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Abstract:  In this paper, we will first use the solution proposed by Michel Carral to prove that the ellipse inscribed in a 

triangle of maximum area is its Steiner ellipse. This proof is based on a purely geometric reasoning which greatly 

simplifies the first complete proof proposed by Minda and Phelps ([6]), in the sense that it uses more basic tools and 

knowledge. Recall that in a previous paper ([7]), an approach with dynamic geometry had already allowed a very 

simplified approach even if a step was incomplete insofar as it was only justified experimentally. As said above, this 

problem was solved geometrically by my colleague Michel Carral to whom I had submitted it. He has included it as an 

exercise in the area geometry book he is finalizing. I thought that his solution deserved better than an exercise in his 

geometry book and I decided with his agreement to write it trying to respect the spirit of the author but detailing it enough 

to be understood by all. I will then propose an attempt at generalization to ellipses inscribed in polygons. In passing I 

will propose a still purely geometric proof of the fact that polygons of minimum area having a given inscribed circle are 

regular polygons. Eventually a construction under the New Cabri, using macros, illustrates the sequence of polygons 

circumscribed about a given ellipse approaching the polygon of minimum area circumscribed about this ellipse. 

      

1. Minimizing the area of triangles circumscribed about a given circle 
 

1.1.    A property related to areas of triangles circumscribed about a given circle 
 

Property1 (P1): the area of any triangle circumscribed about a given circle is greater than the 

area of any isosceles triangle circumscribed about the same circle and with a common angle 

with the given triangle. 
 

Proof: ABC is the given triangle whose inscribed circle is the circle centered at O and with radius 

OI. Consider isosceles triangle AMN with vertex A and the same inscribed circle (Figure 1 left). We 

will show that the area of ABC is greater than the area of AMN. It suffices to establish that the area 

of PNC is less than the area of PMB because Area(ABC) = Area(AMN) + Area(PMB) - Area(PNC). 

We construct Q so that (MQ) is parallel to (AC) (Figure 1 right). Triangles PNC and MPQ are 

therefore similar. As PM > PN, the area of MPQ is greater than that of PNC. As the area of PMB is 

greater than that of PMQ, the area of PMB is greater than that of PNC. 
 

      
 

Figure 1: Decreasing areas with isosceles triangles 
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1.2.    A property related to areas of isosceles triangles circumscribed about a given circle  

Property 2 (P2): the area of any isosceles triangle 1 (here ABC) with a given inscribed circle is 

greater than the area of any equilateral triangle 2 (here DEF) with the same inscribed circle. 
 

With the notations of Figure 2, let us show that the area of the triangle EFG is always greater than 

the area of the equilateral triangle ABC, with E on the perpendicular bisector of [BC], or else on [uA] 

(first case: angle Ê greater than 60°) or above A (second case: angle Ê less than 60°). 
 

       
 

Figure 2: From isosceles to equilateral triangles 
 

First case (Figure 2 left): we know that AJ = JC; as E belongs to [uA], N precedes J on the green arc 

uv, and therefore P is inside the angle 𝑁𝑂𝐽̂ . Therefore PA < PC. As PE < PA and PC < PG, we can 

deduce that PE < PA < PC < PG. Since the triangles NEA and NCG have an equal angle 𝐸𝑁𝐴̂ =
𝐶𝑁𝐺̂ and since the sides surrounding the angle 𝐸𝑁𝐴 ̂ are respectively less than the sides surrounding 

the angle 𝐶𝑁𝐺̂, we deduce that the area of triangle ENA is less than the area of triangle CNG. At last, 

Area(EIG) = Area(AIC) + (Area(CNG) - Area(ENA)) > Area(AIC) because we have just proved that 

the difference between parentheses is positive. Finally, triangle EFG has an area greater than the area 

of triangle ABC.  

Second case: a demonstration analogous in all respects to that of the first case can be carried out 

based on Figure 2 right and leads to the same result. 
 

Consequence of the previous properties: Any triangle circumscribed about a given circle has 

an area greater than the area of any equilateral triangle circumscribed about the same circle. 
 

Remark: during our work on this property, we found several other interesting proofs provided at the 

end of this paper (see paragraph 5.). 

