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Abstract

Motivated by some locus problems discussed in [8], and further in [9] and [10] for 2D
and 3D cases, we explore scenarios in which if two topological manifolds are topologically
equivalent with technological tools. We derive some interesting facts about topological
equivalence that could be used in the classroom.

1 Introduction

In a series of papers, [11, 8, 9, 10], we explored problems based on characterizing the loci, in 2D
and 3D, generated by moving points that satisfied certain restraining conditions. The problem
was originated from the practising exercises of college entrance exam from China.
For example, in [9], we discussed the following 3D locus problem:

Suppose we are given a point A = (a1, a2, a3) ∈ R3 and a generic point C = (c1, c2, c3) on a
surface Σ ⊂ R3. Let l be the line in R3 passing through A and C. Suppose the line l intersects
a well-defined point D = (d1, d2, d3) on the surface Σ. Thus, we want to determine the locus
surface generated by a point E = (e1, e2, e3) ∈ R3, lying on the line segment CD, and satisfying
the condition

−−→
ED = s

−−→
CD, for a parameter s ∈ R, when

1. The point A moves in a certain permissible manner.

2. The points C, or D on Σ are moved in a definite manner.

3. The parameter s changes continuously in some interval of real numbers.

Remark that moving point A is equivalent to moving point D ∈ Σ since this last point is
determined by A and C, through line l. Thus, in some situations we can define point D as
the “antipodal” point of C, relative to point A. We will illustrate this situation with several
examples.



Notice that if we denote by O the origin in R3, then, from the parallelogram law, we conclude
that this problem is equivalent to that of determining the locus generated by the point E satisfying

−−→
OE = s

−→
OC + (1− s)−−→OD. (1)

Figure 1. A 3D locus
problem

See Figure 1, in order to have a better understanding of this problem.

In this paper, we continue exploring some scenarios related to this 3D locus problem, as
described, but with an additional concern, namely, we are interested in determining the topo-
logical equivalence for different geometric loci generated by varying the parameter s in equation
(1). Needless to say that using technological tools is a paramount part of our explorations and
give rise to some interesting situations, worthy of investigation.
Thus, the plan for the paper is the following: In Section 2 we review some of the possible

scenarios related to the settings that can be derived from equation (1) for different values of
parameter s, and present some interesting examples. In Section 3, we introduce some topological
concepts in order discuss the topological equivalence of some of the generated loci, both in 2D
and 3D. We also present some examples. In Section 4 we continue the discussion of topological
equivalence, but for some concrete examples.
It is important to remark that the use of technological tools is a relevant part in all the

explorations and investigations presented in the paper. Thus, we provide all the computer
programs and activities in the section of Supplementary Electronic Materials. The software used
here correspond to Computer Algebra Systems such as Maple ([2]), alongside with Dynamic
Geometry Software such as GeoGebra ([1]). All of the electronic materials provided are intended
to give the reader a deeper insight and understanding of the different scenarios addressed in
the paper.

2 Some curves and surfaces derived from locus problems

Equation (1) is a good start to explore some scenarios that can occur, and are directly related, to
the locus problem just described above, however we must define some terminology, specifically
antipodal point, and the types of surfaces we will be dealing with.



2.1 Some definitions

Definition 1 Let R = {(u, v) | u, v ∈ R} ⊂ R2 be a domain. The parametric surface Σ defined
by the injective, real-valued coordinates functions x = x(u, v), y = y(u, v), and z = z(u, v) is
the set

Σ = {(x(u, v), y(u, v), z(u, v)) | (u, v) ∈ R} ⊂ R3.

Usually, the coordinate functions in Definition 1 are assumed to be suffi ciently smooth (in
the sense of differentiability), so the parametrized surface is a smooth one. Moreover, most of
the surfaces in the examples in this paper are closed surfaces, that is, compact and without
boundary, examples of which are the sphere, the torus, the Klein bottle, etcetera. In addition,
if the tangent space of every point lies the same side of Σ, we call Σ convex surface. Unless
otherwise specified in this paper, we assume that the surface Σ ⊂ R3 is closed and convex.

