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Abstract:  
It has been suggested that computational thinking, based on fundamental concepts of computing 
science, provides a useful approach to everyday problem solving. It has also been seen that 
computational approaches can play a major role in the work of professionals in various fields, and 
it is therefore pertinent that computational thinking be given some attention in schools to prepare 
students for the future workforce.  One way to do so is to expose students to modelling challenges, 
and through these, provide opportunities for students to learn, practise and refine their skills and 
competencies in both computational thinking and practical problem solving.  In this paper, we 
describe the interaction and interplay between computational thinking and mathematical modelling 
through students’ experiences in an international mathematical modelling contest. Students’ ability 
to apply computational thinking in the contest was inferred and investigated via case studies.  Data 
sources in the form of report artefacts, videos, interviews and judges’ comments formed the basis of 
the case studies.  The investigation reveals that the constructs of computational thinking such as 
pattern recognition, abstraction, decomposition and algorithm creation play a critical role in the 
successful completion of the students’ modelling tasks. 
 
Introduction 
The concept of computational thinking and its role in mathematics learning and teaching have been 
a topic of discussion among mathematics educators in recent times.  Following the proposition from 
Wing that “computational thinking is a fundamental skill for everyone” [12], and with an increase 
in the use of digital technology in the classroom in the past decades, many researchers had carried 
out studies and debated on computational thinking, and how it can be introduced or taught in 
schools [4], [5], [11]. 

Although the idea of computational thinking seems to have been popularized by Wing in 
recent years, the term actually appeared earlier in Seymour Papert’s book, Mindstorms: Children, 
Computers and Powerful Ideas, published in 1980. Papert envisioned a world where children 
would be using computers to learn and think, and we would be integrating computational thinking 
into everyday life [7].   



Indeed, in more recent times, computational thinking is now thought of as an important 21st 
century skill that everyone should possess [6]. In fact, in many parts of the world, coding or 
computer programming is being aggressively promoted in schools and communities, in a bid to stay 
ahead of the curve [8], [9].  Yet, how these initiatives may actually bring about the development of 
computational thinking has not been extensively studied, and their impact on and role in problem 
solving remains not fully understood.  In fact, there are researchers who have cautioned against 
“over-selling” computer science and “raising expectations that cannot be met” [10].  However, it 
seems possible to recognize and identify some aspects of computational thinking and how these are 
observed in problem solving. 

In her paper, Wing did not define computational thinking in any precise way, and it was 
unclear how computational thinking could lead to improved problem solving, or how it can be 
taught.  Nevertheless, what is clear about the idea of computational thinking is that it includes 
notions and constructs such as abstraction, decomposition, pattern recognition and algorithm 
creation.  These four constructs have since formed what is sometimes called the “cornerstones” of 
computational thinking, as depicted in Figure 1. 

 
 

 
Figure 1:  Aspects of Computational Thinking 

 
For the purpose of our present discussion, we shall define computational thinking as a 

mental process of reasoning to approach, design and construct solutions to problems with a view to 
implementing and executing these solutions on the computer or using a computing tool.  Therefore, 
the main goal is to study and examine problems in such a way that eventually yields a solution 
which can be implemented with a computing tool. 
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In general, this reasoning process will include the following. 
• reducing a large, complex problem into simpler situations or smaller parts, and solving these 

first before building towards the complete problem solution (decomposition); 
• examining the problem to detect possible trends or trajectories, and looking to see if some 

known or familiar solution approach can be employed (pattern recognition); 
• collecting only the essential information in the problem and removing non-essential parts or 

components for solutioning (abstraction); and 
• writing a set of step-by-step instructions to solve the problem (algorithm creation). 

In fact, these mental processes are so important to problem solving that it has been suggested 
that these be developed in students as habits of mind, particularly in mathematical modelling tasks 
[2].  In other words, one hopes that when a student is confronted with a problem situation, the 
response that would first comes to the student’s mind would be one or more of the above, thus 
making it a habit of mind to think computationally in problem solving.  In the case of mathematical 
modelling, such habits can be developed quite effectively, simply because the nature of the task of 
mathematical modelling provides ample opportunities for these mental processes to be applied and 
practised.   
 