 

2. About areas of triangles circumscribed about a given ellipse 
 

2.1.  Reminder (the Steiner ellipse) 

Definition: the Steiner ellipse of a triangle is the ellipse inscribed in this triangle tangent to its 

three sides respectively at their midpoints. 
 

Its existence is easily proved ([7]) by using the fact that any triangle is the image of an equilateral 

triangle by an affinity. The Steiner ellipse is none other than the image by this affinity of the inscribed 

circle of the equilateral triangle. The complete justification is based on the fact that any affinity 

preserves midpoints and tangents. 

 



2.2. Preliminary property 

The ratio between the area of the Steiner ellipse of a triangle and the area of this triangle is 

independent of the triangle and equal to 
𝝅√𝟑

𝟗
. 

 

Proof: recall that affinities preserve area ratios and contact properties. We also recall that any triangle 

ABC is the image of an equilateral triangle A'B'C' by a certain affinity. The inscribed circle of the 

equilateral triangle A'B'C' is therefore transformed by the reciprocal affinity into the Steiner ellipse 

of ABC. As we know that the ratio of the areas of the inscribed circle of an equilateral triangle to the 

area of this equilateral triangle is equal to 
𝜋√3

9
, we obtain the result stated above. 

 

2.3. Ellipse of maximum area inscribed in a given circle 
 

Property 3 (P3): for a given triangle and an ellipse inscribed in this triangle, the ratio between 

the area of the ellipse and the area of the triangle is less than the ratio between the area of the 

Steiner ellipse of this triangle and the area of this triangle. 
 

Proof: given a triangle ABC and an ellipse (Ell) inscribed in this triangle (Figure 3). We know from 

the above that there is an affinity Aff transforming this ellipse into a circle (Cer) and the triangle ABC 

into a triangle A'B'C' circumscribed about (Cer). Thanks to the properties of the affinities, we have 

the following equality of the area ratios: 
𝐴𝑟𝑒𝑎(𝐸𝑙𝑙)

𝐴𝑟𝑒𝑎(𝐴𝐵𝐶)
=

𝐴𝑟𝑒𝑎(𝐶𝑒𝑟)

𝐴𝑟𝑒𝑎(𝐴′𝐵′𝐶′)
 

 

 
 

Figure 3: Using affinity 
 

If we consider an equilateral triangle A''B''C'' circumscribed about the circle (Cer) we know, using 

(P1) that 𝐴𝑟𝑒𝑎(𝐴′𝐵′𝐶′) > 𝐴𝑟𝑒𝑎(𝐴′′𝐵′′𝐶′′), from which we deduce that: 

𝐴𝑟𝑒𝑎(𝐶𝑒𝑟)

𝐴𝑟𝑒𝑎(𝐴′𝐵′𝐶′)
<

𝐴𝑟𝑒𝑎(𝐶𝑒𝑟)

𝐴𝑟𝑒𝑎(𝐴′′𝐵′′𝐶′′)
 and so 

𝐴𝑟𝑒𝑎(𝐸𝑙𝑙)

𝐴𝑟𝑒𝑎(𝐴𝐵𝐶)
<

𝐴𝑟𝑒𝑎(𝐶𝑒𝑟)

𝐴𝑟𝑒𝑎(𝐴′′𝐵′′𝐶′′)
=

𝜋.√3

9
=

𝐴𝑟𝑒𝑎(𝐸𝑙𝑙_𝑆𝑡)

𝐴𝑟𝑒𝑎(𝐴𝐵𝐶)
  

where Ell_St is the Steiner ellipse of triangle ABC. 
  

It has therefore been established that 
𝐴𝑟𝑒𝑎(𝐸𝑙𝑙)

𝐴𝑟𝑒𝑎(𝐴𝐵𝐶)
<

𝐴𝑟𝑒𝑎(𝐸𝑙𝑙_𝑆𝑡)

𝐴𝑟𝑒𝑎(𝐴𝐵𝐶)
 . 

 

Finally: from this result we deduce that, Area(Ell) < Area(Ell_St). This last inequality means that the 

area of any ellipse inscribed in a triangle is less than the area of the Steiner ellipse of this triangle. It 

has therefore been proven that the Steiner ellipse of a triangle is the ellipse of maximum area 

inscribed in this triangle. 