Definition 2 Let Σ ⊂ R3 be a closed and convex surface such that A is a point in the interior
of Σ. Let C be an arbitrary point on the surface Σ and let us denote by l the straight line
through points A and C. We say that a point D and D 6= C in Σ is the antipodal point of C
relative to A if D is the intersection of l and Σ.

Figure 2(a). Antipodal
points on a sphere

Figure 2(b). Antipodal points
on a surface of revolution

Figure 2(a) illustrates the situation described in Definition 2. Notice that when the surface
Σ is symmetrical about the origin and A = (0, 0, 0), then antipodal points are easy to calculate.
Moreover, even when the surface is not a convex one, but it is non-self intersecting, antipodal
points can also be calculated because Definition 2 is relative to a given point, inside the surface,
as shown in Figure 2(b).

Theorem 3 Let Σ ⊂ R3 be a parametrized, closed and convex surface and let A ∈ R3 be an
interior point to Σ, that is, A is enclosed inside the surface. If C ∈ Σ is an arbitrary point,
then there exists a point D ∈ Σ such that D is the antipodal point of C relative to A.



Proof. Let ϕ : R → R3 be a parametrization of surface Σ with ϕ(R) = Σ and ϕ(u, v) =
(x(u, v), y(u, v), z(u, v)) ∈ Σ, for all (u, v) ∈ R in the sense of Definition 2. Since C =
(c1, c2, c3) ∈ Σ, there exists a point (u0, v0) ∈ R such that ϕ(u0, v0) = C, and thus

x(u0, v0) = c1, y(u0, v0) = c2, z(u0, v0) = c3.

On the other hand, the straight line connecting points C and A is given, in parametric form,
by l : C + t(C − A), for t ∈ R. Thus, if A = (a1, a2, a3), then we need to find a value of the
parameter t, say t0 6= 0, such that(

(1 + t0)c1 − t0a1, (1 + t0)c2 − t0a2, (1 + t0)c3 − t0a3
)
∈ Σ.

Now, consider the plane ΠAOC passing by the three points C, A, and the origin O = (0, 0, 0).
We can calculate the equation for this plane in the form

ax+ by + cz + d = 0.

The plane ΠAOC contains line l and defines a closed curve on the surface Σ, say α = α(s),
which is the intersection of Σ with ΠAOC . Here s ∈ R is the parameter that defines the curve
α : I → R3 for some interval I ⊂ R. Therefore, there exist values of the parameter s, say s1
and s2 such that α(s1) = C and α(s2) is a second point of intersection of line l, plane ΠAOC

and the surface Σ. We denote this point by D: α(s2) = D = (d1, d2, d3) ∈ Σ. We also have

ad1 + bd2 + cd3 + d = 0,

and there exists (u1, v1) ∈ D such that ϕ(u1, v1) = (d1, d2, d3) and we can solve for t0 in any of
the three equations

(1 + t0)c1 − t0a1 = d1,

(1 + t0)c2 − t0a2 = d2,

(1 + t0)c3 − t0a3 = d3.

We illustrate some examples of this demonstration with a DGS (see [S1],[S2], and [S3]) in the
Supplementary Electronic Materials.

2.2 Several scenarios for study

Following the above cited papers [6, 7, 8, 9, 10, 11], the locus constructions for surfaces are
natural generalizations of those corresponding to curves in the plane. Thus, we also will be
making use of several 2D examples in order to illustrate some of the concepts we will be dealing
with. In particular, we will talk about antipodal points on curves and loci in 2D.

Now, let us return back to the situation of equation (1) in order to depict some scenarios
that are worthy to explore, which are the main motivations for this paper, and that will be
addressed in what follows.