Linking Mathematical Modelling and Computational Thinking 
Mathematical modelling, its process and its place in the school teaching curriculum have been 
discussed extensively by many researchers in the past decades.  Although there is no universal 
consensus on the actual process and there exist many versions of diagrams and pictorials depicting 
the process, there is some general agreement on the different stages of the modelling process.  For 
the present discussion, the process shown in Figure 2 below is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  The modelling process (adapted from Ang, 2019, p.3) 



 In any modelling process, we begin with a real-world problem, and our goal is to reach a 
real-world solution.  However, this direct path is often not trivial and sometimes impossible.  The 
idea then is to cast the real-world problem into a mathematical problem.  The process of moving 
from the real world to the mathematical world would often involve a fair amount of abstraction.  
Non-essential parts of the problem are removed, leaving only factors or variables that matter. 
 Even with abstraction, if the problem remains too large, the next modelling step would be to 
simplify the problem with some assumptions, or to break it down into more manageable bits.  This 
process of reducing and scoping results in a decomposition of a large problem into smaller parts.  
This is one important and common strategy in mathematical modelling. 
 The next stage in the modelling process would be to attempt to construct a model based on 
the assumptions.  By now, one would have identified the factors or variables that should be 
considered or included in the model.  A common practice in this stage of the modelling process is 
to study the variables and their behaviour, examine available data, identify trends or patterns, and 
see if some existing, known model or solution methods can be used and applied.  This requires, to a 
large extent, the ability to recognize patterns. 
 To implement the solution, especially if it is based on some form of simulation or iterations 
of steps, would often require a systematic set of procedure.  This is where the ability to think in 
terms of an algorithm becomes very relevant and useful. 
 The above discussion essentially links the important stages of the modelling process to the 
important aspects or “cornerstones” of computational thinking.  As shown in Figure 2, these aspects 
fit very naturally and appropriately in the different stages.  Consequently, it would be reasonable to 
suggest that the skills associated with computational thinking are directly applicable and relevant to 
the competencies required for mathematical modelling.   

Over the years, by working with students who have participated in modelling contests, it is 
observed that students who have some basic knowledge or experience in solving problems 
computationally – that is, they are able to apply their computational minds – are often more 
successful in the modelling task.  At the same time, as students engage in more modelling exercises 
and activities, they tend to be more able to design and construct computational solutions to the 
modelling problem.  In other words, there is a certain inter-dependency and interaction between 
computational thinking and mathematical modelling [3]. 
 In summary, development of competencies in mathematical modelling can be supported by 
computational thinking.  At the same time, the different aspects of computational thinking are 
evident in process of mathematical modelling.  It is this interplay between these two pieces of the 
puzzle, as depicted in Figure 3 below, that we wish to investigate in the present study. 



Figure 3:  Interaction between computational thinking and mathematical modelling 
 
Mathematical Modelling Contests 
One of the ways of promoting the learning and encouraging the practice of mathematical modelling 
is through modelling contests.  The International Mathematical Modelling Challenge (IMMC) is 
one such international contests, and it aims at promoting the teaching and learning of mathematical 
modelling at all educational levels for all students (https://www.immchallenge.org).  Established in 
2015, the IMMC is based on the belief that by tackling and solving real world problems outside of 
mathematics in a realistic context, students and teachers will get to experience the power of 
mathematics and its relevance to real world problem solving. 
 Each year, each country or region may send up to two teams to participate in the IMMC.  
Each team may consist of up to four students from secondary (including pre-University) students, 
and one faculty advisor.  While the challenge may run for two months, each team may only work 
on the problem for five consecutive days and submit their solutions within these five days.  In other 
words, the team may choose any five-day block within the two months during which the challenge 
is open to work on the modelling task.  Teams may use any inanimate source of data, material, 
computers, software, references, books, websites and so on.  Specifically, they may not consult or 
seek help from another person (including the faculty advisor) during the challenge. 

The role of the faculty advisor is to assist the team in their preparation for the challenge, 
including any training or teaching before the start of the challenge, if necessary, and is responsible 
for the various administrative processes involved.  Once the challenge begins – that is, once the 
team obtains the problem statement and the five-day duration commences – the faculty advisor’s 
role is only administrative and will not be allowed to assist the team in the modelling task. 