 



3. Polygons of minimum area circumscribed about a given circle 
 

3.1.  Preliminary property (Figure 4) 

Circle C is given with two tangents T1 and T2 at t1 and t2 with D their axis of symmetry (D is also the 

bisector of angle 𝑡1𝑂𝑡2̂). A variable tangent T3 at t3 intersects T1 and T2 at v1 and v2 respectively. S is 

the tangent to C perpendicular to D at s. 

 

  
 

Figure 4: Three tangent lines and a pentagon 
 

Property 4: the area of pentagon Ot1v1v2t2 is minimum when t3 is in s, i.e. for the pentagon 

Ot1s1s2t2. 
 

Proof: 

𝑣1𝑂𝑣2
̂  = 𝑣1𝑂𝑡3̂ + 𝑡3𝑂𝑣2̂ =

1

2
(𝑡1𝑂𝑡3̂ +  𝑡3𝑂𝑡2̂) =  

1

2
 𝑡1𝑂𝑡2̂ which is constant, so 𝑣1𝑂𝑣2

̂  is constant 

and equal to angle 𝑠1𝑂𝑠2̂. 

Due to the symmetry of the figure we can assume from now that point I belongs to the segment [s1s]. 

Using the same reasoning as the previous one, we prove that: 

𝑣1𝑂𝐼̂ =  
1

2
 𝑡1𝑂𝑠̂ =  

1

4
 𝑡1𝑂𝑡2̂ = 

1

4
. 2. 𝑠1𝑂𝑠2̂ = 

1

2
 𝑣1𝑂𝑣2

̂ . And so (OI) is the bisector of 𝑣1𝑂𝑣2
̂ . 

As a result: 𝑣1𝑂𝑡3̂ =  𝑣1𝑂𝐼̂ − 𝑡3𝑂𝐼̂ =  𝐼𝑂𝑣2̂ − 𝐼𝑂𝑠̂ =  𝑠𝑂𝐽̂ and therefore the right triangles v1Ot3 

and sOJ are equal, from which we deduce that Ov1 = OJ and Ov1 ≤ Ov2 because OJ ≤ Ov2. 

Finally, as (OI) is the bisector of 𝑣1𝑂𝑣2
̂  we know that 

𝐼𝑣1

𝐼𝑣2
=  

𝑂𝑣1

𝑂𝑣2
 and so Iv1 ≤ Iv2 .  

Moreover, as Is1 is less than Is2, the symmetric triangle of triangle Is1v1 with respect to I is included 

in the triangle Is2v2 and its area is therefore less than the area of Is2v2. 
These results will allow us to minimize the area of the pentagon by a judicious choice of the position 

of t3. If A(F) denotes the area of F, we have: 

A(Ot1v1v2t2) = A(Ot1s1s2t2) + (A(Is2v2) - A(Is1v1)) ≥ A(Ot1s1s2t2) because according to the above, the 

difference between parentheses is positive (strictly and null in the case where t3 is in s). 

Conclusion, the area of pentagon Ot1v1v2t2 is minimum when [v1v2] is superimposed on [s1s2], i.e., 

when (v1v2) is the tangent to C at s. 

As the area of triangle Ov1v2 is equal to half the area of the pentagon Ot1v1v2t2, this one has minimum 

area when it merges with the triangle Os1s2. 
 



3.2. Polygon of minimum area circumscribed about a given circle 
 

Theorem: Any polygon with n sides circumscribed to a given circle has minimum area when 

the polygon is regular. 
 

Let us first prove that necessarily such a polygon has its contact points with its inscribed circle at the 

middles of its sides. 

We are going to conduct a reasoning by absurd, by demonstrating that if one of the sides is not tangent 

at its midpoint, we can find another circumscribed polygon with n sides of lesser area. 

 

       
 

Figure 5: Circumscribed polygons of minimum area 
 

Let us consider a polygon A0….An circumscribed about a circle C (Figure 5). Suppose that the contact 

point Ci of the side AiAi+1 with C is not the midpoint of this side. Let us show that we can deform this 

polygon and obtain another of lesser area. For this, we keep the white polygonal part 

OCi+1Ai+2….AnA0…….Ai-1Ci-1O and distort the pentagonal part OCi-1AiAi+1Ci+1O by moving the point 

Ci up to s (as done previously), which also minimizes the area of this pentagon and therefore makes 

it possible to obtain a new polygon with n sides of lesser area (see Figure 5 right), which results in a 

contradiction. 