1. Suppose we fix both, the point C ∈ Σ and the parameter s in (1). Let D be the antipodal
point of C, relative to the fixed point A, when connected by a line l through points A and
C. Thus, when we consider the locus of E satisfying

−−→
ED = s

−−→
CD, which is equivalent to

(1), it is not diffi cult to figure out that the locus E represents a shifted and scaled surface
from Σ. In fact, think that the only point freely to move around the whole surface is D,
and it is joined with E through a line segment.

2. Clearly, from the above description of the problem, there is a direct dependence of the
locus generated by E in (1) on the points C and D, even when the parameter s varies.
We shall see how a curve or surface determined by the point C is transformed to another
curve or surface determined by D.

In what follows, we will have opportunity for exploring each one of the situations described
above. Nevertheless, as a motivation of what we intend to do, we provide an illustrative 2D
example in the following subsection.

2.3 Scaled and shifted locus

Suppose Σ ⊂ R3 is a regular surface, and let C be a fixed point on Σ. For any point A 6= C,
let D be the antipodal point of C on the surface Σ when connected by a line l through points
A and C. We notice that locus of the point E satisfying

−−→
OE = s

−→
OC + (1 − s)

−−→
OD can be

characterized as:

1. A dilation carried out by the point D for 1 − s > 0. When this number is negative, the
locus is a reflection of point |1− s|D by the origin.

2. It is a translation defined by the vector s
−→
OC.

We remark that a transformation of a curve c to any other curve is not unique. Thus, we
have the opportunity to talk about topological transformations of curves and surfaces, a topic
that we address in the following section.

3 Locus and topological transformations

Recall that a topological space is a non-empty set together with a topological structure that
characterizes the open sets of the topology. A non-empty set X can be equipped with different
topological structures, and any subset A ⊂ X can also be given a topological structure, namely,
the relative topology: If O ⊂ X is any open set in the topology of X, then A ∩ O will be the
corresponding open sets in the relative topology of A.
For the spaces Rn, with coordinates (x1, . . . , xn), the usual topological structure is that of

the open balls, which is defined by the metric structure of Rn. Recall that the metric function
d(x, y) =

√
(x1 − y1)2 + · · · (xn − yn)2, for x = (x1, . . . , xn) and y = (y1, . . . , yn) makes (Rn, d)

into a metric space. This metric characterizes the open balls Bε(x) = {y ∈ Rn | d(x, y) < ε},
for any ε ∈ R, with ε > 0, which are the basic open sets for the usual topological structure of
Rn.



Thus, any curve or any hyper-surface in Rn can be viewed as topological spaces with their
respective relative topologies, acquired from their environment space. For the cases we are
interested on, the environment spaces will be simply R2 or R3; thus, we can view these curves
and surfaces as topological spaces on their own, for which we can apply the topological tools
that are introduced in what follows.
Now, let us address a fundamental concept in topology, namely that of continuity. Let

(X, τX) and (Y, τY ) be two topological spaces, with τX and τY their respective topologies. A
function f : X → Y is continuous if for any open set O ⊂ Y , then f−1(O) ⊂ X is open. Here,
the notation f−1(U) denotes the inverse image, in X, of U ⊂ Y .
When f is a one-to-one and an onto correspondence between X and Y , then it has an

inverse, f−1 : Y → X defined, for any y ∈ Y as f−1(y) = x ∈ X if and only if f(x) = y. We
say that f is a homeomorphism if it is continuos, bijective and with f−1 also continuos. In this
situation, we say that X and Y are homeomorphic topological spaces.
Homeomorphisms between topological spaces are also called continuous transformations, or

topological transformations. Intuitively, these transformations can be thought of as functions
that transforms points of one space, that are arbitrarily close to each other, onto points of
another space that are also arbitrarily close. Spaces that are related in this way are said to be
topologically equivalent. In a technical sense, we have to be careful with the notion of closeness
since it has only sense when we can measure distances in a space, so we need to have a metric
structure. Nevertheless, that is what we meant by “intuitively”.
If a space or some region in a space is transformed into another equivalent space or region

by bending, stretching, etc., the change is a special type of topological transformation called
a continuous deformation. Two figures (e.g., certain types of knots) may be topologically
equivalent, however, without being changeable into one another by a continuous deformation.
It is intuitively evident that all simple closed curves in the plane and all closed polygons

