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Abstract
We extend the convergence of locus discussed in the paper [5], which originated from

a practice problem for the Chinese college entrance exam. In this paper, we are interested
in the limit of a recursive sequence of loci built on a special convex combination of vectors
involving curves or surfaces. We shall see many interesting graphs of uniform conver-
gence of sequences generated by parametric curves and surfaces, which will inspire many
applications in computer graphics, and other related disciplines.

1 Introduction and Motivation

In the paper [5], the problem is to find the locus that is determined by two fixed vectors using
bisection theorem. In this paper, we discuss the proposed question of what will happen when we
iterate the locus sequentially, and would like to find the limit of such locus. In short, we shall see
a continuous deformation of an initial shape into a target shape, which is an interesting subject
in computer graphics. We shall see the limit of a recursive sequence of convex combinations of
vectors that involve curves or surfaces.
Original College Entrance Practice Problem: Given a unit circle centered at (0, 0)

and a fixed point at A = (2, 0). Let Q be a moving point on the unit circle C. Find the locus
M which is the intersection between the angle bisector QOA and line segment QA.
It is an easy exercise to verify that the locus of point M is a circle, which we leave as

an exercise for the readers. Moreover, it is natural to imagine when DGS and CAS tools are
available for students in a classroom as a project to explore, they may quickly pose ‘what if’
scenarios. We briefly state the following Exploratory Activity has been discussed in [4] and [5].
We then extend it to what we will focus on in this paper.
Exploratory Activity ([4] and [5]): Given an ellipse C: [x(t), y(t)] = [a cos(t), b sin(t)], t ∈

[0, 2π] , and a fixed point A = (p, q) /∈ C. Let Q be a moving point on the ellipse (shown in



green in Figure 1). Find the locus of the pointM which is the intersection between the bisector
QOA and line segment QA.

Figure 1. Locus, bisection and an ellipse

We derived that
−−→
OM =

OQ

OA+OQ

−→
OA+

OA

OA+OQ

−→
OQ, (1)

where OQ =
∥∥∥−→OQ∥∥∥ = √a2 cos2 t+ b2 sin2 t and OA =

∥∥∥−→OA∥∥∥ = √
p2 + q2. We see that

the parametric equation for the locus M (t) can be plotted directly from Eq. (1) (see the red
curve in Figure 1 above) with the help of a computational tool. It should cause no confusion

throughout the paper that when t ∈ [0, 2π] , we often use −−→OM to denote the vector
−−−−→
OM (t),

OQ stands for the magnitude of
∥∥∥−−−−→OQ (t)

∥∥∥ when Q (t) is a parametric curve, and OA stands for
the magnitude of

∥∥∥−→OA∥∥∥ if A is simply a point.
It is natural to extend our exploration and ask what would happen to the plot of

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

OQn
OA+OQn

−→
OA+

OA

OA+OQn

−−→
OQn, (2)

when n → ∞, where −−→OQn =
−−−→
OMn, OQn = OMn =

√
xn(t)2 + yn(t)2, n ∈ Z+, and OA =√

p2 + q2. Consequently, consider the following extension with extra weights of coeffi cients r
and s as follows: We therefore, consider the following scenario with extra weights of coeffi cients
r and s as follows:

Theorem 1 Given a non-zero closed curve C: [x(t), y(t)], and a non-zero fixed point A =

(p, q) /∈ C. Let Q be a moving point on C. For r, s > 0, and
−−−→
OM1 =

s·OQ
r·OA+s·OQ

−→
OA +

r·OA
r·OA+s·OQ

−→
OQ, if we write the Eq. (2) as

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn. (3)

Then
−−−−→
OMn+1 converges for some t ∈ [0, 2π] when n → ∞ if and only if either OQn =√

x2n (t) + y2n (t) + z2n (t)→ 0 or
−−−−−→
OMn (t)→

−→
OA for some t ∈ [0, 2π] when n→∞.



Proof: First, if
−−−−→
OMn+1 converges for some t ∈ [0, 2π] when n → ∞, then

−−−−−→
MnMn+1 =−−−−→

OMn+1 −
−−−→
OMn → 0 for some t ∈ [0, 2π] when n→∞. Moreover, since
−−−−−→
MnMn+1 =

−−−−→
OMn+1 −

−−−→
OMn

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

r ·OA
r ·OA+ s ·OQn

−−−→
OMn −

−−−→
OMn

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

−−−→
OMn

(
r ·OA

r ·OA+ s ·OQn
− 1
)

=
s ·OQn

r ·OA+ s ·OQn
−→
OA+

−−−→
OMn

(
−s ·OQn

r ·OA+ s ·OQn

)
.