Moreover, as Ci-1Ai is equal to AiCi which is half of AiAi+1, two consecutive sides are equal (similarly 

for AiAi+1 and Ai+1Ai+2).  Triangles OAiAi+1 are all isosceles and equal because with the same vertex 

O, with heights equal to the radius of C and equal bases. Such a polygon is therefore regular, which 

had to be demonstrated. 

 

4. Attempt to generalize Steiner's initial property 
 

4.1. n-sided polygon of minimum area circumscribed about a given ellipse 
 

Let us prove that if an n-sided polygon is circumscribed about a given ellipse, the area of this polygon 

is minimum if the contact points are the midpoints of the sides. 

Let us reason by absurd: if a polygon P with n sides, circumscribed to a given ellipse E, does not 

have all its contact points at the midpoints of its sides, let us examine its image by an affinity Aff 

transforming the circumscribed ellipse E into a circle C = Aff(E). 

The polygon Aff(P) is therefore a polygon circumscribed to a circle C. We know that we have the 

following equality of area ratios: 



 
Moreover, the contact points of Aff(P) with C are not all located at the midpoints of its sides: it is 

therefore not the polygon of minimum area circumscribed to C. Let us consider one of those 

minimizing this area, P’ (which is a regular polygon). We have: 

 
Its image by Aff-1 is a polygon circumscribed to the starting ellipse which verifies: 

 
So, the area of Aff-1(P’) is less than the area of P. The area of P is therefore not minimal, which 

completes the proof.  

Note that Aff-1(P’) is a polygon circumscribed to E with minimal area. 

 

4.2. Iterations for the construction of such an n-sided polygon when n = 6 
 

We construct first an ellipse and six tangent lines at six given points of this ellipse. These six tangent 

lines define a hexagon (H1) circumscribed about this ellipse. This hexagon is not necessarily the 

hexagon of minimum area circumscribed about the ellipse. The following macros will allow us to 

construct a sequence of hexagons (Hn) circumscribed about the given ellipse whose areas are 

decreasing and so approaching the hexagon of minimum area. 

Construction of an ellipse (E): we use two points F and F’ (foci) and one its point B (on the 

perpendicular bisector of [FF’]). We record this construction as a macro (Initial objects: F, F’ and B. 

Final object: ellipse (E)). Name of this macro: Ellipse. See Figure 6 left.  

Construction of the tangent line to an ellipse at a given point: first we construct the director circle 

(C) associated with focus F; it is the circle centered at F with radius equal to Fb where b is the 

symmetric point of F with respect to B. If c is a given point on the ellipse (E) and c’ the intersection 

point between (C) and ray [Fc), we know that the perpendicular bisector of [F’c’] is the tangent line 

Tc to the ellipse at c. We record this construction as a macro (Initial objects: F, F’, B and c. Final 

object: tangent line (Tc)). Name of this macro: tangent ellipse. See Figure 6 left. 

 

     

Figure 6: Approaching the hexagon of minimum area circumscribed to a given ellipse 

 

Construction of a hexagon circumscribed about a given ellipse (Figure 6 middle): we use the 

macro ellipse to construct the ellipse with foci at F and F’ and passing through B. We use then the 

macro tangent ellipse to construct the six tangent lines Tc1 to Tc6 to the ellipse at c1 to c6. Eventually, 

we construct the hexagon (H1) supported by these tangent lines, passing through the points h1,1 to h1,6. 



This hexagon is one hexagon circumscribed to the ellipse. We have the opportunity to check the 

Brianchon theorem: as displayed in Figure 6 right, we can check that the three diagonals of this 

hexagon intersect at the same point. We record this construction as a macro (Initial objects: F, F’, B 

and the six contact points c1 to c6. Final object: hexagon (H1) tangent to the ellipse at c1 to c6). Name 

of this macro: hexagon circumscribed. 

