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Abstract

Hypothesis testing is one of the foundational topics in statistics and a must teach
in every introductory statistics course. The entire theory of hypothesis testing rides on
the concept of power. Yet, its computation is generally perceived to be daunting and
is avoided by most introductory courses in statistics. For instance, it is not covered in
AP Statistics curriculum. Understanding of power, on the other hand, is reinforced when
you know how to compute power against an alternate hypothesis. This paper presents an
exposition of computations and illustrations of the critical value and statistical power for
a t-test and its nonparametric analog in R.

1 Introduction

Hypothesis testing is the central tool in inferential statistics where the goal is to confirm or
refute a research hypothesis about a population through the observation of a sample. Modern
hypothesis testing combines the theory of p-value developed by Ronald Fisher [3] and the theory
of hypothesis testing developed by Jerzy Neyman and Egon Pearson [5] in the 30’s. It is so
widely used now that it forms the bedrock of current scientific research and is included in the
syllabus of any first course in statistics.

Hypothesis testing begins with a research hypothesis, also called an alternate hypothesis H,,
constituted by forming a comparison of a population parameter, say, the population mean g,
with some fixed hypothesized value, say, 1o using an inequality statement. Next, the probability
of making a type-I error, called a significance level, is set, most popularly at o = 0.05. This is
simply setting a tolerance level that it would be acceptable if the research hypothesis is wrongly
confirmed 5% of the time. The alternate hypothesis of p # g, < po and p > g are called
the two-tailed, left-tailed, and right-tailed cases respectively. The null hypothesis Hj, on the
other hand, is simply p = po which is assumed on the population for the purpose of carrying
out the test. Under this assumption, the probability of the observed sample statistic, namely,
the sample mean Z, of being the most conservative value to favor the research hypothesis is
calculated and is called the p-value. The research hypothesis is confirmed if p-value < o and
refuted otherwise.



The decision-making criterion can be put in two different ways. When we make a rule of
“reject Hy if p-value < 0.05”, we are essentially saying that the evidence did not favor H,
(H, : > po for a right-tailed case) at significance level o = 0.05. The evidence is found in the
location of the observed 7, let us denote T, in the distribution of ¥ under Hy with u = py.
Specifically, it is referring to the fact that, under Hy with p = po, the p—value quantifying the
probability of T being at least as large (for a right-tailed case) as Ts stayed strictly lower than
the significance level of & = 0.05. An alternate criterion of making a decision uses the so-called
critical value which is the 95 percentile (corresponding to 1 —a = 0.95 for a right-tailed case)
of the sampling distribution of = under Hy with u = puo. The critical value, let us denote
T., thus becomes the cut-off point for the sample mean T in order to exhibit any evidence in
support of H, : i > po. Thus, an alternate phrasing of the decision-making criterion is “reject
Hy if Tops > T

The whole process of hypothesis testing is founded on the assumption that the null hypoth-
esis Hj is true which may or may not be the case. So, when a decision is made one way or the
other, it falls into one of the four possible scenarios - of which two are correct and the remaining
two erroneous, as illustrated in Table[I]} When the foundational assumption of Hy being true is
indeed true, then a decision of rejecting Hy (a positive decision that is in favor of the research
hypothesis H,) is a false positive. This is called the type-I error. On the other hand, when
the foundational assumption is false, then a decision of not rejecting Hy (a negative decision
that is against the research hypothesis H,) is a false negative. In line with its double negative
connotation, this error is called the type-II error.

A significance level of @ = 0.05 means that the probability of not making a type-I error
is 1 —0.05 = 0.95. This is setting the standard of being able to correctly refute the research
hypothesis at least 95% of the time. A type-II error, on the other hand, is the error of incorrectly
refuting a research hypothesis. Now, a probability, say, § = 0.2 of making a type-II error
translates to setting the standard of being able to correctly confirm the research hypothesis at
most 80% of the time since 1 — 8 = 0.8 which, in turn, is called the power of the test. It refers
to the power of not failing to detect a confirmed instance of the research hypothesis. Naturally,
a hypothesis test should aim to have the highest possible power.