=
s ·OQn

r ·OA+ s ·OQn

(−→
OA−−−−→OMn

)
. (4)

Hence,
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
converges for some t ∈ [0, 2π] if eitherOQn =

√
x2n (t) + y2n (t) + z2n (t)→

0 or
−−−−−→
OMn (t)→

−→
OA for some t ∈ [0, 2π] when n→∞. The other direction is clear. �

We describe a special convex combination of vectors in the vector space Rn below.

Definition 2 Given a finite number of vectors v1, v2, ... vn in Rn, a conical combination of
these vectors is vector of the form

α1v1 + α2v2 + ...αnvn,

where αi > 0, i = 1, 2, ...n. A set of conical combination of vectors is called a convex combi-
nation [2] if in addition the coeffi cient satisfying the following condition

n∑
i=1

αi = 1.

In this paper, we shall discuss a special weighted convex combination of vectors that involve
a recursive sequence. For example, if

−−−−−−−→
OMn+1 (t) =

[
xn+1(t)
yn+1(t)

]
=

α1
α1 + α2 + α3

v1 +
α2

α1 + α2 + α3
v2

+
α3

α1 + α2 + α3

−−−−−→
OMn (t), (5)

then α1, α2 and α3 are positive real numbers. Using the scaling techniques, without loss of
generality, we assume α1, α2 and α3 are real numbers in (0, 1). We shall see in later proofs that

the coeffi cient α3 is irrelevant to the convergence of limn→∞
−−−−−−−→
OMn+1 (t).

2 2D iterations on one curve and one fixed vector

For the rest of the paper, we assume the fixed point A is not on the original curve C. In view
of the Theorem (1), we further extend the knowledge of uniform convergence of sequences of



functions, which students learn in Advanced Calculus. We begin with the domain D = [0, 2π],
and {Mn : D → R2} being a sequence of functions, and note that since the metric space R2 is
complete, which means that every uniformly Cauchy sequence Mn is convergent. We consider
the following:

Definition 3 Suppose D = [0, 2π], and {Mn : D → R2} is a sequence of functions. If we
write Mn (t) = [xn(t), yn(t)] , with t ∈ [0, 2π] , {Mn (t)) is said to converge uniformly to
M∗(t) = [p(t), q(t)] if ∀ε > 0, ∃ a positive integer N = N(ε) (i.e. N depends only on ε in this
case) such that the Euclidean distance between two points, Mn (t) and M∗(t), ‖Mn(t)−M∗(t)‖
or ‖Mn (t)M

∗(t)‖ , is arbitrarily small:

‖Mn(t)−M∗(t)‖ = ‖Mn (t)M
∗(t)‖ =

√
(xn(t)− p(t))2 + (yn(t)− q(t))2 < ε.

Similarly, the sequence {Mn (t)) is said to converge uniformly to a point A = (p, q) if ∀ε > 0,
∃ a positive integer N = N(ε) such that ‖Mn (t)A‖ is arbitrarily small. In other words,

‖Mn (t)A‖ =
√
(xn(t)− p)2 + (yn(t)− q)2 < ε

for all n ≥ N and all t ∈ [0, 2π] . Intuitively, there exists a positive integer N, such that the
parametric curves Mn(t) will shrink to the point A for all n ≥ N and all t ∈ [0, 2π] .

Definition 4 Suppose D = [0, 2π], and {Mn : D → R2} is a sequence of functions. If we write
Mn (t) = [xn(t), yn(t)] , with t ∈ [0, 2π] , {Mn (t)) is said to be uniformly Cauchy if for every
ε > 0, there exists a positive integer N such that the inequality

‖Mn (t)Mm (t)‖ < ε

holds whenever m ≥ N, n ≥ N , and for all t ∈ D. We take it for granted in this paper that the
sequence {Mn : D → R2} converges uniformly to another M on D if and only if, the sequence
{Mn) is uniformly Cauchy.

Remarks:

1. We remark that definitions in (3) and in (4) can be extended to Rn.

2. We remind readers to distinguish the difference between uniform convergence versus point-
wise convergence.

3. Recall our original bisection problem (1) is such that M1A
M1Q0

= AB
OB

= AB
M1B

= OA
OQ0

= k1(t),

where the convergence in the case of (2) is a homothety (see [3]). We may denote the
following:

MnA

MnMn−1
= kn(t)

(
=

OA

OMn−1

)
, (6)

where n = 1, 2, ..., and M0 = Q, which is a point on the given curve C.



4. On one hand, we usually prove how a sequence of parametric curves {Mn (t)}∞n=1 converge
uniformly directly in this paper. On the other hand, we note that {Mn (t)} is a sequence
from D = [0, 2π] to R2, and since R2 is a complete metric space, if one can show that
{Mn (t)} is a uniformly Cauchy sequence, then {Mn (t)} is uniformly convergent. Instead
of proving that {Mn (t)} is a uniformly Cauchy sequence theoretically in this paper,
with the help of a CAS, we often demonstrate that the graph of square distance function
fn(t) = sup (‖Mn (t)−Mn−1 (t)‖)2 or gn(t) = sup (‖Mn (t)− A‖)2 , for all t ∈D = [0, 2π],
is decreasing to 0 uniformly, and use such observation to conjecture that {Mn (t)}∞n=1
converges uniformly.