Using an affinity transforming the ellipse onto a circle: the ellipse is transformed onto its principal 

circle (circle centered at O, midpoint of [FF’] and passing through A, horizontal right vertex of the 

ellipse) by an affinity with axis (FF’) and with direction (OB). So, use this affinity to transform 

hexagon (H1) circumscribed to the ellipse onto another hexagon (H’1) circumscribed to the principal 

circle. We transform each point cn onto a point c’n in using the following construction: line (L1) 

perpendicular to (FF’) passing through c1 intersecting (FF’) at e1, ray [e1c1) intersecting the principal 

circle at c’1 which is the image of c1 by the affinity. Therefore, the image of Tc1 by this affinity is the 

tangent line to the principal circle at c’1 which is the perpendicular line to (O c’1) at c’1. If we iterate 

this process, we can obtain the six tangent lines to the principal circle supporting the black hexagon 

(H’1) image of the red hexagon (H1) by our affinity. See Figure 7 left. 

Using the technique presented in 3.2.: as the side of hexagon (H1) supported by Tc2 has not its 

contact point c2 at its midpoint, we are sure that we can state the same thing for the side of (H’1) 

supported by Tc’2. So, to construct a hexagon (H’’1)  circumscribed to the principal circle whose area 

is less that the area of (H’1), we replace the polygon Oc’1k1k2c’3 by the polygon Oc’1k’1k’2c’3 where 

i is the midpoint of [c’1c’3], where j is the intersection point between ray [Oi) and the principal circle, 

where k’1 and k’2 are respectively the intersection points between the tangent line to the circle at j 

with Tc’1 and Tc’3. See Figure 7 middle. We can see (H1) in red, (H’1) in black and (H’’1) in blue in 

Figure 7 right.  

 

       

Figure 7: Using an affinity 

 

Obtaining hexagon (H2) whose area is less than that of (H1) (also circumscribed to the given 

ellipse): (H2) is simply the image by our affinity of (H’’2). The constructions are the same are those 

illustrated in Figure 7 left: we must only remember that the image of the principal circle by this 

affinity is our ellipse. We transform each contact point of (H’’2) with the principal circle by the 

affinity and we construct at each of these point the tangent line to the ellipse with the previous macro 

tangent ellipse. These six tangent lines define (H2). See these constructions in Figure 8 left and 

middle. In Figure 8 left, the construction of the first tangent green line of (H2) is displayed. In Figure 

8 middle, three of these tangent lines are displayed to see better that only one tangent line has been 

changed from (H1) to (H2). Eventually Figure 8 right displays (H2). We can notice that the side 

modified in changing its supporting tangent line has its midpoint as a contact point with the ellipse. 



We record this construction as a macro (Initial objects: F, F’, B and the six contact points c1 to c6, 

the first of which is the one on the tangent line to be modified. Final object: hexagon (H2) and the 

new contact point). Name of this macro: following hexagon. 

 

       

Figure 8: From (H1) to (H2)   
 
The interest of this macro is to generate easily the sequence (Hn) avoiding all the intermediate 

constructions we had to do to obtain (H2) from (H1). We have applied it to (H2) to obtain (H3) (Figure 

9 left) and then to (H3) to obtain (H4) (Figure 9 middle). We can state in Figure 9 right that the 

perpendicular bisectors of each side of (H4) seem to pass through the contact points of (H4) (or very 

close) with the ellipse. Eventually (H4) can be considered as a good approximation of a hexagon of 

minimum area circumscribed about our ellipse. Note that we needed to iterate our construction only 

three times.   
 

       

Figure 9: Reaching (H4) close to the solution   
 

Remark: to optimize our process, the first contact point chosen in order to apply the macro must be 

as far as possible from the midpoint of the side containing this contact point. 

 

5. Two other proofs of property 2 
 

5.1.  Analytical proof (Figure 10 left) 

We choose a circle of radius 1 (centered at J) in the system of axes (O, I, J). The area of the equilateral 

triangle DEF circumscribed about this circle is equal to 3√3. In (O, I, J), the ordinate of point A is 

greater than 2 which is the ordinate of K. Let us evaluate the area of an isosceles triangle ABC 

circumscribed about the same circle as a function of the ordinate β of A, that is to say OD.OF. We 

start by evaluating the abscissa α of C as a function of β. For this, let us express that the distance from 

J (0,1) to the line (AC) is equal to 1. 