Truth . .
Decision Hj is true Hj is false
Reject Hy Type-I error Correct
Do not reject H Correct Type-1I error

Table 1: Ilustration of type-I and -II errors

Unlike the p-value, the power 1 — 3 is not as well-understood and certainly not as widely
used by early learners of statistics. This is evident in the fact that many first-level statistics
courses either do not cover power at all or cover merely its definition without computations.
For instance, AP Statistics curriculum doesn’t require one to learn how to compute power of
a hypothesis test [4]. Yet, hypothesis tests reported in scientific literature do make a point of
discussing power of the involved tests.

Sample size determination, an essential component of experimental studies, also requires
power calculations. Power is also based on the so-called effect size which, in the case of testing
a hypothesized value of the mean, is simply the difference of the means in the null and alternative



hypotheses. Power analysis used in research planning is the determination of the sample size
necessary to attain a specified power to detect a hypothesized effect size [2]. Since a bigger
sample always guarantees a better power, before proceeding with a costly experimental study,
it is prudent to find out what size of a sample one should employ. This is crucial in making
the study effective as well as economical. Power and sample size analysis is undertaken by first
conducting an inexpensive pilot or simulation study to gauge what sort of an effect size one
could anticipate.

This paper illustrates computing power of a one-sample t-test and its non-parametric analog,
namely, Wilcoxon signed rank test for a normally distributed alternate. We use the open-source
programming language R [6] to compute power analytically. R codes and a plot are provided
to make the paper self-contained and reader-friendly. R being the most widely used tool of
statistical computing and graphics, readers should be able to easily reproduce all the results
provided in this paper.

2 Power of a hypothesis test

Let us look at a dataset of wind speeds of New York, May to September 1973 drawn from
the data set New York Air Quality Measurements [I] available in the R datasets package:
https://stat.ethz.ch/R-manual/R-devel/library /datasets/html/00Index.html. This dataset has
mean 9.557516 mph which, let us suppose, is the maximum wind speed proposed for a certain
recreational activity of interest and we would like to know whether or not the wind speed
exceeds this desired limit. In order to illustrate this testing with the help of a simple dataset,
we will modify the above wind dataset to have mean 0 and standard deviation 1 as follows:

>wind <— airquality$Wind - mean(airquality$wWind)
> wind <— wind/ sd(airquality$wind)

> hist (wind)

> mean (wind)

> sd (wind)

> x <— sample (na.omit (wind), size=27)

> mean (x)

[1] 0.4461874

> sd (x)

[1] 1.064263

The wind dataset we created is not exactly normal but does not seem to deviate too much
from normality as shown by the histogram created by the hist function in R. The R functions
mean and sd compute the mean and standard deviation of the data respectively. The wind
dataset, by design, has mean 0 and standard deviation 1. Treating this dataset as our popu-
lation, we are taking a sample of size 27 from it using the R function sample. The research
hypothesis we seek to test in this scenario is H, : p > 0 at significance level o = 0.05. We begin


https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

the hypothesis testing process by making an assumption that the null hypothesis Hy : 1 =0
holds true.

Now, the power of the testing Hy : 4 =0 vs. H, : i > 0 can be computed for any specific
case of the alternate hypothesis H, : u© > 0. For the sake of convenience of illusration, let us
choose the alternate H, : u = 0.4, assuming that the true population is normally distributed
with mean 0.4 and standard deviation 1. Then our sample x1, xs, ..., xo7 are independently and
identically distributed values from N(0.4,1). It is important to note, however, that, in practice,
the actual population distribution remains unknown as we proceed to conduct a hypothesis test
to confirm or refute H, : u > 0.