The next observation is natural:

Theorem 5 Let C be a given simple closed curve [x0(t), y0(t)], A = (p1, q1) /∈ C. For r, s ∈
(0, 1) and r 6= s, we let

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ,

where Q is a moving point on C. Now for n ∈ Z+, we consider
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn, (7)

where Qn is a moving point on (xn(t), yn(t)) , and
−−−−−→
OQn (t) =

−−−−−→
OMn (t). Then

−−−−−→
OMn(t) →

−→
OA

uniformly as n→∞ for all t ∈ [0, 2π],
−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly to 0 for all t ∈ [0, 2π].

Consequently, {Mn (t)}∞n=1 converges to A uniformly.

Proof: First, if r = s and r, s ∈ (0, 1) , we refer to Theorem (1) for discussion. Now, for
r, s ∈ (0, 1) and r 6= s,

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ,

we first observe that Mn = Qn = (xn(t), yn(t)) for n ≥ 1, and
−−−→
OM2 =

[
x2(t)
y2(t)

]
=

s ·OQ1
r ·OA+ s ·OQ1

−→
OA+

r ·OA
r ·OA+ s ·OQ1

[
x1(t)
y1(t)

]
=

s ·OQ1
r ·OA+ s ·OQ1

−→
OA+

r ·OA
r ·OA+ s ·OQ1

(
s ·OQ

r ·OA+ s ·OQ
−→
OA+

r ·OA
r ·OA+ s ·OQ

−→
OQ

)
=
−→
OA

(
(rs) [(OA) (OQ) + (OA)OQ1] + s2 (OQ) (OQ1)

(r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
+
−→
OQ

(
r2 · (OA)2

(r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
.

By induction, we see

−−−−→
OMn+1 =

−→
OA

(
(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)− rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
+
−−→
OQn

(
rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ)

)
(8)



Since 0 < r < 1,

rn · (OA)n

(r ·OA+ s ·OQn) · · · (r ·OA+ s ·OQ1) (r ·OA+ s ·OQ) → 0.

Furthermore, since
−−−−→
OMn+1 = a

−→
OA + b

−−→
OQn, where a and b are coeffi cients of

−→
OA and

−−→
OQn

respectively as seen in Eq. (8) with a, b ∈ (0, 1) and a+b = 1, this implies that
−−−−−−→
OMn+1(t)→

−→
OA

as n→∞ for all t ∈ [0, 2π] . Since three points,Mn−1(t), Mn(t) andA are collinear, andMn(t) is

in the interior ofMn−1(t) andA, we see
−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly to 0 for all t ∈ [0, 2π],

which can be shown that
−−−→
Mn(t) is uniformly Cauchy, and hence {Mn (t)}∞n=1 converges to A

uniformly. �
We remark that the uniform convergence of {Mn(t)}∞n=1 to the point A does not depend on

the curve C.

Example 6 We consider the curve C of [a cos(t), b sin t], A = (p1, q1) /∈ C, For the convex
combination of r and s, we let[

x1(t)
y1(t)

]
=

s ·OQ
r ·OA+ s ·OQ

[
p1
q1

]
+

r ·OA
r ·OA+ s ·OQ

[
x0(t)
y0(t)

]
,

and
−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

s ·OQn
r ·OA+ s ·OQn

−→
OA+

r ·OA
r ·OA+ s ·OQn

−−→
OQn.

If we choose a = 5, b = 4, and convex combination for r = 1
3
, s = 2

3
, A = (3, 2) , then {Mn (t)}∞n=1

converges to A uniformly. (See Figure 2)

Figure 2. Uniform converges
to a point.

Exercises: (1) If we use r = s in Example (6), then we leave it to the readers to verify
that gn(t) = (‖Mn (t)− A‖)2 does not converge uniformly to 0. In fact, the maximum value
of gn(t) is the distance (OA)

2 at some t ∈ (0, 2π). (2) If we replace C by [a sin t, b sin t cos t],
a = 5, b = 4, r = 1

3
, s = 2

3
, A = (3, 2) in Example (6), then we may conjecture that {Mn (t)}∞n=1

does not converge to A uniformly by observing the graph of fn(t) = ‖Mn (t)−Mn−1 (t)‖ does
not converge uniformly to 0.



3 2D iterations on one curve and two fixed vectors

We consider convex combinations of three vectors below: Let C be a given closed curve
[x0(t), y0(t)], A = (p1, q1) and B = (p2, q2) be two distinct points not lying on C. If Q is a
moving point on C, and r1, r2, and r3 are real numbers in (0, 1) . For n ∈ Z+ ∪{0}, we consider

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

−−−→
OMn,

where M0 (t) = Q (t) ∈ C, and Mn(t) = Qn (t) is a moving point on (xn(t), yn(t)) . We are
interested in limn→∞

−−−−→
OMn+1.

