
Exploring some elementary results of
Ramanujan with modern tools

Alasdair McAndrew*

Alasdair.McAndrew@vu.edu.au

College of Engineering and Science
Victoria University

PO Box 14421, Melbourne, Victoria 8001
Australia

Abstract

The Indian mathematician Srinivasa Ramanujan (1887–1920) was one of the most ex-
traordinary mathematicians in history. Almost entirely self-taught, he produced results
of such originality that nobody understood him until he gained the confidence of the En-
glish mathematician Godfrey Harold Hardy. As one of the most expert mathematicians
of his time, even Hardy was forced to admit that some of Ramanujan’s results “defeated
me completely; I had never seen anything in the least like them before” [7]. Hardy and
Ramanujan worked together for five years (during which time Ramanujan was admitted
to both the Royal Society and to a Fellowship of Trinity College, Cambridge), after which
Ramanujan, by then a very sick man, travelled home to India where he died aged only 32.
His results have kept scores of mathematicians busy for the last century—indeed some
have devoted their lives to his work—and his influence is if anything even greater now.
Many of his results are deep and difficult, and quite beyond an article such as this. But
there are also some lovely gems which are more easily grasped; and of varying difficulties
to prove. In this paper we explore a few of his simpler results with the aid of modern
technology.

1 Introduction

In 1913 the Cambridge mathematician Godfrey Harold Hardy received a letter from India;
handwritten, and containing some mathematical results exhibiting quite extraordinary math-
ematical skills, and in particular, as Hardy said: “It was his insight into algebraical formulae,
transformation of infinite series, and so forth, that was most amazing.” Hardy and his col-
laborator John Edensor Littlewood compared Ramanujan to Euler and Jacobi, the two most

*With thanks to the reviewers who pointed out numerous typos and inconsistencies, which I have aimed to
remove.
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profoundly inventive “algorists”1 in history. In his witty and entertaining (and often histori-
cally inaccurate) “Men of Mathematics” [2], the American mathematician Eric Temple Bell, in
his chapter on Jacobi, said “In sheer manipulative ability in tangled algebra, Euler and Jacobi
have had no rival, except possibly the Indian genius, Srinivasa Ramanujan, in our own century.”
At one time Hardy drew up a small list giving various mathematicians a score out of 100 for
their mathematical power; he gave himself a modest 25, his collaborator Littlewood 30, David
Hilbert 80, and Ramanujan 100.

Ramanujan’s results were distinguished by their originality, his complete indifference to
formal proof, and the curious gaps in his own mathematical education, which had basically
stopped at high school, he being taken further only by G. S. Carr’s “Synopsis of Pure Mathe-
matics” [5] which contained a list of some 6165 theorems with only the vaguest hints at proofs.
The fame of this book is entirely due to the influence it had on Ramanujan’s mathematical
development.

A modern and popular account of Ramanujan’s life has been given by Kanigel [8]. Such is
Ramanujan’s allure that this book has been filmed.

In this article we explore the use of computer algebra systems to some of Ramanujan’s less
abstruse results. This is a topic which has gained some interest, but is yet to reach its potential.
One example [3] is co-authored by Bruce Berndt, a Ramanujan scholar who understands his
work as few other current mathematicians do. However, the article—which mentions the use
of a computer algebra system to verify some results—lacks any code examples.

2 Continued fractions and an anecdote

Continued fractions are objects made up of fractions of fractions, such as:

2 +
1

2 +
1

3 +
1

4 +
1

5 + · · ·

or 3 +
1

2 +
9

2 +
25

2 +
49

2 + · · ·

A continued fraction that terminates is a rational number; if not, then irrational. In general a
continued fraction has the form

a0 +
b1

a1 +
b2

a2 +
b3

a3 +
b4

a4 + · · ·

where all of the ak, bk values are integers. If bk = 1 for all k the fraction is a simple continued
fraction; otherwise a general continued fraction. Even now continued fractions are curious,

1We use the term “algorist” to refer to a mathematician with a great facility for manipualting algebraic
expressions; as a distinction from “algebraist” who is an expert in modern algebra.



recondite objects about which much is unknown. To save space a continued fraction is normally
written as

a0 +
b1
a1+

b2
a2+

b3
a3+

b4
a4+

· · · or a0 +
b1
a1

+
b2
a2

+
b3
a3

+ · · · or a0 +
∞

K
k=1

bk
ak

.