are topologically equivalent to a circle. Similarly, all closed cylinders, cones, convex polyhedra,
and other simple closed surfaces are equivalent to a sphere. On the other hand, a closed surface
such as a torus (a doughnut) is not equivalent to a sphere, since no amount of bending or
stretching will make it into a sphere, nor is a surface with a boundary equivalent to a sphere,
e.g., a cylinder with an open top, which may be stretched into a disk (a circle plus its interior).
In view of the locus generated in the settings of our problem by a point E satisfying 1: For

a given fixed A, we can find the maximum value of s such that the locus is a simple closed
curve in 2D or a surface that is topologically equivalent to a sphere in 3D. Subsequently, we
extend the idea of finding a new surface generated by two or more surfaces.

3.1 Transforming topologically one simple closed curve into another

In the settings of our exploratory investigations, we will show how a circle or a sphere can
be transformed to another simple closed curve or into another surface that is topologically
equivalent to the sphere. First, we consider the following elementary 2D scenarios.

Example 4 Let us denote by c = c(u) =
[
x(u), y(u))

]
=
[
(1−cosu) cosu, (1−cosu) sinu

]
∈ R2

the parametrized cardioid curve, with u ∈ [0, 2π]. Next, denote by d = d(u) = [x′(u), y′(u)] =[
cosu, sinu

]
∈ R2 the curve that parametrizes the unit circle.

Now let us pick up any arbitrary point C on the curve c, and similarly, let us select any



point D on the unit circle d. For a parameter s ∈ [0, 1], define the transformation T(
s
u

)
T−→
[
F (s, u)
G(s, u)

]
where [

F (s, u)
G(s, u)

]
= s

[
x(u)
y(u)

]
+ (1− s)

[
x′(u)
y′(u)

]
. (2)

Notice that if O = (0, 0) denotes the origin in R2, and setting

OE =

[
F (s, u)
G(s, u)

]
, OC =

[
x(u)
y(u)

]
, and OD =

[
x′(u)
y′(u)

]
then (2) is nothing but our well known relationship (1):

OE = sOC + (1− s)OD,

which allow us to express (2) in explicit terms as

OE =

[
F (s, u)
G(s, u)

]
= sOC + (1− s)OD = s

[
(1− cosu) cosu
(1− cosu) sinu

]
+ (1− s)

[
cosu
sinu

]
. (3)

Clearly, for s = 1 we have that the image of transformation T is the cardioid c and for s = 0
the image of T is the unit circle d. Also, it is clear that T is a continuous transformation that
transforms, point by point, the cardioid into the unit circle, as s varies from 0 to 1. Accordingly,
T−1 is a continuous transformation from the unit circle to the cardioid. Therefore, we can say
that a simple closed cardioid is topologically equivalent to the unit circle.
In Figure 3, we can appreciate how the cardioid is transformed, according to (2) and (3),

into the unit circle, for different values of the parameter s. Remark that the symmetry with
respect to the x-axis is conserved. [See [S4] for exploration]

Figure 3. Continuos deformation of
a cardioid into a circle



Exercise: We leave it to the reader the exercise of exploring how to find an appropriate
transformation between a circle and a cardioid that has being shifted to the right by one
unit from the original one, given by the parametric functions x(u) = (1 − cosu) cosu and
y(u) = (1 − cosu) sinu. Readers would find that the correct circle to be chosen for this
transformation should be the one shifted to the right by one unit from the original unit circle.

Example 5 For this example we interchange the role of the unit circle and its equivalent topo-
logical curve, which in this case, is a 3-cusp epicycloid or trefoil [4]. Thus, let c = c(u) =
[cosu, sinu] be the unit circle, and let d = d(u) = [8 cosu − 2 cos 4u, 8 sinu − 2 sin 4u], where
u ∈ [0, 2π], be a parametrization for the epicycloid, see Figure 4.

