are defined with the \vectornew command. The standard
vector of dimension n with ith coordinate 1 and other co-ordinates 0 can be produced
with additional specifications in the same command.

• Operations on vectors: the following operations on vectors can be performed by using
different commands available in the tool.

� Define vectors with specified coordi-
nates.

� Create vectors with random coordi-
nates.

� Print vectors with optional argu-
ments.

� Parse and change coordinates of vec-
tors.

� Create multiple copies of vectors.

� Perform addition, subtraction and
scalar multiplication.

� Find dot and cross product of vec-
tors.

� Calculate the Euclidean norm, p-
norm, sum norm, and sup-norm of
a vector.

� Obtain angle between two vectors.

� Evaluate complex expressions involv-
ing vectors using meta-operators.

� Parse coordinates of vectors for plot-
ting.

� Perform Gram-Schmidt orthogonal-
ization process with the option
of producing computations step-by-
step.

4.2 Operations on Matrices
The matrices of reasonable size can be handled with ease. It supports matrices with real
and complex number entries. The meta-operations are used to evaluate complex expressions
involving matrices. The following are some features in the matrix part of the tool.

• Defining Matrices: Matrices are defined with the \matrixNew command. The identity
matrix can be defined by adding specific argument in the same command.

• Operations on matrices: The following operations on matrices can be performed by using
different commands in the tool.

� Define matrices with specified en-
tries.

� Create matrices with random entries.

� Obtain number of rows and columns
of a matrix.

� Fetch and change elements of matri-
ces from specified rows and columns.

� Obtain a submatrix of the matrix.

� Augment matrix horizontally and
vertically.

� Perform Gauss-Jordan elimination
with option of producing computa-
tions step-by-step.

� Create copies of matrices.

� Calculate the 1-norm, infinity-norm,
max-norm and Frobenius-norm of a
matrix.

� Perform addition, subtraction, mul-
tiplication and scalar multiplication.

� Determine inverse, transpose, conju-
gate, complex conjugate, rank and
trace of a matrix.

� Perform elementary row and column
operations on matrices.

� Obtain Reduced Row Echelon Form
(RREF) of a matrix with the option
of producing computations step-by-
step.

5 Pedagogical applications
• The tool can assist in creation of interactive teaching modules in LaTeX when computa-

tions on vectors and matrices are involved. A variety of problems on vectors and matrices
can be generated for assignments of students by using the tool. The final computational
results of problems can also be provided by using available commands in the tool.

• The beamer is a document class in LaTeX to create presentations. The tool can be used
in beamer to illustrate various concepts of linear algebra while teaching.

• The tool can also be used to illustrate step-by-step procedures to obtain the rref form of
a matrix.

Lualinalg code 1: Step-by-step computations of rref
\def\z{{{lfrac(3,2),lcomplex(3,3),5},{6,7,8},{7,0,9}}}
\matrixNew{M}{\z}
\[M = \matrixPrint{M}\]
\matrixRREFSteps{M}

Lualinalg code 1 generates the following output.

M =

3
2

3 + 3i 5

6 7 8

7 0 9

Step 1: Divide row 1 by 3
2
.

1 2 + 2i 10
3

6 7 8

7 0 9

Step 2: Multiply row 1 by 6 and subtract it from row 2.

1 2 + 2i 10
3

0 −5− 12i −12

7 0 9

Step 3: Multiply row 1 by 7 and subtract it from row 3.

1 2 + 2i 10
3

0 −5− 12i −12

0 −14− 14i −43
3

Step 4: Divide row 2 by −5− 12i.

1 2 + 2i 10
3

0 1 60
169

+ −144
169

i

0 −14− 14i −43
3

Step 5: Multiply row 2 by 2 + 2i and subtract it from row 1.

1 0 466
507

+ 168
169

i

0 1 60
169

+ −144
169

i

0 −14− 14i −43
3

Step 6: Multiply row 2 by −14− 14i and subtract it from row 3.

1 0 466
507

+ 168
169

i

0 1 60
169

+ −144
169

i

0 0 1301
507

+ −1176
169

i

Step 7: Divide row 3 by 1301

507
+ −1176

169
i.

1 0 466
507

+ 168
169

i

0 1 60
169

+ −144
169

i

0 0 1

Step 8: Multiply row 3 by 466
507

+ 168
169

i and subtract it from row 1.
1 0 0

0 1 60
169

+ −144
169

i

0 0 1

Step 9: Multiply row 3 by 60

169
+ −144

169
i and subtract it from row 2.
1 0 0

0 1 0

0 0 1

Some illustrations

• The tool can be used to solve numerical problems on vectors and matrices, and to verify
results. We mention a few of the computations for illustration.