We shall use two different tests for this testing and compute a power for each. A Wilcoxon
signed rank test, a nonparametric test, is a test of choice when the sample x1,xs, ..., x97 does
not display any normality. If, on the other hand, the sample displays normality, one would
choose a t-test for this purpose.

3 Power of a Wilcoxon signed rank test

A Wilcoxon signed ranked test uses ranks instead of actual values and a median instead of
a mean. So, we seek to test Med > 0 on the sample 1, xo,...,297. Since the hypothesized
median value or the null hypothesis is Med = 0, the ranks of 1 through 27 are determined for
the values |z; — 0] = |x;].

The Wilcoxon signed rank test statistic is given by

27 27
i=1 i=1

where R; is the rank of |z;| and Z; = 0 if z; is negative and Z; = 1 if x; is positive. This
means each W; is either 0 or some k where k = 1,...,27 as prescribed by the distribution of
x;’s, that is, according to whether z; is negative or positive. For the purpose of computing the
expected value and the variance of W, denoted E (W) and Var(W) respectively, without loss
of generality, we can reorder either x;’s or W;’s so that each W; is either 0 or exactly ¢ according
to the same distribution of z;’s.

For n = 27, W could be anything between 0 and = 378. From a table of percentiles
of W, we see that the actual critical value for a left-tailed case for o = 0.05 is 120 and, for a
right-tailed case, Hy is rejected if W > (378 — 120) = 258. We can also find an approximate
normal distribution of W.

By the Central Limit Theorem, W, under the null Med = 0, approximately follows a normal

distribution with mean 2™ — 189 and standard deviation y/2ETHUE2TED - /3165

24
V1732.5 = 41.62. We can prove this as follows.

Note that under Hy : Med = 0, the symmetry of the discrete probability distribution of W
yields

27(2741)
2

p(W; =0)=0.5,p(W; =i) = 0.5,p(W?=0)=0.5 and p(W?=1i*) =0.5.

Then we can compute
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Next, for the alternate H, : Med = 0.4, we can compute the probability of a random value
from the true population being negative in R as follows:

> pnorm (0, mean=0.4, sd=1)
[1] 0.3445783

Using the normal cumulative density function pnorm, this computation found 0 to be the
34.46'" percentile in the normal distribution with mean 0.4 and standard deviation 1. So, the
discrete probability distribution of W;, under the alternate Med = 0.4, yields

p(W; =0) = p(W? =0)~0.3446 and p(W; = i) = p(W? = i*) =~ 0.6554.

(2

Then we can compute

27
ZE => - 034+1066—0662
i=1

27(27 + 1)

= (0.66) - ~ 247.7412.

27
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Noting +/1565.487 ~ 39.5662, we now can compute the power of Wilcoxon signed rank test
for the alternate Med = 0.4 as follows:

~ 1565.487.




> gnorm (0.05, mean=189, sd=41.62, lower.tail=FALSE)
[1] 257.4588
> pnorm (257.4588, mean=247.7412, sd=39.5662, lower.tail=FALSE)

[1] 0.4029946
The normal quantile function gnorm is the inverse of the normal cumulative density function
pnorm in R. This computation showed that the 95 percentile in the normal distribution with

mean 189 and standard deviation 41.62 is 257.4588. Hence, in testing Hy : Med = 0 vs.
H, : Med > 0, the power of a Wilcoxon signed rank test for the alternate Med = 0.4 is 0.40.

4 Power of a t-test

If the sample does not violate normality test, one would opt for a t-test. Note that, for a sample
size of n = 27, our sample standard error is 1.06/v/27 & 0.2040 and using the ggdist package
in R for scaled and shifted t-distributions, we can compute the power as follows:

> library (ggdist)

> gstudent_t (0.05, df=26, mu=0, sigma=0.2040, lower.tail=FALSE)

[1] 0.3479461

> pstudent_t (0.3479461, df=26, mu=0.4, sigma=0.2040,
lower.tail=FALSE)

[1] 0.5996988

Hence, in testing Hy : p =0 vs. H, : > 0, the power of a t-test for the alternate y = 0.4
is 0.60. Note that a t-test produced a better power than a nonparametric test as we would
expect due to the normality of the data.