(the second of these is known as Pringsheim notation; the third is Gauss’s notation, where the

K stands for the German word for continued fraction: Kettenbruch. If the continued fraction
is simple, it is most commonly written as

[a0; a1, a2, a2, · · · ]

For any continued fraction, the sums of the first terms after termination are its convergents :

a0, a0 +
b1
a1

, a0 +
b1
a1+

b2
a2

, a0 +
b1
a1+

b2
a2+

b3
a3

, . . .

If the k-th convergent is pk/qk then it is easy to show by induction that

pk+1

qk+1

=
akpk + bkpk−1

akqk + bkqk−1

and it is convenient to set p−1 = 1, q−1 = 0.
The anecdote to which the section title refers is that Prasanta Chandra Mahalonobis (who

would have a distinguished career as a statistician, and who would found the Indian Statistical
Institute) visited Ramanujan in his Cambridge rooms while Ramanujan was cooking dinner,
and proposed a question from “The Strand” magazine: on a street with houses numbered 1, 2, 3,
4 and so on, there is a house for which the sum of all numbers to its left is equal to the sum of all
numbers to its right. If the street has between 50 and 500 houses, what is the house number, and
the number of houses in the street? This can be solved by trial and error, as Mahalonobis did.
Without pausing in his stirring, Ramanujan said “Please write down the answer” and dictated
a continued fraction which embodied all the answers to all such problems. He explained: “On
immediately hearing the question I knew the answer was a continued fraction.” The particular
fraction, he went on “just came to my head”. Indeed Ramanujan’s mastery of continued
fractions has never been equalled; Hardy said that his “mastery of continued fractions was, on
the formal side at any rate, beyond that of any mathematician in the world.”

Any quadratic surd can be expressed as a periodic simple continued fraction. (Conversely,
any periodic continued fraction represents a quadratic surd.) For example, suppose x =

√
6.

Then x2 = 6 and so x2 − 4 = 2. Factorizing the left and dividing, we get

x− 2 =
2

2 + x

so that

x = 2 +
2

2 + x
.

Substituting the right hand expression into itself we have

x = 2 +
2

2 + 2 +
2

2 + x

= 2 +
2

4 +
2

2 + x

= 2 +
1

2 +
1

2 + x

.



Repeating this process on this new fraction produces:

x = 2 +
1

2 +
1

2 + 2 +
1

2 +
1

2 + x

and we see that we can now write, using the simplified notation given earlier:
√
6 = [2; 2, 4, 2, 4, 2, 4, . . .] = [2; 2, 4]

For The Strand problem, if the house number is k in a street of n houses, we are asked to solve

k(k − 1)

2
=

n(n+ 1)

2
− k(k + 1)

2

using the standard formula for the sum of integers. This can be expanded as

k2 − k = n2 + n− (k2 + k) → 2k2 = n2 + n.

Completing the square on the right produces

2k2 +
1

4
=

(
n+

1

2

)2

or as

8k2 + 1 = (2n+ 1)2.

Replacing 2n+ 1 with m we have

m2 − 8k2 = 1

which is classic equation known as Pell’s equation. Now the continued fraction for
√
8 is

[2; 1, 4]

and the first few convergents are

2

1
,
3

1
,
14

5
,
17

6
,
82

29
,
99

35
,
478

169
,
577

204
,
2786

985
,
3363

1189
,
16238

5741
,
19601

6930

For the values pk/qk in this list, it turns out that

p2k − 8q2k =

{
−4 if k is even

1 if k is odd

So we take the odd fractions, and for each numerator pk compute (pk − 1)/2. This leads to the
numerator, denominator pairs:

(1, 1), (8, 6), (49, 35), (288, 204), (1681, 1189), (9800, 6930)



which are the beginning of an infinite sequence of answers (n, k) to the original problem. The
particular answer for the question given in magazine, with 50 ≤ n ≤ 500, must be (288, 204).