Figure 4. The unit circle is
topologically equivalento to a 3-cusp

epicycloid

Again, our main tool is equation (1): OE = sOC + (1 − s)OD, with C, and D, arbitrary
points on curves c and d, respectively. Therefore, the locus generated by point E is satisfies the
following relation,

OE =

[
F (u, s)
G(u, s)

]
= sOC + (1− s)OD = s

[
cosu
sinu

]
+ (1− s)

[
8 cosu− 2 cos 4u
8 sinu− 2 sin 4u

]
. (4)

It is clear, from (4), that for s = 1 we have the unit circle, and for s = 0 we get the 3-cusp
epicycloid (shown in red) in Figures 5(a)-(c).
Thus, equation (4) is an example of an application that transforms the unit circle into an

epicycloid and it is also an example of a homeomorphism. Therefore this shows that the unit
circle is topologically equivalent to the 3-cusp epicycloid. The animations by using the parameter
s (See Figures 5 below). Also, we refer to [S5] for animation and [S6] of using the CAS [2] for



exploration. It is clear to see that the transformation is a homeomorphism.

Figure 5(a). When
s = 0.5 and s = 0

Figure 5(b). When
s = 0.7 and s = 0

Figure 5(c). When
s = 0.9 and s = 0

3.2 Maximum value of parameter s for topological equivalence

As it is discussed in [9] and [10], the locus generated by the point E on an ellipsoid depends
on the location of the fixed point A and the parameter s. In [10], we have proved that when
the fixed A is at an infinity, and s > 0 is a finite real number, the locus is an ellipsoid, which
we denote it by E (s) , and is topologically equivalent to a sphere. However, when A is at an
infinity and s → ∞, then the locus becomes an elliptical cylinder, say we denote it by Ec (s) .
Therefore, there exists an s∗ so that it makes the ellipsoid E(s) when s < s∗ topologically
unequivalent to elliptical cylinder Ec (s) when s > s∗. However, finding such maximum value
of s∗ will need further investigation.
In the remaining paper, we shall address the situation for a given fixed point A, not at an

infinity.

4 Surfaces parametrized by longitude and colatitude

Recall that any surface is a topological space whose topological structure is acquired from the
ambient space R3 it lives on. Also, two surfaces are topologically equivalent if there exists a
homeomorphism f between them, viewed as two topological spaces. Such a homeomorphism f
is a bijection with the property that both f and its inverse f−1 preserve open sets. If a certain
geometric object is transformed into another topologically equivalent by bending, stretching,
etcetera, this process entails a special type of topological transformation called a continuous
deformation.
Actually, we could refer to the surfaces we are working with in this paper as topological

manifolds since, as subsets of R3, they comply with all the conditions for that kind of manifolds:
being Hausdorff topological spaces, with a covering of open sets, each one homeomorphic to an
open set in R3 and in the intersections of the sets of the covering, the transition functions are
also homeomorphisms from a subset of the surface onto another subset of the surface. Thus, on
what follows, we will be dealing with surfaces that are topological manifolds and we will refer
to them with such a terminology.



4.1 New surfaces from old ones

Suppose S is a given parametrized surface, say

S =
{(
f(u, v), g(u, v), h(u, v)

)
| u, v ∈ R

}
, (5)

for a domain R ⊂ R2, and real valued continuos functions f , g, and h defined on R. Usually
the values of the parameters will be 0 ≤ u ≤ 2π, and 0 ≤ v ≤ π, hence we will refer to them as
longitude and colatitude, respectively.
Now, with the same parametrization (5) for S we can consider some other surfaces, namely

S1 =
{(
f(u+ α1, v), g(u+ α2, v), h(u+ α3, v)

)
| α1, α2, α3 ∈ R

}
,

or
S2 =

{(
f(u, v + β1), g(u, v + β2), h(u, v + β3)

)
| β1, β2, β3 ∈ R

}
.