It must be noted that the sample standard deviation varies from sample to sample, staying
close enough to the population standard deviation for a large enough sample size. So, let us also
investigate scenarios where the sample standard deviation is equal to or less than the population
standard deviation. If we use s = o = 1, the sample standard error is 1/ V27 2~ 0.1925 and the
computation goes as follows:

> library (ggdist)
> gstudent_t (0.05, df=26, mu=0, sigma=0.1925, lower.tail=FALSE)
[1] 0.3283314

> pstudent_t (0.3283314, df=26, mu=0.4, sigma=0.1925,
lower.tail=FALSE)

[1] 0.6436581

Hence, in the case of s = ¢ = 1, the power of a t-test for the alternate 4 = 0.4 in testing
H,:p>01is 0.64.



If we use s = 0.99, the sample standard error becomes 0.99/1/27 ~ 0.1905 and the compu-
tation goes as follows:

> library (ggdist)
> gstudent_t (0.05, df=26, mu=0, sigma=0.1905, lower.tail=FALSE)
[1] 0.3249202

> pstudent_t (0.3249202, df=26, mu=0.4, sigma=0.1905,
lower.tail=FALSE)

[1] 0.6516467

Thus, in the case of s = 0.99 < 1 = o, the power of a t-test for the alternate y = 0.4 in
testing H, : p > 01is 0.65.

5 Power of a z-test

From the vantage point of knowing that our population is indeed normally distributed, let us
find the power of a z-test as well. We should see a still better power for a z-test. Noting the
population standard error is 1/4/27 &~ 0.1925, the computation in R goes as follows:

> gnorm(0.05, mean=0, sd=0.1925, lower.tail=FALSE)

[1] 0.3166343

>pnorm (0.3166343, mean=0.4, sd=0.1925, lower.tail=FALSE)
[1] 0.6675175

As expected, a z-test has the best power of 0.67 for this testing. Its illustration in R is
provided in Figure
R codes used to generate Figure [l are provided below:
> library (ggplot)
> library (reshape?)
>crit <— gnorm (0.05, mean=0, sd=0.1925, lower.tail=FALSE)
> power <— pnorm (0.3166343, mean=0.4, sd=0.1925, lower.tail=FALSE)
>x <—seqg(-1, 1, length = 100)
> HO <— dnorm(x,0,0.1925)
> Ha <— dnorm(x,0.4,0.1925)
> normdist <— data.frame (cbind(x,HO0, Ha))
> colnames (normdist) <— c("x","HO", "Ha")

> normdist <— melt (normdist,id=c("x"))
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Figure 1: Tllustration of statistical power.

> g <— ggplot (normdist, aes(x, value, color=variable))+
+ scale_color_manual (values=c ("HO" = "greend", "Ha" = "red"))+
+ geom_line (size=.5) + theme (axis.title=element blank())+

+ theme (legend.position = "none") + geom.ribbon (data
=subset (normdist, x>crit), aes(x=x, ymax=value,
group=variable, fill=variable), ymin=0,alpha=0.3)+

+ scale_fill manual (name =" ', values = c("HO" = "greend", "Ha" =
"red"))

6 Power functions

In the foregoing sections we computed statistical powers of three different hypothesis tests, all
testing whether or not the average is positive, under an alternate of the true population being
normally distributed with mean p = 0.4 and standard deviation ¢ = 1. In this section we
illustrate some computations in power analysis.