A slightly different approach is given by Butcher [4]. The theory behind continued fractions
and Pell’s equation is given excellent treatment by Davenport [6].

Python with its SymPy package [9] can be used to manage the continued fractions for the
street problem:

> import sympy as sy

> cf8 = sy.continued_fraction_iterator(sy.sqrt(8))

> cc8 = sy.continued_fraction_convergents(cf8)

> for i in range(8):

...: print(next(cc8))

...:

2

3

14/5

17/6

82/29

99/35

478/169

577/204

2786/985

3363/1189

16238/5741

19601/6930

In fact it is possible to create a continued fraction which produces only the solutions to the
house number problem. In the list of fractions given previously, the odd numbers fractions are
the ones we want. And by the formula for convergents, we have

p2k+1

q2k+1

=
p2k + p2k−1

q2k + q2k−1

p2k
q2k

=
4p2k−1 + p2k−2

4q2k−1 + q2k−2

We now create a recurrence using just odd terms:

p2k+1 = p2k + p2k−1

= 4p2k−1 + p2k−2 + p2k−1

= 5p2k−1 + p2k−2

= 5p2k−1 + (p2k−1 − p2k−3)

= 6p2k−1 − p2k−3.

For the sake of simplicity, we write gk = p2k+1 and hk = q2k+1 so we have the recurrences

gk = 6gk−1 − gk−2

hk = 6hk−1 − hk−2.



Treating these as convergents, we have

gk
hk

=
6gk−1 − gk−2

6hk−1 − hk−2

Including the first term, these are the convergents of the continued fraction

3 +
−1

6+

−1

6+

−1

6+
· · ·

This fraction is not quite simple, as the numerators are equal to −1. But we can multiply
through by −1 on alternative numerators (and their denominators) to obtain the simple con-
tinued fraction

3 +
1

−6+

1

6+

1

−6+
· · ·

To evaluate this fraction, note that we can rewrite it as

3 +
1

−6+

1

3 + 3+

1

−6+
· · ·

and so if x is the value of this continued fraction, we have, in more familiar notation:

x = 3 +
1

−6 +
1

3 + x

This fraction can be simplified into a quadratic equation one of whose roots is
√
8.

Which of the two continued fractions for
√
8 did Ramanujan dictate to Mahalonobis? No

one knows. . .
Although simple continued fractions are (relatively) straightforward, general continued frac-

tions are quite complicated objects. In the spirit of Ramanujan’s profound mastery of continued
fractions, we show how to create one that represents π.

We start with a result of Euler, and which can be proved by induction; if

x = u0 + u0u1 + u0u1u2 + · · ·+ u0u1u2 . . . un

then

x =
u0

1−
u1

(1 + u1)−
u2

(1 + u2)−
· · · un

1 + un

and this can be extended to an infinite continued fraction representing an infinite sum, sup-
posing that both converge. (An infinite continued fraction converges if its convergents pn/qn
converge.)

With the well-known sum

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·

= u0 + u0u1 + u0u1u2 + u0u1u2u3 + · · ·



we have

u0 = 1, uk = −2k − 1

2k + 1

and so 1 + uk = 2/(2k + 1). This gives rise to the continued fraction

1

1−
− 1/3

2/3−
− 3/5

2/5−
− 5/7

2/7− · · ·

=
1

1 +
1/3

2/3 +
3/5

2/5 +
5/7

2/7 + · · ·

Now we can clear the inner fractions by multiplying the numerator and denominator of the first
inner fraction by 3, the second by 5, the third by 7, and so on:

1

1 +
1

2 +
32/5

2/5 +
5/7

2/7 + · · ·

=
1

1 +
1

2 +
32

2 +
52/7

2/7 + · · ·

=
1

1 +
1

2 +
32

2 +
52

2 +
72

· · ·
This particular fraction was first discovered by Lord Brouncker from an analysis of Wallis’
infinite product for π.

