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Abstract

We present the experimental command RealQuantifierElimination in GeoGebra
Discovery. The command provides quantifier elimination over the reals. We describe
how this new command can be used in certain classroom situations. In our examples we
focus on mathematical logic and elementary calculus (in particular, on definitions of basic
notions and proving inequalities). Finally we conclude a potential impact of this new
command in the educational world.

1 Introduction

Quantifier elimination is a simplification method, well known in mathematical logic. Let us
consider, for example, the statement S “for each x there exists y such that x < y” that contains
two quantifiers, “∀” and “∃”. Quantifier elimination requires us to find an equivalent statement
S ′ that does not contain any more quantifiers. We can eliminate the quantifiers in certain cases,
for example, if x and y range over integers, and – since the natural interpretation is “there is
no greatest integer” in this case – the eliminated statement is “true”.

Clearly, it is important where x and y come from. For example, if x and y are elements of
a non-empty finite subset of R, the quantifier elimination yields a false statement (since there
is always a greatest element).

In the 20th century great efforts were made to learn when exactly quantifier elimination
can always be made for an arbitrary quantified formula in a given theory. It turned out that
certain theories are “well-behaved” and an automated way of quantifier elimination can always
be done. These results go back to the exhaustive work of Alfred Tarski and others. Here we
emphasize the Tarski-Seidenberg theorem [19] – it states that all quantified formulas that are
interpreted on the reals and constructed from polynomial equations and inequalities by logical
connectives and quantifiers can be equivalently expressed with another formula that has no
quantifiers.

As a simple example we recall the classroom question: “When does the quadratic equation
ax2 + bx + c = 0 have two different solutions?” When using a formula, the question can be
formulated as

S : a ̸= 0 ∧ ∃x1 ∃x2 (ax2
1 + bx1 + c = 0 ∧ ax2

2 + bx2 + c = 0 ∧ x1 ̸= x2).

An equivalent, quantifier-free formula is

S ′ : a ̸= 0 ∧ b2 − 4ac > 0.



As Tarski proved it in 1951, an equivalent quantifier-free formula can always be found
(namely, in the first-order theory over the reals). But the original method, suggested by Tarski,
was not computationally effective enough. The first effective way was published by Collins in
1975 [4] that was based on  Lojasiewicz’s concept [15] by using a cylindrical algebraic decom-
position of the variable space of Rn. Since then, several computer programs have been written
that use either Collins’ protocol, or some other similar methods. For more information we refer
to [5, 7, 1, 13, 9, 18, 3].

Even if some of these implementations have been already existing for 30 years, until recently,
however, no applications have been specifically designed for students, and there was no freely
available web-based implementation either. This prevented many users, including secondary
school teachers and students, from exploiting the benefits of real quantifier elimination.

This paper has two goals:

1. To illustrate how real quantifier elimination can be a fruitful process in stimulating the
students’ thinking in various mathematical topics.

2. To show how these topics can be supported with the freely available, effective implemen-
tation of real quantifier elimination in the software tool GeoGebra Discovery.

2 Implementation

We use the two introductory examples to show how GeoGebra Discovery [12], a free experi-
mental version of GeoGebra [8], can handle inputs for real quantifier elimination, and how its
outputs look like. See Figures 1 and 2 for the native Java version (available on Windows, Mac
and Linux) and the web version, respectively.

Figure 1: The Java version of GeoGebra Discovery (here, on platform Linux) checks if the
statement “there is no greatest real number” is true.

The inputs must be entered in the CAS View.



Figure 2: The web version of GeoGebra Discovery finds a quantifier-free formula for the
statement “the quadratic equation ax2 + bx + c = 0 has two different solutions”.

The implementation is based on [20] and [2]. That is, an embedded version of the Tarski
software system is used to ensure effective manipulations on quantified formulas and fast real
quantifier elimination. At this point we need to warn the reader that fast here means a re-
markable speed among competing systems, but not in absolute terms, because real quantifier
elimination usually requires up to 22n atomic steps where n is the number of variables (see [6]).

We do not go into the details how this effective implementation is programmed. The main
idea (see [4]) is the cylindrical algebraic decomposition. In a nutshell, given the polynomials P
in Rn, a cylindrical algebraic decomposition is

1. a decomposition D of Rn into connected semialgebraic sets1 called cells, on which each
polynomial has constant sign (either +, − or 0);

2. D must satisfy the following condition: If 1 ≤ k < n and π is the projection from Rn onto
Rn−k consisting in removing the last k coordinates, then for every pair of cells c, d ∈ D,
one has either π(c) = π(d) or π(c) ∩ π(d) = ∅.