We remark how the new parameters αi and βi, for i = 1, 2, 3, change the longitude u and
colatitude v. It is not diffi cult to get aware that the new surface S1 is topologically equivalent
to S for u ∈ [0, 2π] since the change of the coordinate of latitude in f , g and h is a continuos
operation, and these functions are also continuos.
Remark: Although the new surface S2 is a rotation of S by the colatitude v, we shall see

that surfaces S1 and S2 may or may not be topologically equivalent to the surface S, which
depends on if we choose the range for v ∈ [0, π] or v ∈ [0, 2π], respectively.

We recall that our initial equation (1), that was also applied in (3) and (4), now we explore
another surface resembling the processes described above for curves. In fact, we ask for the
properties of a new surface defined as the locus generated by points in the following way: F (u, v, α1, β1, s)

G(u, v, α2, β2, s)
H(u, v, α3, β3, s)

 = s

 f(u, v)
g(u, v)
h(u, v)

+ (1− s)

 f(u+ α1, v + β1)
g(u+ α2, v + β2)
h(u+ α3, v + β3)

 (6)

Here, and only for more clarity, we have denoted the points in R3 in vertical format. We will
continue using this notation when it becomes necessary in what follows.
Nevertheless, we will have the opportunity to see that the scaling factor s plays a crucial

role in (6). in fact, the following example shows that it is important to choose proper ranges
for u and v, as well as specific angles of αi, βi with i = 1, 2, 3 before determining if two surfaces
in (5) and (6) are topologically equivalent, since s also plays its role.

Example 6 Let us start with the surface of a parametrized ellipsoid

S =
{(
f(u, v), g(u, v), h(u, v)

)}
=


a sin(v) cos(u)
b sin(v) sin(u)

c cos(v)

 | u ∈ [0, 2π], v ∈ [0, π], a, b, c > 0

 .

(7)
By selecting particular angles αi and βi, with i = 1, 2, 3, respectively, we form the new generated
surface

S1 =
{(
F (u, v, α1, β1, s), G(u, v, α2, β2, s), H(u, v, α3, β3, s)

)}
,



via the transformation (6) F (u, v, α1, β1, s)
G(u, v, α2, β2, s)
H(u, v, α3, β3, s)

 = s

 f(u, v)
g(u, v)
h(u, v)

+ (1− s)

 f(u+ α1, v + β1)
g(u+ α2, v + β2)
h(u+ α3, v + β3)

 , (8)

where s ∈ R.
Notice that for s = 1 in (8) we have the original ellipsoid (7), and for s = 0 in (8) we get the
surface defined by the points of R3 whose coordinates are of the form f(u+ α1, v + β1)

g(u+ α2, v + β2)
h(u+ α3, v + β3)

 .
We shall discuss some topological properties for the surface defined through (8), since the se-
lection of the values of the parameters involved is quite important. We do so in the following
subsection.

5 Discussions

The settings in this subsection are those of Example 6, where the surface S is a parametrized
ellipsoid, with the parametrization given by (7). For demonstration purpose, we choose a =
5, b = 4 and c = 3. Furthermore, we assume α1 = π

4
, α2 = π

3
, α3 = π

6
, β1 = π

2
, β2 = π

3
, and

β3 = π
4
.

5.1 When considering u ∈ [0, 2π], and v ∈ [0, π]

1. If we let u ∈ [0, 2π], and v ∈ [0, π] with s = 0, according to (8), we obtain the surface
generated by points of R3 that have coordinates given by F (u, v, π/4, π/2, 0)

G(u, v, π/3, π/3, 0)
H(u, v, π/6, π/4, 0)

 =

 f(u+ π/4, v + π/2)
g(u+ π/3, v + π/3)
h(u+ π/6, v + π/4)

 =

 5 cos(u+ π/4) sin(v + π/2)
4 sin(u+ π/3) sin(v + π/3)

3 cos(v + π/4)

 .
This surface is a continuous deformation of the original ellipsoid, and it is topologically
equivalent to the ellipsoid.