Lualinalg code 2: Solving problems on vectors the linear algebra computational tool
\vectorNew{v1}{{3,8,5}} \vectorNew{v2}{{4,7,4}} \vectorNew{v3}{{5,4,3}}
\[v1=\left(\vectorPrint{v1}\right),\]

\[v2=\left(\vectorPrint{v2}\right),\]
\[v3=\left(\vectorPrint{v3}\right)\]

\vectorGramSchmidtSteps[brckt=round,truncate=3]{{'v1','v2','v3'}}

Lualinalg code 2 produces a step-by-step computation of Gram-Schmidt orthogonalization
process on vectors v1 = (3, 8, 5), v2 = (4, 7, 4) and v3 = (5, 4, 3). Following is the output
of this procedure.

v1 = (3, 8, 5) ,

v2 = (4, 7, 4) ,

v3 = (5, 4, 3)

Take given vectors as v1, . . . , v3 in order.
Step 1:

u1 = v1 = (3, 8, 5)

e1 =
u1

||u1||
= (0.303, 0.808, 0.505)

Step 2:

u2 = v2 −
1∑

j=1

projuj
(v2) = (1.306,−0.184,−0.49)

e2 =
u2

||u2||
= (0.928,−0.131,−0.348)

Step 3:

u3 = v3 −
2∑

j=1

projuj
(v3) = (0.247,−0.66, 0.907)

e3 =
u3

||u3||
= (0.215,−0.574, 0.79)

By using \vectorEuclidNorm and \vectorDot commands in the tool, it can be verified
that e1, e2 and e3 are pair-wise orthogonal unit vectors.

• The tool can be used to solve examples on matrices, and to verify results numerically. As
an example, consider the following system of linear equations.

1

4
x+ y + z = 6, 2x− 3y − z = 9, 4x− y + z = 10 + i

With the command \matrixGaussJordanSteps in tool, it is possible to produce step-by-
step computation of Gauss-Jordan elimination of an augmented matrix.

Lualinalg code 3: Solving linear equations using the linear algebra computational tool.
\def\a{{{lfrac(1,4),1,1},{2,-3,-1},{4,-1,1}}}
\def\b{{{6},{9},{lcomplex(10,1)}}}
\matrixNew{S}{\a}
\matrixNew{T}{\b}
\matrixConcatH{W}{S}{T}
\[W = \matrixPrint{W}\]
\matrixGaussJordanSteps{S}{T}

Lualinalg code 3 generates the following output.

W =

1
4

1 1 6

2 −3 −1 9

4 −1 1 10 + i

Step 1: Divide row 1 by 1

4
.

1 4 4 24

2 −3 −1 9

4 −1 1 10 + i

Step 2: Multiply row 1 by 2 and subtract it from row 2.
1 4 4 24

0 −11 −9 −39

4 −1 1 10 + i

Step 3: Multiply row 1 by 4 and subtract it from row 3.

1 4 4 24

0 −11 −9 −39

0 −17 −15 −86 + i

Step 4: Divide row 2 by −11.

1 4 4 24

0 1 9
11

39
11

0 −17 −15 −86 + i

Step 5: Multiply row 2 by 4 and subtract it from row 1.

1 0 8
11

108
11

0 1 9
11

39
11

0 −17 −15 −86 + i

Step 6: Multiply row 2 by −17 and subtract it from row 3.

1 0 8
11

108
11

0 1 9
11

39
11

0 0 −12
11

−283
11

+ i

Step 7: Divide row 3 by −12

11
.

1 0 8
11

108
11

0 1 9
11

39
11

0 0 1 283
12

+ −11
12

i

Step 8: Multiply row 3 by 8

11
and subtract it from row 1.

1 0 0 −22
3

+ 2
3
i

0 1 9
11

39
11

0 0 1 283
12

+ −11
12

i

Step 9: Multiply row 3 by 9
11

and subtract it from row 2.
1 0 0 −22

3
+ 2

3
i

0 1 0 −63
4

+ 3
4
i

0 0 1 283
12

+ −11
12

i

These computations show that

x =
−22

3
+

2

3
i, y =

−63

4
+

3

4
i and z =

283

12
+

−11

12
i

is the solution. It also illustrates the Gauss-Jordan elimination to obtain the solution of
a system of linear equations.

• Apart from computations on vectors, the tool can be used with other packages that
can plot vectors defined over the field of real numbers in 2 or 3 dimensions. The tool
thus facilitates graphical illustration of various concepts on vectors. As an example, the
package can be used with the tikz package. Lualinalg code 4 illustrates the plotting of
vectors in a 3-D plane using the luavector and tikz package. It produces figure 1.