The main programming challenge is the implementation of an algorithm that creates a cylin-
drical algebraic decomposition of P by registering the cells in an exact symbolic way. This
requires advanced computer algebra methods, including several operations on algebraic num-
bers of arbitrary degree.

GeoGebra Discovery is available for download on its GitHub page https://github.com/

kovzol/geogebra-discovery and for direct web use at https://autgeo.online (in this paper
we refer to version 2002Jul11).

1A semialgebraic set in Rn is a finite union of sets defined by a finite number of polynomial equations
and inequalities, i.e., by a finite number of statements of the form p(x1, . . . , xn) = 0 or q(x1, . . . , xn) > 0 for
polynomials p and q.

https://github.com/kovzol/geogebra-discovery
https://github.com/kovzol/geogebra-discovery
https://autgeo.online


3 Real quantifier elimination for students

One important consequence of the Tarski-Seidenberg theorem is that real quantifier elimination
is always possible to do, at least in theory. That is, each question S that can be formulated with
polynomial equations and inequalities by logical connectives and quantifiers can be answered
either with a yes/no answer, or a condition S ′ can be given when S is true. This opens up an
extremely wide range of applications. One such application is in real analysis.

In this paper we will mostly focus on real analysis. But there exist other important fields,
for example, Euclidean planar geometry with algebraic translation. This is, however, out of
scope in our paper.

3.1 Formulation

A very important discipline characteristic of mathematics is to express mathematical content
in an exact way. At a certain level in schools there is already a need to formulate mathematical
content precisely. For example, in Austria, 14-years-old students of secondary level usually
begin their first math classes with the topic of logic and sets. Textbooks usually demonstrate
precise formulations of simple statements. For example, the schoolbook [16] starts with state-
ments, logical operations (negation, conjunction and disjunction) on them, and implications
and equivalences between statements.

One of the first exercises, 1.03, asks the student to decide if some statements are equivalences
or implications of each other. For example, the student must decide if

x ̸= 0 ⇐⇒ x < 0 ∨ x > 0.

This simple question can already be challenging, but it can be well supported by technical
means. We show how this exercise can be approached with our implementation in GeoGebra
Discovery.

First, the student needs to open the CAS View. A direct way of learning if the first part of
the equivalence, namely,

x ̸= 0 ⇒ x < 0 ∨ x > 0

is correct, by typing RealQuantifierElimination(x ̸= 0 → x < 0 ∨ x > 0) which gives true.
The logical operators can be typed via some keyboard shortcuts (Alt-H for ̸=, Alt-J for ∨), or
the virtual keyboard can be used to select them accordingly.

Manipulating parts of the implication, namely, to store the first or the last parts of the
implication, and then perform further operations, is also possible in our implementation. How-
ever, some technical difficulties (and mathematical issues) may arise. In Figure 3 we assign the
statement x ̸= 0 to the variable A, this statement will be silently rewritten to (0 > x)∨ (x > 0)
by the program, but we ignore this output now. We create statements x < 0 and x > 0 as
lines $2 and $3 and refer to them on the 4th line. (Here, for example, $2 is shorthand for
the formulae found in line number 2.) Note that GeoGebra Discovery automatically added a
couple of parentheses to ensure the correct evaluation order. Refraining a logical operation
between $2 and $3 is also supported on line 5. In addition, line 6 gives a fully accurate output
on when exactly the implication x ̸= 0 ⇒ x > 0 occurs. Finally, line 7 shows that in general
x ̸= 0 ⇒ x > 0 is false.



Figure 3: Some introductory examples on handling logical formulas in GeoGebra Discovery.

The user interface uses the implication sign “→”. This may differ from the notation “⇒”
that is used in certain textbooks. On the other hand, entering logical operations and quantifiers
is relatively simple by using the keyboard shortcuts Alt-Y (“→”), Alt-Z (“¬”), Alt-K (“∧”),
Alt-X (“∃”) and Alt-V (“∀”), or the virtual keyboard.