But we can do all of this, at least experimentally, with a bit of computing. We first note,
that by multiplying each “inner fraction” by r0, r1, r2 in turn, we have

b0

a0 +
b1

a1 +
b2

a2 +
b3

a3 + · · ·

=
r0b0

r0a0 +
r0r1b1

r1a1 +
r1r2b2

r2a2 +
r2r3b3

r3a3 + · · ·

Consider

e−1 = 1 + 1(−1) + 1(−1)

(
−1

2

)
+ 1(−1)

(
−1

2

)(
−1

3

)
1(−1)

(
−1

2

)(
−1

3

)(
−1

4

)
· · ·

then by Euler’s continued fraction construction above, and ignoring the first two terms (which
cancel out), we have u0 = 1/2 and uk = −1/(k + 2) for all other k. Now, in Python:

R = lambda x,y:sy.Rational(x,y)

u = [R(1,2)]+[-R(1,k+3) for k in range(9)]

b = [u[0]]+[-x for x in u[1:]]

a = [1]+[1+x for x in u[1:]]

Here the b and a values are the numerators and denominators of Euler’s continued fraction.
Now we can choose some multipliers rk and multiply as above:



r = list(range(2,12))

ar = [x*y for x,y in zip(a,r)]

br = [x*y*z for x,y,z in zip(b,r,[1]+r[:-1])]

br

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ar

[2, 2, 3, 4, 5, 6, 7, 8, 9, 10]

This has produced the continued fraction:

e−1 =
1

2 +
2

2 +
3

3 +
4

4 + · · ·

⇒ e = 2 +
2

2 +
3

3 +
4

4 + · · ·

Since the ak and bk values are the same, we can create the convergents by

pk
qk

=
k(pk−1 + pk−2)

k(qk−1 + qk−2)

with [p−1, p0] = [1, 2] and [q−1, q0] = [0, 1]. Now to compute the convergents:

p = [1,2]

q = [0,1]

for k in range(2,10):

p += [k*(p[-1]+p[-2])]

q += [k*(q[-1]+q[-2])]

p

[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

q

[0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961]

Notice that the q values are the number of derangements Dn of n values: the number of
permutations where no object is in its original place. Finally:

[float(x/y) for x,y in zip(p[1:],q[1:])]

[2.0,

3.0,

2.6666666666666665,

2.727272727272727,

2.7169811320754715,

2.7184466019417477,

2.7182633317602645,

2.71828369389345,

2.7182816576664037,



2.7182818427778273,

2.7182818273518743]

What might have Ramanujan managed with a computer algebra system at his disposal?

3 Another anecdote; another equation

In a story which has become famous, Hardy, on visiting Ramanujan in hospital, commented
that he’d come in taxi number 1729, which seemed to him to be a dull number, and he hoped
it wasn’t a bad omen. No indeed, responded Ramanujan, 1729 is an extraordinarily interesting
number, being the smallest number expressible as a sum of two cubes in two different ways:
1729 = 93 + 103 = 13 + 123.

On the face of it, this would seem evidence of Littlewood’s comment that for Ramanujan,
“every positive integer was one of his personal friends”. But in fact Ramanujan had been
exploring such topics for a long time, to the extent that he had developed a generating function
to provide solutions to Euler’s diophantine equation a3 + b3 = c3 + d3. These are described
by George Andrews and Bruce Berndt in “Ramanujan’s Lost Notebook, Part IV”, pp 199–205
(Section 8.5) [1]

