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Abstract

We recently realized that one of the best known pieces of mathematical software (Ge-
oGebra) evaluated the limits of certain functions at a point outside their domain of defini-
tion in different ways according to the so called “View” used (GeoGebra is a very powerful
dynamic geometry system with algebraic capabilities). The examples used would classi-
cally be classified as “removable discontinuities” or “jump discontinuities”. In this paper
we have checked the output of some of the best known computer algebra systems in differ-
ent examples, providing a panoramic view of the situation. Clearly, the behaviour of the
pieces of software depend on the decisions made during their design step, and condition
their applications on mathematics teaching.



1 Introduction

We recently found that GeoGebra [I], a well-known dynamic geometry system (DGS) with
algebraic capabilities, evaluated the limits of some of these functions at a point outside their
domain of definition in different ways according to the so called “View” used. This fact and a
comparison with what the computer algebra system (CAS) M apleE] [2, B, 4] does, was described
in the previous article [5]. In this new paper we have checked the output of some of the best
known computer algebra systems in different examples. In both works we have considered
functions whose domain and range are both subsets of the real numbers, and will denote them
“real-valued function of one real variable”.

The chosen examples in [5] would classically be classified as “removable discontinuities” or
“jump discontinuities” (the range was always R\{0}). Now we have added to the examples cho-
sen for the test a function defined piecewise and an oscillating function, providing a panoramic
view of the present situation.

Clearly, the behaviour of the pieces of software depends on the decisions made during the
design step and condition their applications on mathematics teaching. After the pandemic,
distance learning and self learning have become much more popular. The diversity of results
shown below makes it clear that the standalone use of a complex piece of software such as a
CAS can cause problems.

2 The objective of this work. Related works

We will focus on real-valued functions of one real variable and will analyze how the different
CAS chosen:

e cvaluate the functions at a point outside the domain of definition of the functiong?, and

e compute the limits of the functions at a point outside their domain of definition (valued
in RU {—o00, 400}, although symbols co and 0o are sometimes also used).

It is important to note that we do not enter into the discussion of the adequacy of saying,
as is very usual, for example, in Secondary Education in Spain, that a function like % has a
discontinuity at 0 [6] [7], as this doesn’t make sense at a point outside its domain of definition
(what is what is usually done in upper educational levels [§], [9]). Perhaps to speak of a “con-
flicting point”, encompassing both the points of the domain border where the function is not
defined and the discontinuities in the formal sense (point of the domain of the function where
the usual e — § definition of a continuous function does not hold), could be a solution.

[10] is an encyclopedic work comparing several CAS, pushing limits computations to the
limit. There are more specific articles, comparing the capabilities of different CAS with respect
to certain tasks, like solving algebraic systems [I1]. There are also works about the construction
of the limit concept with a CAS [12], that studies the problem from the students’ side.

LAll product names, trademarks and registered trademarks are property of their respective owners.

2Evaluating a function outside its domain makes no sense from the mathematical point of view. However,
a function like, for example, % is usually given to the CAS carelessly, without specifying that x # 0, so the
different CAS initially consider the function R — R, and try to evaluate it at 0. We check if the different CAS
realize that there are problems at that point (the value of the function is not finite or the function is undefined)
and the clarity of the output.



Meanwhile, we focus on the computational drawbacks from an educational point of view,
considering the problems from the computational side. More precisely, we focus on the evalua-
tion of the function by the CAS outside the domain of the function and on the limit computa-
tions, and how the correctness of the output and the appropriateness of the notation used by
the CAS may interfere with the presentation of a Secondary Education student to the concept
of limit.

3 About the functions in the test

We have chosen the following functions R\{0} — R for the test:

o m(z) =% ( xlirgli m(x) = +oo, xli)r(r)l+ m(z) = 400, so: ilir(l) m(z) = +oo —see Figure la)

o f(z)=2( lim f(z) =—o0, lim f(z) = o0 —see Figure 1b)

z—0— z—0t
-1, ifx<O
o w(p)=4 "

1, ifx >0

(the function is defined piecewise, and lim w(x) = —1, lim w(z) = 1 —see Figure 1c)
z—0~ z—0t

(a) Maple plot of func- (b) Maple plot of f(x) = % (¢) Maple plot of
tion m(x) = z—g obtained Maple has to be informed that —1, ifz<0
typing: m:=x->1/x"2; there could be a “discontinu- w(x) = 1 ifz>0
plot(m(x),x=-3..3); ity” in order to avoid a spu- ’

rious vertical line by typing:
f:=x->1/x; plot(f(x),x=-3..3,
discont=true);

Figure 1: Maple plots of the first three functions chosen.

e g(z) =er (lim g(z) =0, lim g(z) = +oo —see Figure 2a)
z—0~ z—0t
e u(r) = sin(1/x) (the function is undefined in 0 and it has no side limits in 0, and,
consequently, no limit in 0, as it oscillates faster and faster between —1 and 1 as it
approaches 0 —see Figure 2b)



o h(z) = £ (All these functions are considered R\{0} — R and therefore h(x) = 1. However,
this is a conflicting expale if considered as an function R — R because it depends on
whether the simplification ¥ = 1 is firstly carried out or not -see Figure 2c).
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(a) Maple plot of g(z) = (b) Maple plot of u(z) = (c) Maple plot of h(x) =
et/ sin(1l/x). z

Figure 2: Maple plots of the last three functions chosen.

The choice of functions hasn’t been made trying to test the capabilities of the CAS but
trying to clarify their behaviour when facing functions that can arise at Secondary Education
level. They reflect the main situations we have guessed regarding asking the CAS to try to
compute the value of the function outside its domain of definition and computing limits at
points outside the domain of definition. We have ordered the functions from the simplest to
the most complex.