Over the years since the inaugural IMMC in 2015, it is noted that the IMMC problems are 
generally quite complex, and while the goals are usually well defined, the subgoals or subtasks are 
not.  Moreover, developing a model or designing a solution to the problem would usually require 
knowledge from different disciplines, with factors and variables that may not have been explicitly 
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mentioned and that can be inter-dependent.  It is also noted that that the modelling task would 
demand creative use of various problem-solving strategies, including but not limited to 
computational approaches or methods. 

The solutions submitted will be judged by an international panel of experts, and solutions 
will be recognized as “Successful participant”, “Honorable Mention”, “Meritorious” and 
“Outstanding”, in order of increasing prestige, with the “Outstanding” award being the top award.  
Solution papers of outstanding teams are published on the IMMC website. 
 Given such complex settings, and, for most students, with limited experience and practice in 
mathematical modelling, how do IMMC participants cope with the challenge?  What kind of 
strategies or approaches do they use to successfully complete the modelling challenge, and what 
lessons have they learnt?  What role does computational thinking play in the participants’ 
modelling practice and process?   
In the next section, we will discuss our observations through case studies to investigate the 
interaction between computational thinking and mathematical modelling, and how one influences, 
supports and develops the other. 
 
Case Studies 
In the present discussion, the case study approach was used for a detailed examination of students’ 
practice of Computational Thinking in developing mathematical models.  The cases comprise two 
teams of students, Team A and Team B, who represented Singapore at IMMC 2021.  Team A was 
accorded the Honorable Mention Award and Team B was accorded the top-tier Outstanding Award. 
Multiple data types in the form of report artefacts, presentation videos, judges’ commentaries and 
interviews were collected to examine the participating students’ use and practice of Computational 
Thinking in developing the mathematical models. 
The IMMC 2021 problem statement is stated as follows. 
 

We read all the time in the sports pages about an athlete being called the G.O.A.T. - the 
Greatest Of All Time. What does that really mean and how can that truly be determined? 
(1) Develop a mathematical model for determining the greatest woman tennis player in 2018 

on the basis of Grand Slam tournament results (data provided) 
(2) Choose one example of an individual sport and develop a mathematical model from any 

factors and data you find significant, measurable, and obtainable for determining the 
G.O.A.T. in that sport  

(3) Discuss any changes your G.O.A.T. models from #2 would require to determine the 
G.O.A.T. of a team sport 

At first glance, the tasks outline above do look daunting, and it was indeed true that many teams did 
not know where or how to begin.  Teams must first study the data provided, and then work out an 
approach towards arriving at a solution or model that could help answer the question and identify 
the G.O.A.T. based on sound reasons. 
As it turned out, participants from the two case study teams, Teams A and B, appeared to have been 
actively engaged in the practice of the Computational Thinking process, as can be seen from the 



approach that they had adopted. Aspects of the Computational Thinking process that were 
demonstrated through their development of the mathematical models include pattern recognition, 
decomposition, abstraction and algorithm creation. 

It has to be pointed out that students from Team A have had some experience in 
computational thinking from their work in other mathematics projects assigned by their school.  
Students from Team B, on the other hand, had gained experience in Computational Thinking 
through their participation in solving programming problems at a competitive event known as the 
National Olympiad in Informatics Singapore.  
 
a) Pattern Recognition 

 
It is likely that Team B’s engagement in pattern recognition have led to their creative mathematical 
modelling approach to determine the greatest woman tennis player in 2018. Team B had developed 
a model based on a weighted directed graph to represent the different tennis matches played by 
different players, who are represented as nodes in the graph. The directed edge is drawn from the 
winning player to the losing player, and the thickness of the edge is an indicator of edge weight or 
the winning margins. See Figure 4 for the network representation of Team B’s model of the 
directed graph, which suggests that Simona Halep (represented by the red node) is consistently 
outperforming many of the most skilled players (represented by the green nodes) in singles women 
tennis by significant margins. 
 

By observing the directed graph path patterns, Team B noticed the important fact that not all 
tennis players played each other and creatively used the Floyd-Warshall or All pairs shortest Path 
algorithm to predict the results of every possible game. This enabled them to find the relative 
ability of players and calculate the odds ratio of winning margins for each tennis player.  

 

Figure 4: Weighted directed graph of athletes competing in women’s singles tennis in 2018 

 
To further confirm and ascertain that Team B’s ability to recognise patterns in a problem 

situation had led to their creative mathematical modelling approach, an interview was carried out.  