Let us compare the differences in proximity of the three hypothesis tests that we used with
our true population distribution. Comparing the assumptions of each hypothesis test with
the reality of the true population, we find that the z-test coincides with the true population
distribution, the t-test is some distance away, and the Wilcoxon signed rank test comes the
furthest away. The Wilcoxon signed rank test had the power of 0.40 while the power of the z-test
was 0.67. When the sample standard deviation s was 1.06, 1, and 0.99 (different comparisons
with the population standard deviation of ¢ = 1), the power of the t-test was 0.60, 0.64, and
0.65 respectively. The sample standard deviation s is an estimator of, and thus should stay
fairly close to, the population standard deviation a. However, when s is significantly smaller
than o, particularly in cases of small sample sizes such as n=27 in our example, it is possible for



a t-test to have a better power than a z-test. But then again the true population distribution is
more likely to be a t-distribution than a normal distribution in such cases. Hence, we can safely
conclude from our observations that, with other things being equal, the closer the assumptions
of the hypothesis test with the true scenario, the better the power.

To understand how power behaves as functions of some of the parameters of power analysis,
let us restrict ourselves to the case of a z-test. The first parameter of interest is the effect size,
or the mean of the alternate true population. If we change it to u = 0.5, we can compute the
following:

>pnorm (0.3166343, mean=0.5, sd=0.1925, lower.tail=FALSE)
[1] 0.8295907

This increased power from 0.67 to 0.83. Hence, power as a function of the effect size is an
increasing function.

If we change the sample size from 27 to 29, the population standard error becomes 1/ V29 ~
0.1857, and we compute

> gnorm(0.05, mean=0, sd=0.1857, lower.tail=FALSE)

[1] 0.3054493

>pnorm (0.3054493, mean=0.4, sd=0.1857, lower.tail=FALSE)
[1] 0.6883478

Thus, power increased from 0.67 to 0.69 as the sample size increased from 27 to 29. This
illustrates that power will go up when a larger sample size is adopted.

Let us now change the type-I error probability or the significance level o from 0.05 to 0.01
and compute

> gnorm(0.01, mean=0, sd=0.1925, lower.tail=FALSE)
[1] 0.447822
>pnorm (0.447822, mean=0.4, sd=0.1925, lower.tail=FALSE)

[1] 0.4019024

Lowering the significance level from 0.05 to 0.01 brought the power down from 0.67 to 0.40.
Hence, we observe that power as a function of the type-I error probability « is an increasing
function. Since power is the complement of the type-II error probability [, this shows a trade-
off between the type-I and type-II error probabilities. This means it is not possible to control
both types of error simultaneously although that is exactly what is in our interest. As such,
the popular convention is to keep the type-I and type-II error probabilities at 0.05 and 0.20
respectively. In other words, a significance level of o = 0.05 and a power of 1 — § = 0.8 have
become the gold standard of hypothesis testing in practice.

Every student who is introduced to hypothesis testing must learn the computations il-
lustrated above in this section. Computing powers corresponding to several values of a test
parameter allows us to graph the power function and visualize the dependence of power on the



parameter. These computation exercises impart tangible insight into how power is related to
effect size, sample size, and significance level. This approach to teaching hypothesis testings
reinforces students’ knowledge of p-values and the two types of error. Since the p-value is di-
rectly related to the significance level as discussed in the introduction section, students will be
able to see p-values in relation to power as opposed to the conventional practice of only looking
at the p-values.

7 Conclusion

Powers of a Wilcoxon signed rank test, a t-test and a z-test along with their R codes and
an illustration were presented in this paper. A specific normal distribution was used as an
alternate with an effect size of 0.4. In particular, it was shown how power is compromised when
a nonparametric test is used when the population is known to be normally distributed.

Statistical power is a very practical tool and should be taught in every introductory-level
statistics class just when hypothesis testing is being introduced. A good working knowledge of
power will facilitate a solid understanding of the theory of hypothesis testing. This, however,
should mean learning not just the definition of power as is the current practice but also its
computations in specific scenarios. Exposure to power is an effective way of reducing students’
anxiety about the elusive p-value. Statistical power harmoniously ties in with the concepts of
p-value and the two types of errors and, learned together, they reinforce each other’s compre-
hension in students.
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