2. If we consider u ∈ [0, 2π] and v ∈ [0, π] for the surface

 F (u, v, α1, β1, s)
G(u, v, α2, β2, s)
H(u, v, α3, β3, s)

 , we leave it
to the readers to explore that it will not be topologically equivalent to the original surface
S unless s = 1 or βi = 0 for all i = 1, 2, 3, . We depict pictures with various values of s



in Figures 6(a)(b) below. See [S8] or [S9] for explorations.

Figure 6(a). The surface
when s = 0.

Figure 6(b).
Transformation when s = 1

3

5.2 Two copies of surfaces when considering u ∈ [0, 2π] and v ∈ [0, 2π]

1. If we consider the parameters u ∈ [0, 2π] and v ∈ [0, 2π] , we can think the surface F (u, v, α1, β1, 1)
G(u, v, α2, β2, 1)
H(u, v, α3, β3, 1)

 =

 f(u, v)
g(u, v)
h(u, v)

 =

 5 sin(v) cos(u);
4 sin(v) sin(u)

3 cos(v)

 to be two copies of the ellip-
soid S, which we denote it by S∗.

2. However, when we vary the scalar s, we shall investigate the respective surfaces further.

For example, when s = 1
6
, the surface

 F (u, v, α1, β1,
1
6
)

G(u, v, α2, β2,
1
6
)

H(u, v, α3, β3,
1
6
)

 , u, v ∈ [0, 2π] , shown the Fig-

ure 7(a) is a surface that may not be topologically equivalent to S∗. Thus, we investigate
the surface closer as follows:

Figure 7(a). A closed surface but
may not be topologically equivalent

to S∗ for s = 1
6
.

Figure 7(b). Not topologically
equivalent to S∗ for s = 1

3
.



(a) For s = 1
6
,

S1 =

{[
F (u, v, α1, β1,

1

6
), G(u, v, α1, β1,

1

6
), H(u, v, α1, β1,

1

6
)

]
: u ∈ [0, 2π] , v ∈ [0, 2π]

}
(9)

as the union of two copies of

St1 =

{[
F (u, v, α1, β1,

1

6
), G(u, v, α1, β1,

1

6
), H(u, v, α1, β1,

1

6
)

]
: u ∈ [0, 2π] , v ∈ [0, π]

}
(10)

and

Sb1 =

{[
F (u, v, α1, β1,

1

6
), G(u, v, α1, β1,

1

6
), H(u, v, α1, β1,

1

6
)

]
: u ∈ [0, 2π] , v ∈ [π, 2π]

}
.

(11)
In other words, we have

S1 = St1 ∪ Sb1. (12)

We can think of S1 (See Figure 8(c)) as the union of two open tea-cups (St1 is the
yellow in Figure 8(a), and Sb1 is the blue in Figure 8(b)).

(b) However, it is beyond the scope of this paper to determine if St1 or S
b
1 is an orientable

surface. Readers can explore further in [S8].

Figure 8(a). Graph of St1 Figure 8(b). Graph of Sb1 Figure 8(c). Graph of St1∪Sb1

3. When s = 1
3
, the surface

 F (u, v, α1, β1,
1
3
)

G(u, v, α2, β2,
1
3
)

H(u, v, α3, β3,
1
3
)

 , u, v ∈ [0, 2π] , is a surface (shown the

Figure 7(b)) that is not topologically equivalent to S∗. Therefore, for a given set of
values of αi and βi, one may ask how to find the maximum value of s ∈ (0, 1)

such that the surface

 F (u, v, α1, β1, s)
G(u, v, α2, β2, s)
H(u, v, α3, β3, s)

 is still topologically equivalent to the
original ellipsoid. See [S7] or [S8] for explorations.



6 Future works

There are several instances one can investigate further, which we describe below:

1. Suppose we are given a surface Σ and a point C ∈ Σ, with D its the antipodal point when
connected by a line l passing through point C and a fixed point A. In this situation, we
shall explore the following scenario: For a given Σ we select three vectors AB, AC and
AD, defined by the three points B, C and D, respectively, which lie on surface Σ. We
will investigate the new generated affi ne surface

Σ′ = r · AB + s · AC + t · AD, (13)

where r, s, t ∈ R, satisfying r + s+ t = 1.