3.1 Generating sequence of shrinking curves due to convex combi-
nations

Since the plot of the sequence
−−−−→
OMn+1 in (9), where r1, r2, and r3 are distinct real numbers in

(0, 1) , is a convex combinations of vectors
−→
OA,
−−→
OB and

−−−→
OMn, the plot of [xn+1(t), yn+1(t)] is

generated by the following steps:

1. Connect three points of Mn = (xn(t), yn(t)) , A and B to form the triangle 4MnAB.

2. We view the point Mn as the convex combination of three points A,B and Mn−1, for
n ∈ Z+, where M0 = Q, which is a point on the curve C. Since r1, r2, and r3 ∈ (0, 1) , the
point Mn (t) belongs to the interior of the triangle 4Mn−1AB for each t ∈ [0, 2π] , and
n ∈ Z+, see [2].

3. We shall see later in the proof of the Theorem (8) that the coeffi cient r3 will not affect
the final plot of

−−−→
OMn when n→∞.

4. The convergence of
−−−→
OMn will only depend on

−→
OA and

−−→
OB, and will not depend on the

curve C.

Example 7 We use closed curve C to be [a sinu, b sinu cosu], a = 5, b = 4, A = (3, 4) , B =
(2, 5) , r1 =

1
2
, r2 =

1
3
, and r3 =

1
6
for demonstrating how [x2(t), y2(t)] is generated from

[x1(t), y1(t)] . The graphs of [x1(t), y1(t)] and [x2(t), y2(t)] can be seen in black and purple re-
spectively in Figure 4 (d) respectively.

• Figure 4(a) shows when t = 0,the plot of [x2(t), y2(t)] has not been generated yet.

• Figure 4(b) shows when t ∈ [0, 0.9106] , the plot of [x2(t), y2(t)] is being generated in this
interval and will be in the interior of 4M1AB for each corresponding t.

• Figure 4(c) shows when t ∈ [0, 3.1871] , the plot of [x2(t), y2(t)] is being generated in this
interval and will be in the interior of4M1AB for each corresponding t, and finally, Figure



4(d) shows when t ∈ [0, 2π] , the plot of [x2(t), y2(t)] is smaller than that of [x1(t), y1(t)] .

Figure 4(a), t = 0.
Figure 4(b),
t ∈ [0, 0.9106] .

Figure 4(c),
t ∈ [0, 3.1871] . Figure 4(d), t ∈ [0, 2π] .

Theorem 8 Let C be a given closed curve [x0(t), y0(t)], A = (p1, q1) and B = (p2, q2) be two
non-zero distinct points not lying on C. If Q is a moving point on C, and r1, r2, and r3 are
positive real numbers in (0, 1), we let

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

r1 ·OQ
r1OQ+ r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQ+ r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQ+ r2OA+ r3OB

−→
OQ.

We further consider

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

[
xn(t)
yn(t)

]
, (9)



where Qn is a moving point on (xn(t), yn(t)) . Then {Mn (t)}∞n=1 converges uniformly to a point
D, which lies on the line segment AB. Consequently,

−−−−−−−−−→
Mn−1(t)Mn(t) converges uniformly

to 0 for all t ∈ [0, 2π]. We remark that the coeffi cient r3 ∈ (0, 1) will not affect the location of
the convergence {Mn (t)}∞n=1.

Proof: First, we observe

−−−→
OM2 =

[
x2(t)
y2(t)

]
=

r1 ·OQ1
r1OQ1 + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQ1 + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQ1 + r2OA+ r3OB

(
r1·OQ

r1OQ+r2OA+r3OB

−→
OA+ r2·OA

r1OQ+r2OA+r3OB

−−→
OB

+ r3·OB
r1OQ+r2OA+r3OB

−→
OQ

)

=
−→
OA

(∥∥∥−→OA∥∥∥)+−−→OB (∥∥∥−−→OB∥∥∥)+−→OQ( r23 (OB)
2

(r1OQ1 + r2OA+ r3OB) (r1OQ+ r2OA+ r3OB)

)
,

It follows from induction that

−−−−→
OMn+1 =

−→
OA

(∥∥∥−→OA∥∥∥)+−−→OB (∥∥∥−−→OB∥∥∥)
+
−→
OQ

(
rn3 (OB)

n

(r1OQn + r2OA+ r3OB) · · · (r1OQ1 + r2OA+ r3OB) (r1OQ+ r2OA+ r3OB)

)
.