An equation of (AC) is 
𝑥

𝛼
+

𝑦

𝛽
− 1 = 0 or 𝛽. 𝑥 + 𝛼. 𝑦 − 𝛼. 𝛽 = 0, so the previous condition is 

expressed as follows: 
|𝛼−𝛼.𝛽|

√𝛼2+𝛽2
  = 1 or  

𝛼.(𝛽−1)

√𝛼2+𝛽2
  = 1 because 𝛽 > 2 or : 

𝛼. (𝛽 − 1) = √𝛼2 + 𝛽2 or 𝛼2. (𝛽 − 1)2 = 𝛼2 + 𝛽2 that is 𝛼2 = 
𝛽2

(𝛽−1)2−1
 . 

Eventually like 𝛼 =
𝛽

√(𝛽−1)
2

−1
, the area of ABC is equal to 

𝛽2

√(𝛽−1)2−1
. To prove that this area is 

greater than 3√3 for 𝛽>2, let us study the variations of the numerical function 𝑓(𝑥) = 
𝑥2

√(𝑥−1)2−1
  

for 𝑥 > 2. 

 𝑓′(𝑥) =
𝑥2.(𝑥−3)

((𝑥−1)2−1).√((𝑥−1)2−1
  is therefore of the sign of x-3. Eventually: 

𝑓′(𝑥) < 0  for 2 <  x <  3 and 𝑓′(𝑥) > 0  for x > 3 and therefore f admits a minimum for x = 3, which 

is 3√3. This means that any given isosceles triangle with given inscribed circle has minimum area 

when A is at D. 

Conclusion: any isosceles triangle ABC with a given incircle has an area greater than the area of any 

equilateral triangle with the same inscribed circle. 
 

       

Figure 10: Other proofs of property 2 
 

 

5.2. Proof using similar triangles (Figure 10 right) 

Consider the triangle mAo where (AC) is tangent at m to the circle centered at o with radius r. 

Triangles mAo and MAC are similar with a ratio equal to  
𝐴𝑀

𝐴𝑚
. Let's evaluate this ratio:  

Ao = h-r, om = r and then Am = √(ℎ − 𝑟)2 − 𝑟2. Eventually the ratio is equal to: 

ℎ

√(ℎ − 𝑟)2 − 𝑟2
 

As the area of mAo is equal to 
1

2
𝑟√(ℎ − 𝑟)2 − 𝑟2, the area of MAC is obtained by multiplying the 

previous area by the square of the previous ratio, i.e.:   

Area(MAC) = 
1

2
𝑟√(ℎ − 𝑟)2 − 𝑟2. (

ℎ

√(ℎ−𝑟)2−𝑟2
)2

. 

Area(MAC) =
1

2

𝑟ℎ2

√(ℎ−𝑟)2−𝑟2
. Or this area is minimum when h = 3r that is to say when triangle 

MAC is half an equilateral triangle. 



For the proof, we study the variations of the function f(h) = 
𝑟ℎ2

√(ℎ−𝑟)2−𝑟2
 . Its derivative is of the 

sign of (h-3r). In fact: f’(h) = 
ℎ.𝑟.(ℎ−3𝑟)

(ℎ−2𝑟).√ℎ.(ℎ−2𝑟)
. 

 

Conclusion  
 

The need to find a simplified proof (of the Steiner ellipse) of that of Minda and Phelps ([6]) first led 

me to propose a proof inspired by an approach with the support of dynamic geometry ([7]). Michel 

Carral to whom I invited to help me finalize my proof decided on a completely different approach. 

His purely geometric approach ultimately led to the proof I presented in this paper. Moreover, he 

extended his work by a study concerning the polygons which I also presented. His method for 

minimizing the area of a polygon circumscribed to a given ellipse gave me the opportunity to create 

a set of macros in the New Cabri which allows users to generate very simply a sequence of polygons 

with decreasing and rapidly converging areas to the desired minimum area polygon. Finally, my 

initial approach with the tool of dynamic geometry not having succeeded completely, it is the classic 

approach of pure geometry of Michel Carral which provided a proof using tools and knowledge 

simpler than those of Minda and Phelps. His complementary work on polygons gave me the 

opportunity to reuse the dynamic geometry tool to visualize a convergence of a sequence of polygons 

which had previously remained very theoretical. 
 

Note 
Figures 1,3 and 10 were created with TI-NspireTM CX CAS Premium Teacher Software and the other 

ones with the New Cabri. 
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