2. One can investigate a new surface that is generated by three vectors that satisfies an affi ne

combination. We start with a surface S of

 f(u, v)
g(u, v)
h(u, v)

 , then by picking particular angles
α and β respectively, we form the new generated surface via the following transformation: F (u, v, α, β)

G(u, v, α, β)
H(u, v, α, β)

 = r

 f(u, v)
g(u, v)
h(u, v)

+ s

 f(u+ α, v)
g(u+ α, v)
h(u+ α, v)

+ t

 f(u, v + β)
g(u, v + β)
h(u, v + β)

 , (14)

where r, s, t ∈ R with the affi ne combination condition of

r + s+ t = 1. (15)

We believe such transformation is valuable in computer graphics and other areas because
of the scaling factors of r, s, t and rotation factors of angles α and β. We can also view
the new generated surface as a linear combination of the vectors,

−→
OP,
−→
OQ and

−→
OR,

where
−→
OP = [f(u, v), g(u, v), h(u, v)] ,

−→
OQ = [f(u+ α, v), g(u+ α, v), g(u+ α, v)] , and−→

OR = [f(u, v + β), g(u, v + β), h(u, v + β)] .

3. We may investigate topological surfaces that involve a torus under the transformed sur-

face defined by 14. For example, we consider the surface of a torus

 (a+ b cosu) cos v
(a+ b cosu) sin v

c sinu


for u ∈ [0, 2π), v ∈ [0, 2π), and consider the generated surface

 F (u, v, α, β)
G(u, v, α, β)
H(u, v, α, β)

 =

r

 f(u, v)
g(u, v)
h(u, v)

+s

 f(u+ α, v)
g(u+ α, v)
h(u+ α, v)

+t

 f(u, v + β)
g(u, v + β)
h(u, v + β)

 ,where α ∈ (0, 2π) , β ∈
(
0, π

2

)
, r, s, t ∈

R with r + s+ t = 1.



7 Conclusions

It is exciting to see that a series of papers, [8], [9], [10], [11], and [12], which was originated
from a simple college entrance exam from China, have utilized ideas from widely-ranging and
of different fields such as algebraic geometry, projective geometry, differential geometry and
etc. Many will agree that one objective of exploring mathematics with technological tools is
to inspire undergraduate or graduate students to expand their content knowledge in broader
fields.
It is clear that technological tools provide us with many crucial intuitions before we attempt

more rigorous analytical solutions. In the meantime, we use a CAS, for verifying that our ana-
lytical solutions are consistent with our initial intuitions. The complexity level of the problems
we posed vary from the simple to the diffi cult. Many of our solutions are accessible to students
from high school, which are excellent examples for professional trainings for future teachers.
Evolving technological tools definitely make mathematics fun and accessible on one hand,

but they also allow the exploration of more challenging and theoretical mathematics. We hope
that when mathematics is made more accessible to students, it is possible more students will be
inspired to investigate problems ranging from the simple to the more challenging. Encouraging
a greater interest in mathematics for students, and in particular providing them with the
technological tools to explore challenging and intricate problems beyond the reach of pencil-
and-paper, is an important step for cultivating creativity and innovation.

8 Supplementary Electronic Materials

[S1] GeoGebra worksheet, SuplMat2.ggb.

[S2] GeoGebra worksheet, SuplMat5.ggb.

[S3] GeoGebra worksheet, SuplMat6.ggb

[S4] GeoGebra worksheet, SuplMat1.ggb.

[S5] Animation for Example 5, Example5.gif.

[S6] Maple file for Example 5, Example5-cardioid.mw.

[S7] Animation for Section 5.2, Section5_2.gif.

[S8] Maple file for Section 5.2, Section5_2.mw.

[S9] Animation for Section 5.2 when v ∈ [0, π], Section5_2_1.gif.
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