Since 0 < r3 < 1, we see rn3 (OB)
n → 0, and

−−−−→
OMn+1 → m

−→
OA+ (1−m)−−→OB,

when n → ∞, where m =
∥∥∥−→OA∥∥∥ , and 1 − m =

∥∥∥−−→OB∥∥∥ . Let D = m
−→
OA + (1−m)−−→OB,

then D ∈ AB, and
−−−−→
OMn+1 converges uniformly to

−−→
OD. Hence

−−−−→
OMn+1 converges uniformly

to
−−→
OD, where D ∈ AB. In view of the observations from section (3.1), we see {Mn (t)}∞n=1

converges uniformly to the point D, which lies on the line segment AB. Moreover, it is clear
that

−−−−−−−−−→
Mn−1(t)Mn(t) =

−−−→
OMn −

−−−−→
OMn−1 converges uniformly to 0 for all t ∈ [0, 2π], �

Computationally, we assume
[
xn+1(t)
yn+1(t)

]
→ F =

[
p
q

]
, then the norm of the vector,∥∥∥∥[ xn+1(t)yn+1(t)

]∥∥∥∥, converges to ‖F‖ =√p2 + q2, and we have

(
1− r3OB

r1 ‖F‖+ r2OA+ r3OB

)[
p
q

]
=

r1 ‖F‖
r2OA+ r3OB + r1 ‖F‖

−→
OA+

r2OA

r2OA+ r3OB + r1 ‖F‖
−−→
OB

[
p
q

]
=

 1(
r1‖F‖+r2OA

r1‖F‖+r2OA+r3OB

)
( r1 ‖F‖

r2OA+ r3OB + r1 ‖F‖
−→
OA+

r2OA

r2OA+ r3OB + r1 ‖F‖
−−→
OB

)

=

(
r1 ‖F‖

r1 ‖F‖+ r2OA

)
−→
OA+

(
r2OA

r1 ‖F‖+ r2OA

)
−−→
OB

= m
−→
OA+ (1−m)−−→OB, (10)



where m = r1‖F‖
r1‖F‖+r2OA . To find the point F, it amounts to solve two equations in (10) for two

variables p and q in terms of t; however, due to too many parameters that are involved, we are
unable to express the solutions p and q in explicit form. Instead, we do the followings:

1. If r1, r2, and r3 are real numbers in (0, 1), we substitute the solutions p and q obtained
(10) into the line equation

←→
AB, we get the following equation from Maple after setting

the length of computations to be 20,000 lines:

(q − q2) p1 + (q1 − q) p2 − p (q1 − q2)
p1 − p2

= 0

=⇒ qp1 − pq1 + pq2 − qp2 − p1q2 + p2q1
p1 − p2

= 0,

⇒ q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1
p1 − p2

= 0. (11)

2. Assume p1 6= p2 we deduce the numerator of (11) be to the following:

q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1 = 0,

q(p1 − p2)− p(q1 − q2)− p1q2 + p2q1
p1 − p2

= 0,

q − p
(
q1 − q2
p1 − p2

)
− p1q2 − p2q1

p1 − p2
= 0.

On the one hand, we see F = (p, q) lies on the line of

y =

(
q1 − q2
p1 − p2

)
x+

p1q2 − p2q1
p1 − p2

. (12)

On the other hand, we note that the line
←→
AB is with the slope q1−q2

p1−p2 and passes through
the point (p1, q1) :

y − q1 =

(
q1 − q2
p1 − p2

)
(x− p1)

y = q1 +

(
q1 − q2
p1 − p2

)
(x− p1)

=

(
q1 − q2
p1 − p2

)
x+

p1q2 − q1p2
p1 − p2

. (13)

We see (12) coincides with (13) and hence F lie on line segment AB.We remark that when
solving p and q symbolically if r1, r2 and r3 are also considered to be variables, it is not possible
to express using p and q due to too many unknowns when using [1], but numerical computations
do show that the point (p, q) lie on the line segment AB. We use the following Example for
demonstration.



Example 9 We consider the closed curve C1 with the parametric equation, [x0(t), y0(t)] =
[cosu(a − cos(bu)) + 1, sinu(a − cos bu))], A = (p1, q1), B = (p2, q2), and Q is a moving point
on C1. We let r1, r2, and r3 be three distinct real numbers in (0, 1) , and

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OA+ r3OB

−→
OA+

r2 ·OA
r1OQn + r2OA+ r3OB

−−→
OB

+
r3 ·OB

r1OQn + r2OA+ r3OB

[
xn(t)
yn(t)

]
.

If we pick a = 5, b = 4, p1 = 3, q1 = 4, p2 = 2, q2 = 5, and r1 = 1
2
, r2 =

1
3
, and r3 = 1

6
. Then

we see
lim
n→∞

{Mn (t)}∞n=1 = (2.60516252, 4.39483748) ,

see Figure 3(a) below for the convergence. In view of (10), we note that the convergence does not
depend on the value of r3.We also remark that convergence to the point (2.60516252, 4.39483748)
is irrespective to the curveC1 we pick. For example, if we replaceC2 by [a sinu, b sinu cosu] , and
use the same a, b, pointA, and pointB, we shall get the same convergence for limn→∞ {Mn (t)}∞n=1 =
(2.60516252, 4.39483748) , (see Figure 3(b)). Similarly is true if we replaceC3 by

[
4a cosu (sinu)2 cosu, 4a cosu (sinu)2 sinu

]
,

see (Figure 3(c)).