Ramanujan’s result is that if

f1(x) =
1 + 53x+ 9x2

1− 82x− 82x2 + x3
= a0 + a1x+ a2x

2 + a3x
3 + · · · = α0 +

α1

x
+

α2

x2
+

α3

x3
+ · · ·

f2(x) =
2− 26x− 12x2

1− 82x− 82x2 + x3
= b0 + b1x+ b2x

2 + b3x
3 + · · · = β0 +

β1

x
+

β2

x2
+

β3

x3
+ · · ·

f3(x) =
2 + 8x− 10x2

1− 82x− 82x2 + x3
= c0 + c1x+ c2x

2 + c3x
3 + · · · = γ0 +

γ1
x

+
γ2
x2

+
γ3
x3

+ · · ·

then for every value of n we have:

a3n + b3n = c3n + (−1)3

and

α3
n + β3

n = γ3
n − (−1)3

thus providing infinite sequences of solutions to Euler’s equations. The values α1, β1, γ1 are
9,−12,−10 giving rise to

(9)3 + (−12)3 = (−10)3 − (−1)3

which can be rewritten as 93 + 103 = 122 + 13.
Andrews and Berndt comment that:

This is another of those many results of Ramanujan for which one wonders, “How
did he ever think of this?”

We shall show how these formulas can be verified by with the help of a computer algebra
system; in our case Python and its SymPy package.



import sympy as sy

sy.init_printing(num_columns=120)

x,a,b,c = sy.var(’x,a,b,c’)

n = sy.Symbol(’n’, positive=True, integer=True)

Start by entering the three rational functions.

g = 1-82*x-82*x**2+x**3

f1 = (1+53*x+9*x**2)/g

f2 = (2-26*x-12*x**2)/g

f3 = (2+8*x-10*x**2)/g

display(f1)

display(f2)

display(f3)

9x2 + 53x+ 1

x3 − 82x2 − 82x+ 1

−12x2 − 26x+ 2

x3 − 82x2 − 82x+ 1

−10x2 + 8x+ 2

x3 − 82x2 − 82x+ 1

fp1 = f1.apart(x,full=True).doit()

fp2 = f2.apart(x,full=True).doit()

fp3 = f3.apart(x,full=True).doit()

fs1 = [z.simplify() for z in fp1.args]

fs2 = [z.simplify() for z in fp2.args]

fs3 = [z.simplify() for z in fp3.args]

display(fs1)

display(fs2)

display(fs3)

[
− 43

85x+ 85
,

8(101 + 11
√
85)

85(2x− 83− 9
√
85)

,
8(101− 11

√
85)

85(2x− 83 + 9
√
85)

]
[
− 16

85x+ 85
,

28(−37− 4
√
85)

85(2x− 83− 9
√
85)

,
28(−37 + 4

√
85)

85(2x− 83 + 9
√
85)

]
[
− 16

85x+ 85
,

6(−139− 15
√
85)

85(2x− 83− 9
√
85)

,
6(−139 + 15

√
85)

85(2x− 83 + 9
√
85)

]



Note that the denominators of each fraction is the same (as we’d expect).
Now we use the fact that

a

bx+ c

has the infinite series expansion

a

c

(
1− b

c
x+

(
b

c

)2

x2 −
(
b

c

)3

x3 + · · ·

)

This means that the coefficient of xn is

a

c

(
−b

c

)n

Because of the denominators, the values of b and c are always the same. We start by considering
fs1, which consists of the partial fraction sums of f1.

a1_s = [sy.numer(z) for z in fs1]

b1_s = [sy.denom(z).coeff(x) for z in fs1]

c1_s = [sy.denom(z).coeff(x,0) for z in fs1]

ac1_s = [sy.simplify(s/t) for s,t in zip(a1_s,c1_s)]

bc1_s = [sy.simplify(s/t) for s,t in zip(b1_s,c1_s)]

display(ac1_s)

display(bc1_s)

[
−43

85
,
64

85
− 8

√
85

85
,
64

85
+

8
√
85

85

]
[
1,−83

2
+

9
√
85

2
,−83

2
− 9

√
85

2

]