The reasons for choosing these functions are detailed afterwards. m(z) = =5 is probably

the simplest function with an infinite limit. f(z) = % is similar and has infinite side limits

of different signs. The simple piecewise function w(z) has different side limits. g(z) = ex is
not so simple as the previous ones, but has one finite side limit and one infinite side limit.
u(r) = sin(1/z) is an interesting case: |u(z)| < 1, but has no limit at 0. Lastly, h(z) =  has
been include for reasons already mentioned above.

4 Results

We have chosen the following CAS: Maple 2022 [2, 13, 4], DERIVE 6.1 [13], Maxima 5.46.0
[14], Mathematica 13.1 [15], REDUCE CSL 2022 [16, 17], SymPy 1.10.1 (a Python library),
SageMath 9.6 [19], Xcas 1.7.0 [20] and GeoGebra 6 [1] (both “CAS View” and “Algebra View”).
They are all well known general purpose CAS, but it is not an exhaustive list, as there other
ones like Aziom, YACAS, etc.

Moreover it has to be taken into account that there are also specific purpose CAS like
CoCoA, Risa/Asir, Singular, Macaulay, PoluyBoRi, etc., many of which cannot calculate limits,
and have been ignored.

The code used for defining the chosen functions and for evaluating them at 0 is detailed in
Table 1. Moreover, the code used for computing the limit and one-sided limits at 0 for w(zx) is
included in Table 2 as illustration. This way the reader can reproduce the authors’ results.
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lim m(z) lim m(x) lim m(x)
z—0 z—0+ z—0—
Maple
Input: limit(m(x),x=0); limit(m(x),x=0,right); limit (m(x),x=0,left);
DERIVE
Input: LIM(w(x),x,0)= LIM(w(x),x,0,+1)= LIM(w(x),x,0,-1)=
Mazxima
Input: limit(m(x),x,0); limit(m(x),x,0,plus); 1limit (m(x),x,0,minus);
Mathematica
Input: Limit[m[x],x->0]; Limit[m[x],x->0,Direction->-1]; Limit[m[x],x->0,Direction->1];
REDUCE
Input: limit(m(x),x,0); limit!+(m(x),x,0); limit!-(m(x),x,0);
SymPy
Input: sympy.limit (m,x,0) sympy.limit(m,x,0,’+’) sympy.limit(m,x,0,’-’)
SageMath
Input: limit (m(x),x=0) 1limit (m(x) ,x=0,dir="+’) 1limit (m(x) ,x=0,dir="-’)
Xcas
Input: limit(m(x),x,0) limit(m(x),x,0,’+?) limit(m(x),x,0,’-?)
GG (CAS V.)
Input: Limit (w,0) LimitAbove(w,0) LimitBelow(w,0)
GG (Alg. V.)
Input: Limit (w,0) LimitAbove (w,0) LimitBelow(w,0)

Table 2: Input for computing the limit and one-sided limits at 0 for w(z).

Some comments regarding the input/output:

Note the use of undefined for defining piecewise functions (Maple considers that 0 is the
value of the piecewise function where no value is specified). Note that +oo is represented
by co. Observe that if the side limits are different, it answers “undefined” in all cases.

Note that in Mazima it is not possible to calculate limits of piecewise functions. Note
that +oo is represented by oo and oo is represented by “infinity”.

Note that Mathematica considers that 0 is the value of the piecewise function where no
value is specified (that’s why there is a blank cell in Table 3).

Note that both co and +oo are represented by oo in REDUCE (we write a ‘Wrong’ in
the cell concerned in Table 4).

Apparently, SymPy computes the limit as z approaches 0 as the right limit (see Table 4)
when both side limits are different.

It is remarkable that what is notated oo in Xcas when valuating a function is notated
400 when computing limits.

It is strange that the input in GeoGebra 6 “CAS View” and “Algebra View” is not always
identical (see the two last rows of Table 1). There are also differences between output
(see the two last rows of Table 3).
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5 Conclusion

The developers of the CAS have to make decisions when designing their CAS. These are impres-
sive pieces of software with thousands of lines of code. In most cases, all CAS provide correct
answers (from a certain point of view). For mathematicians with a background in computing,
who use the CAS as a tool, there is no problem with the different approaches chosen by the
different developers (because the underlying mathematical idea is clear to these end users).

But the decisions made during the design stage of the software pieces condition their ap-
plications in fields such as teaching. Thus, when the CAS is used as a digital technology for
acquiring knowledge, drawbacks may arise: there can be differences between the assumptions
or notations of the textbook and the digital tool, different CAS with different assumptions or
notations can be used by classmates that are in touch with each other, etc. These drawbacks
are added to the difficulties, conflicts and obstacles that Secondary Education students usually
have in learning mathematical notions such as one-sided limits and discontinuities. In fact, it
is well known that there are students who often confuse the concepts of limit and continuity.

Although it is interesting to consider different representation registers in teaching, it is very
important to know how to coordinate them. A proper coordination helps in the development
of thinking and understanding of mathematical concepts. In this sense, this work shows the
importance of knowing very well the behaviour of a complex piece of software such as a CAS
for self-learning the concept of limit. Thus, a standalone use of CAS by a Secondary Education
student can cause problems in the understanding of some mathematical concepts.

As a final conclusion, CAS are incredible digital technologies, so close to classic mathematics,
but active guided instruction always seems preferable for learning mathematics.

Lastly, as a disclaimer, we would like to remark that we have summarized the results in the
tables to the best of our knowledge. We sincerely apologize for any unwanted errors (due to
our lack of expertise handling the CAS) or errata when transferring the data to the tables.
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