Figure 3(a). Convergence
for C1.

Figure 3(b). Convergence
for C2.

Figure 3(c). Convergence
for C3.

3.2 Uniform convergence using geometric constructions

In view of the Theorem (8) and observation from section (3.1), C is a non-zero closed curve,
A and B are two non-zero distinct fixed points, not lying on C, and Mn(t) is in the interior
of the triangle of 4Mn−1 (t)AB for each t ∈ [0, 2π]. We see the distance between Mn(t) =
[xn(t), yn(t)] and Mn−1(t) = [xn−1(t), yn−1(t)] is decreasing and converges to 0 when n → ∞,
for all t ∈ [0, 2π] . In other words, the square distance function

fn(t) = (xn(t)− xn−1(t))2 + (yn(t)− yn−1(t))2

converges to 0 uniformly. Consequently, we see {Mn(t)}∞n=1 converges to a point lying on the
line segment AB. In other words, if the graphs of fn(t) does not converges to 0 uniformly, then−−−−→
OMn+1 does not converge uniformly.



Suppose we adopt the Example in the section (3.1), we depict the pair functions {f3(t), f4(t)}
and {f4(t), f5(t)} in the following Figures 5(a) and 5(b) with red and blue colors respectively:

Figures 5(a). Plots of
{f3(t), f4(t)} .

Figures 5(b). Plots of
{f4(t), f5(t)}

In view of the plot of f5(t) (the blue in Figure 5(b)), we can see that if we pick ε = 0.0005,
for n ≥ 5, fn(t)→ 0 uniformly for all t ∈ [0, 2π] . In view of the Example (9), the speed of the
uniform convergence of limn→∞ {Mn (t)}∞n=1 = (2.60516252, 4.39483748) is rather fast.

4 2D iterations on one curve, and two vectors on two
respective curves

Now, we consider the plots of convex combinations of three vectors, one vector is iterated curve,
and the two vectors are on two respective curves.

Theorem 10 Let C be a given non-zero closed curve [x0(t), y0(t)], D and E be two additional
distinct closed curves of [d1(t), d2(t)] and [e1(t), e2(t)] respectively. Furthermore, we let Q be a
moving point on C. If r1, r2, and r3 are real numbers in (0, 1), we let

OQ =
√
x0(t)2 + y0(t)2,

OE =
√
e1(t)2 + e2(t)2,

OD =
√
d1(t)2 + d2(t)2,

and

−−−→
OM1 =

[
x1(t)
y1(t)

]
=

r1 ·OQ
r1OQ+ r2OE + r3OD

−−→
OE +

r2 ·OE
r1OQ+ r2OE + r3OD

−−→
OD

+
r3 ·OD

r1OQ+ r2OE + r3OD

−→
OQ.



In addition, for n ∈ Z+, we consider

−−−−→
OMn+1 =

[
xn+1(t)
yn+1(t)

]
=

r1 ·OQn
r1OQn + r2OE + r3OD

−−→
OE +

r2 ·OE
r1OQn + r2OE + r3OD

−−→
OD

+
r3 ·OD

r1OQn + r2OE + r3OD

[
xn(t)
yn(t)

]
, (14)

where Qn is a moving point on (xn(t), yn(t)) , for n = 0, 1, .... Then {Mn (t)}∞n=1 converges
uniformly to the curve F (t∗) for t ∈ [0, 2π] , where the point F (t∗) lies on the line segment
D(t∗)E(t∗), for all t ∈ [0, 2π] . Furthermore, the real solutions of the following parametric curve
is a subset of limn→∞ {Mn (t)}∞n=1 .We remark that the coeffi cient r3 ∈ (0, 1) will not affect
where {Mn (t)}∞n=1 will converge to.

Proof: In view of the Theorem (8) and (3.1), for each fixed t∗ ∈ [0, 2π], we consider two
distinct fixed points AE(t∗) and BD(t∗), which lie on two distinct curves of E = (e1(t), e2(t))
and D = (d1(t), d2(t)), respectively. We see that Mn (t) belongs to the interior of the tri-
angle 4Mn−1 (t)AE(t∗)BD(t∗), for each t ∈ [0, 2π] , and n ∈ Z+. Since the the triangles

4Mn (t)AE(t∗)BD(t∗) form a decreasing sequence,
−−−−−−−→
OMn+1 (t) converges uniformly to

−−−−→
OF (t∗)

for all t ∈ [0, 2π] , where F (t∗) lies on AE(t∗)BD(t∗). Now we vary t∗ ∈ [0, 2π] , since both D (t∗)
and E (t∗) are closed curves,Mn+1(t)Mn(t)→ 0 for all t ∈ [0, 2π] , we see {Mn (t)}∞n=1 converges
uniformly to the curve F (t∗), where each of the point F (t∗) lies on D(t∗)E(t∗).�

Computationally, we assume
[
xn+1(t)
yn+1(t)

]
converges to a real solution of

[
p (t)
q (t)

]
, where

t ∈ [0, 2π] . We see

[
p (t)
q (t)

]1− r3 ·OD

r1

√
p (t)2 + q (t)2 + r2OE + r3OD


=

r1

√
p (t)2 + q (t)2

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

−−→
OE +

r2 ·OE

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

−−→
OD.