Now we can determine the coefficient of xn in the power series expansion of f1(x):

a_n = sum(s*(-t)**n for s,t in zip(ac1_s,bc1_s))

display(a_n)

−43(−1)n

85
+

(
64

85
− 8

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
64

85
+

8
√
85

85

)(
83

2
+

9
√
85

2

)n

And repeat all of the above for f2(x) and its partial fractions fs2.

a2_s = [sy.numer(z) for z in fs2]

b2_s = [sy.denom(z).coeff(x) for z in fs2]

c2_s = [sy.denom(z).coeff(x,0) for z in fs2]



ac2_s = [sy.simplify(s/t) for s,t in zip(a2_s,c2_s)]

bc2_s = [sy.simplify(s/t) for s,t in zip(b2_s,c2_s)]

b_n = sum(s*(-t)**n for s,t in zip(ac2_s,bc2_s))

display(b_n)

−16(−1)n

85
+

(
77

85
− 7

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
77

85
+

7
√
85

85

)(
83

2
+

9
√
85

2

)n

Continuing for f3(x):

a3_s = [sy.numer(z) for z in fs3]

b3_s = [sy.denom(z).coeff(x) for z in fs3]

c3_s = [sy.denom(z).coeff(x,0) for z in fs3]

ac3_s = [sy.simplify(s/t) for s,t in zip(a3_s,c3_s)]

bc3_s = [sy.simplify(s/t) for s,t in zip(b3_s,c3_s)]

c_n = sum(s*(-t)**n for s,t in zip(ac3_s,bc3_s))

display(c_n)

−16(−1)n

85
+

(
93

85
− 9

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
93

85
+

7
√
85

85

)(
83

2
+

9
√
85

2

)n

In order to see their similarities and differences, we now show them together:

display(a_n)

display(b_n)

display(c_n)

−43(−1)n

85
+

(
64

85
− 8

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
64

85
+

8
√
85

85

)(
83

2
+

9
√
85

2

)n

−16(−1)n

85
+

(
77

85
− 7

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
77

85
+

7
√
85

85

)(
83

2
+

9
√
85

2

)n

−16(−1)n

85
+

(
93

85
− 9

√
85

85

)(
83

2
− 9

√
85

2

)n

+

(
93

85
+

7
√
85

85

)(
83

2
+

9
√
85

2

)n

The first few coefficients can be checked against a Taylor series expansion:

s1 = f1.series(n=6)

display([s1.coeff(x,k) for k in range(6)])

a_s = [a_n.subs(n,k).simplify() for k in range(6)]

display(a_s)



[1, 135, 11161, 926271, 76869289, 6379224759]

[1, 135, 11161, 926271, 76869289, 6379224759]

s2 = f2.series(n=6)

display([s2.coeff(x,k) for k in range(6)])

b_s = [b_n.subs(n,k).simplify() for k in range(6)]

display(b_s)

[2, 138, 11468, 951690, 78978818, 6554290188]

[2, 138, 11468, 951690, 78978818, 6554290188]

s3 = f3.series(n=6)

display([s3.coeff(x,k) for k in range(6)])

c_s = [c_n.subs(n,k).simplify() for k in range(6)]

display(c_s)

[2, 172, 14258, 1183258, 98196140, 8149006378]

[2, 172, 14258, 1183258, 98196140, 8149006378]

Now, if everything has behaved properly, we should now have

a3 + b3 = c3 + (−1)3

and we can check the first few values:

[s**3+t**3-u**3 for s,t,u in zip(a_s,b_s,c_s)]

[1, −1, 1, −1, 1, −1]

And now for the general result:

sy.powsimp(sy.expand(a_n**3 + b_n**3 - c_n**3),

combine=’all’,

force=True).factor()

(−1)n

Which is exactly what we wanted.
Now for the other expansions, in negative powers of x; in other words based on the the

functions fk(1/x). We’ll rename these functions: gk(x) = fk(1/x). After that it’s pretty much
a carbon copy of the preceding computations.