Below is an excerpt of the interview during which the team participants were asked if it was the 
first time they had employed the Floyd-Warshall shortest path algorithm at IMMC. 
Interviewer:  Is this the first time at IMMC that you have used the Floyd-Warshall shortest path 

algorithm to compute the relative ability of tennis players that did not play against 
each other? 

Team B Member A:  No, some of us are involved in competitive programming and we have often 
used the Floyd-Warshall shortest path algorithm in solving the 
computational problems. Hence we found it to be relevant in helping us solve 
the IMMC problem.       

 
In this interview excerpt, we see how Team B had used the Floyd-Warshall shortest path 

algorithm frequently in their competitive programming situations.  This enabled them to recognise 
a similar problem structure in the directed graph (see Figure 4) that not all pairs of nodes are 
connected to an edge, but the shortest paths for these pairs of nodes will need to be computed in 
order to calculate the odds ratio of winning margins for each tennis player.  This had led them to 
employ the Floyd-Warshall shortest path algorithm for this purpose. 
 
b) Decomposition 
 
For each of the three tasks outlined in the IMMC 2021 problem, Team A and Team B had 
decomposed it to its respective subtasks. Specifically, Team A had decomposed the first task of 
developing a mathematical model for determining the greatest woman tennis player in 2018 into the 
following subtasks: 

 
● Subtask 1: Determine and analyze the major factors in finding the greatest 

women tennis player 
● Subtask 2: Build a mathematical model that predicts the greatness of women 

tennis players in 2018 Grand Slam tournament  
● Subtask 3: Use our mathematical model to determine the greatest woman tennis 

player in 2018  
● Subtask 4: Check against 2018 women tennis players’ rankings. 
 

The second task of developing a mathematical model for determining the G.O.A.T. of a 
chosen individual sport was decomposed as:   

 
● Subtask 1: Develop a mathematical model to find the G.O.A.T. of man’s 

badminton singles event  
● Subtask 2: Study and comment on the results obtained by the model  
● Subtask 3: Adapt our model to determine the greatest of all time for any 

individual sport  
● Subtask 4: Explain how the models are different for different sport 
 

Team A had also decomposed the third task of modifying the mathematical model for 
determining the G.O.A.T. of a chosen individual sport to find the G.O.A.T. of a team sport as:   

 



● Subtask 1: Adapt the model used earlier to construct a new model which can 
determine the G.O.A.T of a team sport  

● Subtask 2: Explain how the model is different for individual and team sports  
 

Team A noted that their general approach to solving a complex problem such as the IMMC 
problem is “to identify the achievable subtasks”, explaining that “solving the subtasks one after 
another can help us to move closer to solving the problem”.  
c) Abstraction 

In formulating their mathematical models for the IMMC problem, Team A and Team B had 
abstracted the important variables of interest for determining the G.O.A.T. of their chosen 
individual sport. The identification of important variables was validated by the performance of 
sensitivity analysis on their respective models. 

As shown in Table 1, Team A had formulated the Gross Greatness Index (GGIbadminton) for 
determining the G.O.A.T. of man’s badminton individual event based on the abstracted variables in 
the Winning Consistency (Wconsistency, badminton) and Performance Index (PIbadminton) of a player. The 
Performance Index (PIbadminton) of a player is in turn dependent on his Achievement (Abadminton) and 
dominance (Dμ, badminton).  

,  

where  . 
Table 1: Team A’s abstracted variables for formulating the Gross Greatness Index to determine 
the G.O.A.T. of man’s badminton individual event   

Variable Definition 

Dμ, badminton Average dominance of a badminton player to his opponents across the 
competition. 

Wconsistency, 
badminton 

Consistency of a particular badminton player’s performance index across 
his career 

Tmax Maximum number of tournaments we are accounting for. 

Abadminton The total achievement received by a particular badminton player. 

GGIbadminton The gross greatness index for a particular badminton player. 

PIbadminton The performance index of a particular badminton player in a single year. 



In their directed graph model, Team B had taken into account the Average winning margin 
between player 𝑢𝑢 and player 𝑣𝑣 (ℎ(𝑢𝑢, 𝑣𝑣)) and its related variables in formulating the degree ratio, 
which is used to determine the greatest woman tennis player in 2018 (see Table 2).  