Correct syntax of the input is mandatory. In most cases equations and quantified expressions
must be entered in parentheses. We think that the expected syntax is, however, very simple,
and there are just a couple of software systems that provide easier syntax (see GNU Aris,
https://www.gnu.org/software/aris/, for an example). Easy syntax can be very important
for students to make them possible to focus on the mathematical content – but, on the other
hand, indications towards mathematical rigor are also unavoidable.

3.2 Textbook examples

We already mentioned a typical question on quadratic equations in the Introduction. Here we
repeat a similar exercise (task 3.49 in [16]): Find all k ∈ R such that the equation x2 − kx + 1
has at least one solution. Here GeoGebra Discovery can solve this question as shown in Figure
4. We use GeoGebra’s variable definition feature for the polynomial p(x) on line 1. Line 2
rewrites the input via the Tarski subsystem and line 3 performs the real quantifier elimination;
these steps can be combined as a single step on line 4.

We think that this kind of communication between user and machine should be acceptable
for students.

Another example from [16] is related to basic notions of calculus like monotonicity and
extrema. Exercise 6.20 raises the question: Given the function f : [−3, 1] → R | x 7→ x2 + 2x.
Find its monotonicity constraints, its extrema and its zeros. The exercise shows a helpful plot
of the graph to help the students at this level. In fact, the notions given in this example are

https://www.gnu.org/software/aris/


Figure 4: A solution for task 3.49 in [16].

not yet exactly introduced, just later in the next school year (see [17, p. 42]), but for that
second time they appear in a precisely defined form. Nevertheless, it is possible to use real
quantifier elimination to express the most precise mathematical content and get the solution in
a not completely trivial form – see Figure 5 for finding the monotonicity constraints. (In the
provided solution we check strict monotonicity.)

Figure 5: A solution for task 6.20 in [16].

We remove the restriction of working with the interval [−3, 1] since it is not really helpful
in the automated solution. Instead, we set up an interval [a, b] to search for monotonicity on it.
Now $6 yields the sought solution, namely, that a ≥ −1, and the second part of the disjunction
is just an extra condition (the negation of a < b) that clarifies that the input should indeed be
an interval.

Note that we proved something automatically. Even if the used atomic steps (in the cylin-
drical algebraic decomposition of R4) for the users are completely hidden, the resulted output



can be considered as the artifact of a mechanical proving process.
Proofs and proving are often part and parcel of secondary school mathematics – in fact,

several exercises ask for explaining certain properties or statements. For example, the tasks
3.02ab in [17] ask for explaining why strict monotonicity implies monotonicity. Also, tasks
3.02cd ask for the converse and request either an explanation or a counterexample.

Some concepts with exact definitions may appear just later, eventually at undergraduate
level. Boundedness or convergence are defined mostly at university level with a completely
exact description. However, [17, p. 134] (written for 15-years-old students) gives the following
definition:

The number a is the limit of sequence (an | n ∈ N∗), written as a = lim
n→∞

an if

following holds: For each ε ∈ R+ there exists an index n0 ∈ N∗ such that |an−a| < ε
for all n ≥ n0. (Here N∗ denotes the positive integers.)

There is no doubt that this definition can be extremely challenging to understand at this level
for most students. In many schools in Austria, therefore, such definitions are skipped (but kept
for the interested students and for future reference). Luckily, real quantifier elimination can be
helpful to enlighten the meaning of such complicated mathematical constructions.

In fact, studying the convergence of a sequence is not supported in real quantifier elimi-
nation, but we can use the definition of the limit of a function instead. Since we need to use
polynomials, an entire translation of concepts would lead to study the behavior of a polynomial
at infinity, namely, for example lim

x→∞
x2 which is ∞, that is, instead of convergence we have

divergence. Maybe a better start is to study

lim
x→3

x2

which is 9, but here we lose a major part of infinity in the problem setting. Another option is

to use rational functions like f(x) =
1

x
that are divisions of polynomials, but in this case we

must be careful and take care of denying the division by zero.
By using GeoGebra Discovery’s CAS View, we can issue the following input commands to

formalize and prove several statements of introductory calculus:

� RealQuantifierElimination(∀M (∃N (∀x (x > N → x2 > M)))) yields true and it
proves that the function y = x2 diverges to infinity.

� RealQuantifierElimination(∀ε ε > 0 → (∃δ δ > 0 ∧ (∀x |x− 3| < δ → |x2 − 9| < ε)))
yields true and this proves that the function y = x2 is continuous at point x = 3 and it
converges to 9.