Lualinalg code 4: Plotting vectors in 3-dimensions with the linear algebra computational tool
\documentclass{article}
\usepackage{tikz,tikz-3dplot,lualinalg}
\begin{document}
\tdplotsetmaincoords{60}{100}
\begin{tikzpicture}[scale=1,

tdplot_main_coords,
axis/.style={->,thick},
vector/.style={-stealth,very thick},
vector guide/.style={dashed,red,thick}]

\vectorNew{o}{{0,0,0}}
\vectorNew{e1}{{5,0,0}}
\vectorNew{e2}{{0,3,0}}
\vectorNew{e2n}{{0,-3,0}}
\vectorNew{e3}{{0,0,6}}
\vectorNew{f}{{1,2,0}}
\vectorNew{g}{{-2,1,2}}
% Axes
\draw [axis] \vectorParse{o}-- \vectorParse{e1} node [below left] {x};
\draw [axis] \vectorParse{e2n}-- \vectorParse{e2} node [right] {y};
\draw [axis] \vectorParse{o}-- \vectorParse{e3} node [above] {z};
% Plotting Vectors
\draw [vector, red] \vectorParse{o} --\vectorParse{f};

\draw [vector, blue] \vectorParse{o} --\vectorParse{g};
\vectorCross{h}{f}{g}
\draw [vector, green] \vectorParse{o} --\vectorParse{h};
% Labels
\node [below right] at \vectorParse{f} {f};
\node [above left] at \vectorParse{g} {g};
\node [left] at \vectorParse{h} {$f \times g$};
\draw[vector guide, black] \vectorParse{h} --

(\vectorGetCoordinate{h}{1},0,0) node [below right]
{$x=\vectorGetCoordinate{h}{1}$};

\draw[vector guide, black] \vectorParse{h} --
(0,\vectorGetCoordinate{h}{2},0) node [below left, xshift = 0.3cm]
{$y=\vectorGetCoordinate{h}{2}$};

\draw[vector guide, black] \vectorParse{h} --
(0,0,\vectorGetCoordinate{h}{3}) node [right]
{$z=\vectorGetCoordinate{h}{3}$};

\end{tikzpicture}
\end{document}

x

y

z

f

g
f × g

x = 4

y = −2

z = 5

Figure 1: Plotting of 3-D Vectors with the luavector and tikz package

Customized usage
The commands available in the package can be used for performing further operations on
matrices and vectors. These commands can be modified or extended as well. The tool has no
functions to check whether the matrix is involutory and to check the orthogonality of vectors.
It is easily possible to construct these functions using the tool. Lualinalg code 5 illustrates this.

Lualinalg code 5: Customized usage of the tool
\documentclass{article}
\usepackage{lualinalg}
\begin{document}
\begin{luacode}
function matrix.checkInvolutory(m)
if #m ~= #m[1] then error("Matrix is not square.") end
idn = matrix(#m, 'I')

return matrix.chqeql(m^2,idn)
end

function vector.checkOrthoVecs(v,w)
return lnumChqEql(vector.dot(v,w),0)
end
\end{luacode}

\newcommand\matrixChkInvolutory[1]{%
\directlua{%

tex.print(tostring(matrix.checkInvolutory(matrices['#1'])))
}%

}%

\newcommand\vectorChkOrtho[2]{%
\directlua{%

tex.print(tostring(vector.checkOrthoVecs(vectors['#1'],vectors['#2']
)))%

}%
}%

\def\s{{{-5,-8,0},{3,5,0},{1,2,-1}}}
\matrixNew{m}{\s}
\(m = \matrixPrint{m}\)

It is \matrixChkInvolutory{m} that matrix \(m\) is Involutory.

\vectorNew{v1}{{lcomplex(0,1),lcomplex(-1,-1), 1}}
\vectorNew{v2}{{lcomplex(-1,1),lcomplex(0,2), lcomplex(1,1)}}
\(v1=(\vectorPrint{v1})\) and \(v2=(\vectorPrint{v2})\).

It is \vectorChkOrtho{v1}{v2} that vectors \(v1\) and \(v2\) are orthogonal.

\end{document}

Lualinalg code 5 generates the following output.

m =

−5 −8 0
3 5 0
1 2 −1

It is true that matrix m is involutory.
v1 = (3, 8, 5) and v2 = (−1 + i, 2i, 1 + i).
It is true that vectors vectors v1 and v2 are orthogonal.

6 Resources used
• Techniques and methods used in development of the tool do not need any special resources.

All the techniques are platform-independent and work on the standard operating systems.
The technique mainly uses Lua and LaTeX, which are platform-independent and do not
need strong hardware resources.

• No proprietary software and tools are used in the development of the tool. The tool
is made available as freeware and open source. This is important as the research work
can further be extended without any restrictions. This is within the philosophy of open
source and freeware tools that are available for the mathematics community.