Table 2: Team B’s abstracted variables for formulating the Degree Ratio to determine the 
greatest woman tennis player in 2018    
Variable Definition 

𝑢𝑢𝑖𝑖,𝑣𝑣𝑖𝑖 The two players involved in match 𝑖𝑖 

𝑚𝑚𝑢𝑢,𝑣𝑣  Total number of matches played between player 𝑢𝑢 and player 𝑣𝑣 

𝑠𝑠𝑢𝑢𝑖𝑖  Score of player 𝑢𝑢 for match 𝑖𝑖 

𝑔𝑔(𝑢𝑢,𝑣𝑣) Difference in the total score of player 𝑢𝑢  and player 𝑣𝑣  for match 𝑖𝑖 
i.e.∑𝑠𝑠𝑢𝑢𝑖𝑖 − ∑𝑠𝑠𝑣𝑣𝑖𝑖  ; if 𝑔𝑔(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)  is positive, this represents a directed edge 
from 𝑢𝑢 to 𝑣𝑣 and vice versa 

ℎ(𝑢𝑢,𝑣𝑣) Average winning margin between player 𝑢𝑢 and player 𝑣𝑣 based on number 
of matches  

𝑑𝑑𝑢𝑢 Degree ratio ∑𝑖𝑖=1
𝑛𝑛 ℎ(𝑢𝑢,𝑖𝑖)

∑𝑗𝑗=1
𝑚𝑚 ℎ(𝑗𝑗,𝑢𝑢)

 i.e. the ratio of the sum of all the weights of outward 

edges to the sum of all the weights of inward edges 

 
In performing sensitivity analysis to validate the significance of their abstracted variables, 

Team A and Team B made systematic changes to the input quantity of the parameters used in 
calculating their respective G.O.A.T. score. Consistency in their G.O.A.T. results was maintained, 
hence indicating the robustness of their model. This implies that the dynamic interplay of 
relationships for determining the G.O.A.T. score in their respective models can be explained 
sufficiently by the variables that were abstracted.  

 
d) Algorithm creation 

To achieve the efficient computation of the G.O.A.T. score from big data sets, Team A and Team B 
had each generated algorithms for their respective model solutions. Team A’s algorithm included 
the computation steps to add the input of the variables to separate lists organized by the match type 
(e.g. qf: Quarter-finals, sf: Semi-finals, f: Finals).  Lists for matches won and matches played with 
game points appended were then made to determine the achievement score of players. The 
Performance Index were then assigned to the respective player before generating the Gross 
Greatness Index as an output file. 

Besides the algorithm to compute the outward winning and inward losing edges in their 
directed graph models, members from Team B members had systematically crafted and created a 
flowchart as an overall model to address the problem.  The flowchart (see Figure 5), which clearly 
and evidently demonstrated the team’s experience and ability to engage in algorithmic thinking, 



summarizes how their G.O.A.T. models were adapted for the different types of sports under 
consideration. 

 
 
Figure 5: Adapting the G.O.A.T. models for the different types of sports under consideration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Summary flowchart produced by Team B. 
For details and a more complete explanation of the models that Team B had produced in 

IMMC 2021, readers may refer to the actual solutions which are available at the IMMC website 
(https://immchallenge.org/Contests/2021/Solutions.html). 
 
Concluding Remarks 
In this investigative study, case studies involving two participating teams of the IMMC 2021, an 
international modelling contest, were carried out to demonstrate students’ engagement in the 
various aspects of computational thinking when tackling modelling tasks.  By examining artefacts, 
including solution reports, as well as through interviews, it was found that student members of the 
two teams had consciously and intentionally applied a computational mindset when approaching 
the modelling tasks.   

It was revealed that the students’ past experiences in computational thinking had come into 
play when they were confronted with the present modelling problem.  In addition, it is clear that 
because of the complexity and the closeness to a real-world situation of the problems, mathematical 
modelling in general and modelling contests in particular, provide excellent opportunities for one to 
develop one’s sense of thinking in a computational way. 



Although the link between computational thinking and mathematical modelling may not be 
particularly obvious, this study has established that there is indeed a close relationship between 
these two notions.  Future work and more research in this area will be necessary to provide deeper 
insights into the inter-dependency of computational thinking and mathematical modelling. 
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