� RealQuantifierElimination(∀x0 (∀ε ε > 0 → (∃δ δ > 0∧(∀x |x−x0| < δ → |x2−x2
0| <

ε)))) yields true and it proves that the function y = x2 is continuous at point x0 and it
converges to x2

0.

The correct formulation of such complex statements may be far from trivial. Still, it seems
fruitful to build up mathematics with the support of precise logic, including clear syntax and
immediate response from the computer if something is entered incorrectly.



To avoid constructing very difficult statements in the beginning, teachers may consider
experimenting with simpler definitions which may also be part of the curriculum. The sim-
pler exercises provide scaffolding for students to become familiar with the syntax and some
non-trivial features of quantified formulas, including negations of implications. Some ideas to
experiment with:

� Solving (in)equations or systems or (in)equations. For example, the inequalities y > x3−1
and 1 − x3 can be graphically easy to solve, but many computer algebra systems have
difficulties with this. By contrast, GeoGebra Discovery can find the solution after issuing
RealQuantifierElimination(∃y (y > x3 − 1 ∧ y < 1 − x3)) (it is x < 1).

� Generalizing or specializing the examples from the Introduction. For example,

RealQuantifierElimination(∃x (x3 + a x2 + b x + c = 0))

returns true because each cubic function has a zero; or

RealQuantifierElimination(∀x (∃y (y < 1000 ∧ x < y)))

returns false (since a maximizing constraint for y prevents fulfilling the statement for big
x values).

� Simple properties of a real function like periodicity, evenness or oddity are surprisingly
easy to formulate, and to (dis)prove. For example,

RealQuantifierElimination(∀x (x2 = (x + p)2))

yields p = 0, this means that the function y = x2 is not periodic.

The collection [10] shows several additional examples that aim mainly at undergraduate
students, but there the Mathematica frontend is used. Many examples of that list can be tried
in GeoGebra Discovery as well with success, however, some reorganizing of the input may be
required. (For example, divisions must be eliminated first, because the undelying system Tarski
does not support division by polynomials.) Here we show two examples of [10] after preparing
the input for use with GeoGebra Discovery and Tarski:

12. RealQuantifierElimination(xy(x2 − y2) > 0 ∧ (x2 − 1)(x2 − y2) < 0) yields

x ̸= 0 ∧ x + 1 ̸= 0 ∧ y ̸= 0 ∧ x− 1 ̸= 0 ∧ y − x ̸= 0 ∧ y + x ̸= 0 ∧
(x + 1 < 0 ∧ y + x > 0 ∨ x + 1 > 0 ∧ y < 0 ∧ y − x > 0 ∨
y > 0 ∧ x− 1 < 0 ∧ y − x < 0 ∨ x− 1 > 0 ∧ y + x < 0).

This output is however somewhat complicated as given by Mathematica.

22. RealQuantifierElimination((a d− b c = 1) → a2 + b2 + c2 + d2 + a c+ b d > 1) proves
the expected implication.



Such examples are not very typical in classroom situations, but may be of interest for contest
challenges. As a final example we show the mechanical solution for a recent problem of the
Austrian Mathematical Olympiad:

Show that for all numbers x > −1, y > −1 and x + y = 1 the inequality

x

y + 1
+

y

x + 1
≥ 2

3

holds. When does equality occur?2

In Figure 6 we can learn that the statement is true. By changing the inequation sign to

Figure 6: A solution for JRW-2022-1 of the Austrian Mathematical Olympiad (ÖMO).

“=” on line $4, we obtain that y + 1 ≤ 0 or y + x − 1 ̸= 0 or y − 2 ≥ 0 or 2y − 1 = 0. The
first two parts of this disjunction can be excluded (they are negations of $2 and $3), so the
expected answer is y ≥ 2 or y = 1

2
. Accordingly, x ≤ −1 or x = 1

2
, but the first assumption is

contradictory to $1. So the only solution is x = y = 1
2
.

4 Didactical comments

Understanding many notions and definitions of basic calculus is far from being straightforward
for most students. Both for students and teachers, it remains a challenge to explain why the

2Obtained from https://www.math.aau.at/OeMO/Downloads/datei/818.

https://www.math.aau.at/OeMO/Downloads/datei/818


actual precise definitions are necessary, and what outcome can be reached if proper notions are
used.