7 Known issues and limitations
• The tool uses double precision for floating-point numbers. It represents each number

with 64 bits, 11 of which are used for the exponent. The double-precision floating-point
numbers can represent numbers with roughly 16 significant decimal digits. The tool
supports small and big numbers. They can be input in the usual scientific notation.
The math library in Lua defines constants with the maximum math.maxinteger and the
minimum math.mininteger values for an integer. The result wraps around when there
is a computational operation on integers that would result in a value smaller than the
mininteger or larger than the maxinteger. It means that the computed result is the
only number between the miniinteger and maxinteger. The bits after 64 bits are not
taken into account.

• The symbolic computations on vectors and matrices are not supported at present.

• The error handling mechanism in the tool is not robust. There are some custom er-
rors included in the package. However the package mostly depends on error handling
mechanism of Lua. The error handling can be strengthened in future updates of the tool.

8 Future Plans and Prospects of the Research Work
• The tool currently supports only numerical computations on vectors and matrices. The

table in a Lua is a data type that implements an associative array. This feature is
used in packages to define and store vectors and matrices. This approach is close to

object-oriented programming. It will allow easy conversion of algorithms in packages for
symbolic computations. Future package updates will consider algorithm conversions to
support symbolic calculations.

• The approach of embedding Lua in LaTeX can be extended in several other ways. With
luamplib [6] and metapost [11] libraries, it is possible to plot graphs of functions in
LaTeX in a native way. This sort of package can be developed in the future to enhance
the graphical aspect of LaTeX using Lua.

• Lua supports procedural programming, object-oriented programming, functional pro-
gramming, data-driven programming, and data description. It is thus possible to upgrade
the developed tool with Graphical User Interface (GUI) to facilitate interactive compu-
tations on vectors and matrices. The tool can also have a facility to import and export
computations in LaTeX-compatible format.

• Lua-based mini Computer Algebra System can be developed and integrated into LaTeX.
It will consist of Lua packages designed for performing symbolic mathematical computa-
tions. There is good scope for developing such Computer Algebra System. There have
already been efforts in this direction. There is a symmath lua project on GitHub. It is
available on this link [13].

References
[1] luacode package page. url: https://ctan.org/pkg/luacode (visited on 03/10/2022).
[2] luacomplex package page. url: https : / / ctan . org / pkg / luacomplex (visited on

12/29/2022).
[3] luagcd package page. url: https : / / ctan . org / pkg / luatruthtable (visited on

12/30/2022).
[4] luamaths package page. url: https://ctan.org/pkg/luamaths (visited on 12/27/2022).
[5] luamodulartables package page. url: https://ctan.org/pkg/luamodulartables (vis-

ited on 12/31/2022).
[6] luamplib package. url: https://mirror.kku.ac.th/CTAN/macros/luatex/generic/

luamplib/luamplib.pdf (visited on 02/22/2022).
[7] luanumint package page. url: https : / / ctan . org / pkg / luanumint (visited on

08/04/2023).
[8] luaset package page. url: https://ctan.org/pkg/luaset (visited on 12/28/2022).
[9] LuaTeX package page. url: https://ctan.org/pkg/luatex (visited on 01/22/2022).

[10] luatruthtable package page. url: https://ctan.org/pkg/luatruthtable (visited on
09/18/2022).

[11] Metapost language. url: https://www.tug.org/docs/metapost/mpman.pdf (visited on
02/22/2022).

[12] William M. Richter. “TEX and scripting languages”. In: TUGboat 25.1 (80 2004), pp. 71–
88. issn: 0896-3207. url: https://tug.org/TUGboat/tb25-1/richter.pdf.

https://github.com/thenumbernine/symmath-lua
https://ctan.org/pkg/luacode
https://ctan.org/pkg/luacomplex
https://ctan.org/pkg/luatruthtable
https://ctan.org/pkg/luamaths
https://ctan.org/pkg/luamodulartables
https://mirror.kku.ac.th/CTAN/macros/luatex/generic/luamplib/luamplib.pdf
https://mirror.kku.ac.th/CTAN/macros/luatex/generic/luamplib/luamplib.pdf
https://ctan.org/pkg/luanumint
https://ctan.org/pkg/luaset
https://ctan.org/pkg/luatex
https://ctan.org/pkg/luatruthtable
https://www.tug.org/docs/metapost/mpman.pdf
https://tug.org/TUGboat/tb25-1/richter.pdf

[13] Symbolic Mathematics in Lua. 2022. url: https://christopheremoore.net/symbolic-
lua (visited on 05/22/2022).

[14] Xkeyval package. url: https : / / ctan . org / pkg / xkeyval ? lang = en (visited on
06/12/2021).

https://christopheremoore.net/symbolic-lua
https://christopheremoore.net/symbolic-lua
https://ctan.org/pkg/xkeyval?lang=en

	Background and Introduction
	Development of the tool
	Licensing and deployment of the tool
	Features of the tool
	Operations on vectors
	Operations on Matrices

	Pedagogical applications
	Resources used
	Known issues and limitations
	Future Plans and Prospects of the Research Work