g1 = f1.subs(x,1/x).simplify()

g2 = f2.subs(x,1/x).simplify()

g3 = f3.subs(x,1/x).simplify()

display(g1)

display(g2)

display(g3)



x(x2 + 53x+ 9)

x3 − 82x2 − 82x+ 1

2x(x2 − 13x− 6)

x3 − 82x2 − 82x+ 1

2x(x2 + 4x− 5)

x3 − 82x2 − 82x+ 1

gp1 = g1.apart(x,full=True).doit()

gp2 = g2.apart(x,full=True).doit()

gp3 = g3.apart(x,full=True).doit()

gs1 = [z.simplify() for z in gp1.args]

gs2 = [z.simplify() for z in gp2.args]

gs3 = [z.simplify() for z in gp3.args]

display(gs1)

display(gs2)

display(gs3)[
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]
For ease of writing in Python, we’ll use d, e and f instead of α, β and γ.

d1_s = [sy.numer(z) for z in gs1]

e1_s = [sy.denom(z).coeff(x) for z in gs1]

f1_s = [sy.denom(z).coeff(x,0) for z in gs1]

df1_s = [sy.simplify(s/t) for s,t in zip(d1_s,f1_s)]

ef1_s = [sy.simplify(s/t) for s,t in zip(e1_s,f1_s)]

d_n = sum(s*(-t)**n for s,t in zip(df1_s,ef1_s))

d2_s = [sy.numer(z) for z in gs2]

e2_s = [sy.denom(z).coeff(x) for z in gs2]

f2_s = [sy.denom(z).coeff(x,0) for z in gs2]

df2_s = [sy.simplify(s/t) for s,t in zip(d2_s,f2_s)]

ef2_s = [sy.simplify(s/t) for s,t in zip(e2_s,f2_s)]

e_n = sum(s*(-t)**n for s,t in zip(df2_s,ef2_s))



d3_s = [sy.numer(z) for z in gs3]

e3_s = [sy.denom(z).coeff(x) for z in gs3]

f3_s = [sy.denom(z).coeff(x,0) for z in gs3]

df3_s = [sy.simplify(s/t) for s,t in zip(d3_s,f3_s)]

ef3_s = [sy.simplify(s/t) for s,t in zip(e3_s,f3_s)]

f_n = sum(s*(-t)**n for s,t in zip(df3_s,ef3_s))

display(d_n)

display(e_n)

display(f_n)
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As before, a quick check:

ds = [d_n.subs(n,k).simplify() for k in range(6)]

es = [e_n.subs(n,k).simplify() for k in range(6)]

fs = [f_n.subs(n,k).simplify() for k in range(6)]

display(ds)

display(es)

display(fs)

[−1, 9, 791, 65601, 5444135, 451797561]

[−2,−12,−1010,−83802,−6954572,−577145658]

[−2,−10,−812,−67402,−5593538,−464196268]

[s**3+t**3-v**3 for s,t,v in zip(ds,es,fs)]

[−1, 1, −1, 1, −1, 1]

And finally, confirming the general result:

sy.powsimp(sy.expand(d_n**3 + e_n**3 - f_n**3),

combine=’all’,

force=True).factor()



−(−1)n

Again, exactly what was wanted.
The algebraic manipulations involved in these formulas only serves to heighten our amaze-

ment at Ramanujan’s power, given that compared to the depth of most of his work, this was
pretty much a “throw-away” result.

4 Where to now. . .

Ramanujan’s works present one of the richest treasure troves of mathematics ever produced
by a single person. His results range from the (relatively) straightforward to a depth almost
unparalleled. And as Hardy observed in his comment on Ramanujan’s first letter to him, the
specific equations given clearly spoke of some more general results, known perhaps only to
Ramanujan himself. Now just over a century past his death, his legacy remains as bright,
exciting, and as enticing as ever. And the exploration of his results with computer systems has
only begun.
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