[
p (t)
q (t)

] r1

√
p (t)2 + q (t)2 + r2OE

r1

√
p (t)2 + q (t)2 + r2OE + r3OD

=


r1
√
p(t)2+q(t)2

r1
√
p(t)2+q(t)2+r2OE+r3OD

(
e1(t)
e2(t)

)
+ r2OE

r1
√
p(t)2+q(t)2+r2OE+r3OD

(
d1(t)
d2(t)

)




It amounts to find the real solutions for p (t) and q (t) from the two equations (15) and (16)
in terms of t, when r1, r2, r3 are given.

[
p (t)
q (t)

]
=

r1

√
p (t)2 + q (t)2

r1

√
p (t)2 + q (t)2 + r2

√
e1(t)2 + e2(t)2

(
e1(t)
e2(t)

)
(15)

+
r2
√
e1(t)2 + e2(t)2

r1

√
p (t)2 + q (t)2 + r2

√
e1(t)2 + e2(t)2

(
d1(t)
d2(t)

)
. (16)

In the next Example, we shall see how the graphs of the square distance functions can be used
as a conjecture if the convergence of {Mn (t)}∞n=1 is uniform. Secondly, we will see how the
real solutions from solving for p (t) and q (t) computationally from the two equations (15) and

(16) can serve as partial solution for the parametric curve F (t) =
[
p (t)
q (t)

]
under the uniform

convergence of limn→∞ {Mn (t)}∞n=1 .

Example 11 Let C be the given ellipse curve [x0(t), y0(t)] = [a cos t, b sin t] , D be the closed
curve of [d1(t), d2(t)] = [(sin 2t+ 2) cos t, (sin 2t+ 2) sin t] , and E be the closed curve of [(a− cos(bt) cos t+ 1, (a− cos(bt) sin t].
Let Q be a moving point on C. We are interested in the plot of limn→∞Mn (t) , see (14), when
n→∞.

1. We consider r1 = 1
2
, r2 =

1
3
, r3 =

1
6
, a = 5, b = 3. In addition, it is also worth noting that

the square distance function

fn(t) = (xn(t)− xn−1(t))2 + (yn(t)− yn−1(t))2

converges to 0 rather quickly in this case. We depict the pair functions {f4(t), f5(t)} and
f5(t) in the following Figures 6(a) and 6(b) respectively. Consequently, we may use these
observations to conjecture that the convergence of {Mn (t)}∞n=1 is uniform.

Figure 6(a). Plots of
{f4(t), f5(t)} . Figure 6(b). Plot of f5(t).



2. If we plot the real solutions of the branch 1, out of four branches when solving two

equations (15) and (16), it coincides ‘almost’exactly with that of M5 (t) =

[
x5(t)
y5(t)

]
, see

Figure 7 below, which we cannot tell them apart. See Supplementary Electronic Material
[S1].

Figure 7. Graph of M5(t).

Exercise: We invite readers to explore that the plot of the curve limn→∞Mn (t) , see (10),
is invariant with the choice of curve C = [x0(t), y0(t)].

5 3D Locus of one moving vector and one fixed vector

We invite readers to extend results in this paper from 2D to 3D accordingly. However, due to
the limited length of the paper, we consider only the following 3D extension from our analogous
scenario in 2D. First, we remind readers to interpret the uniform convergence in 2D (see (3)
accordingly in 3D. The following observation is clear.

Theorem 12 Let S be a given closed surface [x0(u1, u2), y0(u1, u2), z0 (u1, u2)], and the point
A = (p1, q1, w1) is fixed and is not on the surface S. For r1 and r2 being two distinct real numbers
in (0, 1), we let

−−−→
OM1 =

 x1(u1, u2)
y1(u1, u2)
z1(u1, u2)

 = r1 ·OQ
r1OQ+ r2OA

−→
OA+

r2 ·OA
r1OQ+ r2OA

−→
OQ,

where Q is a moving point on S, and the locusM1 is described in (x1(u1, u2), y1(u1, u2), z1(u1, u2)).
Now for n ∈ Z+, we consider

−−−−→
OMn+1 =

 xn+1(u1, u2)
yn+1(u1, u2)
zn+1(u1, u2)

 = r1 ·OQn
r1OQn + r2OA

−→
OA+

r2 ·OA
r1OQn + r2OA

 xn(u1, u2)
yn(u1, u2)
zn(u1, u2)

 ,
where Qn is a moving point on [xn(u1, u2), yn(u1, u2), zn(u1, u2)]. Then

−−−−−−−−→
OMn(u1, u2) →

−→
OA as

n → ∞ uniformly,
−−−−−−−−−−−−−−−−−−→
Mn (u1, u2)Mn−1 (u1, u2) converges uniformly to 0, and {Mn (u1, u2)}∞n=1

converges uniformly to the point A for all for all (u1, u2) ∈ [0, 2π]× [0, 2π].