For example, definition of convergence and the related notions (divergence, continuity)
requires a very sophisticated and long description. Why do we require such a complicated
definition? Can we leave some parts of the definition out to get the same or some useful
meaning? Such questions could be answered with experimenting. If these experiments are
performed with the help of a computer, that is, the logical syntax of the input can be verified
in a simple way by technological means, it seems something beneficial. Also, if the truth of a
formula can be immediately evaluated by a software tool, the student can immediately check
if his/her experiments harmonize with the mathematical theory or not.

In Figure 7 a short experiment is shown that tries out some inputs related to the definition
of convergence of the sequence 1/n. The first input contains an error – this is a technical

Figure 7: An experiment with the definition of convergence.

problem since divisions need to be rewritten to use polynomials only. The second line contains
a formula that is already correct, at least, syntactically. By checking its logical truth on the
third line we can be confirmed that the constructed formula seems to describe something very
similar to the definition of convergence – but be warned, there was no assertion made on the
expected positivity of ε and no absolute value of some of the formulas was introduced. Also,
we did not take care of occasional change of the direction of the relation. So we should have a
deeper look why these assertions can be omitted in this special case.

Some authors emphasize the importance of negation of logical formulas to deepen under-
standing of their meaning. For example [14], a textbook widely used in Hungarian teacher
training for many decades, gives a detailed explanation on how to deny the definition of the
limit of a function at a given point, when using Cauchy’s definition (similarly to line 2 in Figure
7). Here, by interpreting the outputs of $2 and $4, a student can discover that the implication
in $2 was substituted by a disjunction and its negation in $4 became a conjunction (by using
the well-known formula by De Morgan). As expected, the evaluation of $4 as line 5 yields false,
and this can also be a comforting result.

The notation in Figure 7 follows the usual notation for the limit of sequence intentionally.
This can be misleading for some students: they may think that we are working over the integers



when the variables N and n are introduced. But, of course, we are still doing all computations
over the reals! Thus we (and our students) need to double check if the original problem setting
still fits the changed mathematical model of the experiment. The reader may say that our
experiments may differ a lot from the original problem setting, hence the practical use of these
tools are questionable. But let us insist: Solving just a similar problem can also be beneficial.
At the end of the day, our students should understand the notions and solve the problems on
their own. Utilizing a computer is just an aid on the road of learning.

5 Conclusion

We demonstrated some novel ways to teach logical formulas and some concepts of elementary
calculus with the help of GeoGebra Discovery, an experimental version of GeoGebra. The
command RealQuantifierElimination can be a powerful tool in many classroom situations.
It is based on an embedded version of the free software system Tarski. By using free software
components, teaching mathematical logic and function calculus may be supported by technology
even better than before.

We admit that our presentation is just a beginning of the plans of a longer research. We have
not yet received enough feedback to draw conclusions of the usefulness of our developments yet.
Also, the implementation is not completely matured yet in the sense of internal representation
of quantified formulas (currently only prenex formulas are fully supported). We also need to
improve the cooperation between Giac (GeoGebra’s main embedded computer algebra system
[11]) and Tarski in the future.

As mentioned above, real quantifier elimination is theoretically always successful, but prac-
tical use has its limits. Above a certain number of variables the computations may be very
slow, too heavy for classroom use, or even infeasible. Geometry problems can be on the border
of computational complexity, however, some simple theorems can be well illustrated via this
method. (See Figure 8 for a proof and an illustration of the well-known theorem “the altitudes
of a triangle are concurrent”.) Thus, technical improvements (concerning speed as first priority)
remain an important item for future work.
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Figure 8: A mechanical proof of the concurrence of altitudes of a triangle. Without loss of
generality we can assume that the vertices of the triangle are (0, 0), (1, 0) and (a, b). Now
hypothesis H1 assumes that line (0, 0)–(c, d) is perpendicular to (a, b)–(1, 0), H2 assumes that
(a, b), (c, d) and (1, 0) are collinear, and H3 assumes that (0, 0), (a, e) and (c, d) are collinear.
The expected conclusion T claims that the line (0, 0)–(a, b) is perpendicular to (a, e)–(1, 0).
But this conclusion cannot be drawn directly, only if some extra conditions (namely, the non-
degeneracy of the triangle) are additionally assumed. Luckily, $5 gives us very useful hints on
how the extra conditions should look like.
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