Proof: The convergence of {Mn (u1, u2)}∞n=1 follows directly from the corresponding 2D
Theorem (5), which we omit here. �

Example 13 Let S be the given closed surface

[x0(u1, u2), y0(u1, u2), z0(u1, u2)] = [5 cos(u1) sin(u2), 4 sin(u1) sin(u2), 3 cos(u2)],

and the point A = (1, 2, 3) be fixed. For r1 and r2 ∈ (0, 1) , and

−−−−→
OMn+1 =

 xn+1(u1, u2)
yn+1(u1, u2)
zn+1(u1, u2)

 = r1 ·OQn
r1OQn + r2OA

−→
OA+

r2 ·OA
r1OQn + r2OA

 xn(u1, u2)
yn(u1, u2)
zn(u1, u2)

 .
Then {Mn (u1, u2)}∞n=1 converges uniformly to the point A.

We depict the convergence for r1 = 1
3
and r2 = 2

3
, and the plots of

{−−−→
OM2,

−−−→
OM3,

−−−→
OM4,

−−−→
OM5

}
and the point A = (1, 2, 3) in Figure 8:

Figure 8. 3D convergence to a
point.

It is natural to observe that the uniform convergence of {Mn (u1, u2)}∞n=1 to the point A will
be invariant when starting with difference surfaces, which we demonstrate this using difference
closed surfaces next.

Example 14 If we replace S to be the closed surface of S2 = [cos(u1) sin(u2), sin(u1) cos(u2), cos(u2)+
1], and the point A = (1, 2, 3) be fixed. Furthermore, we pick r1 = 1

3
, and r2 = 2

3
, we depict the

nested plots of {M2 (u1, u2) ,M3 (u1, u2) ,M4 (u1, u2) ,M5 (u1, u2)} and the point A = (1, 2, 3)
below on Figure 9(a) . The plot of M5 (u1, u2) and the point A (shown in red) is depicted in the
Figure 9(b). We also plot the Figure 8 together with Figure 9(a) in Figure 9(c) below, which



we can see both sequences of closed surfaces converge to the same point A.

Figure 9(a). Sequence of
surfaces converge to the point

A.

Figure 9(b). The plots of
M5 (u1, u2) and A.

Figure 9(c). Convergences do
not depend on the original

surface C.

Exercise: If we use the same point A, and same coeffi cients r1 = 1
3
and r2 = 2

3
, but use

the surface S3 of

 2 cos(u1) sin(u1) cos(u1) sin(u2) + 12 cos(u1) sin(u1) sin(u1) sin(u2) + 2
2 cos(u1) sin(u1) cos(u2)− 3

 as expected, we should see another
sequence of surfaces converge uniformly to the same point A (shown in red in Figure 10).

Figure 10. Convergence of
S3 and A.

6 Conclusions

We first remark that there are many other areas that readers can extend from this paper. For
example, there are several other 3D scenarios that we have not explored from the corresponding
2D cases. In addition, we can also extend the plots of convex combinations to the plots of conical



combinations both in 2D and 3D. Nevertheless, in this paper, we have seen some interesting
graphics that resulted from sequence of convex combinations of vectors in 2D and 3D. Also,
readers should have gained some insights how we can comprehend a complex concept of uniform
convergence of sequences of parametric curves or surfaces. As a reminder, we indeed extended
a simple college exam practice problem on locus into various interesting exploratory activities,
both in 2D and 3D settings. Consequently, these exploratory activities have led to many
interesting areas of computer graphics by integrating mathematical knowledge in Multivariable
Calculus, Advanced Calculus, and Linear Algebra. We thus propose that a math curriculum
should include proper components of exploration with the help of technological tools, especially
where real life applications can be found.
It is common sense that teaching to a test can never promote creative thinking skills, it could

even lose potential students who might pursue mathematics related fields in the future. We
know that addressing the importance and timely adoption of technological tools in teaching,
learning and research can never be wrong. Access to technological tools has motivated us
to rethink how mathematics can and should be presented more interestingly and also how
mathematics can be made a more cross disciplinary subject. There is no doubt that evolving
technological tools have helped learners to discover mathematics and to become aware of its
applications.
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