
Computation of voting power indices using
polynomial rings and ideals

Alasdair McAndrew
Alasdair.McAndrew@vu.edu.au

College of Engineering and Science
Victoria University

PO Box 14421, Melbourne, Victoria 8001
Australia

Abstract

In many jurisdictions globally, voting is done not by individuals, but by blocks of vot-
ers. Examples are the American Electoral College, the International Monetary Fund, the
European Parliament, and the houses of parliament or of congress in many national leg-
islatures. Voting is thus done by blocks: state, country, or political party; each member
of which casts the same vote. It is tempting to assume that a block with the most votes
is the most powerful, and has the greatest chance of influencing the outcome of the final
ballot. As with so much else in voting theory, this is quite incorrect, and it is often the
case that a minor block can have an influence entirely out of keeping with its size. There
are various different methods of determining the relative power of each block, and allo-
cating a numerical measure of power; these values are called “power indices”. Some of
these methods can be computationally intensive, and it took several years after the initial
definition to compute power indices for the American Electoral College, with its 50 states.
In this paper we explore a unified method for computing different power indices using the
theory of polynomial rings. This allows not only a relatively simple computation, but one
which can be adjusted to consider “coalitions” (two or more blocks which band together
to increase their power), and “quarreling parties”, where two blocks refuse to agree on
any vote.

1 Introduction

Although power indices had first been defined and discussed in the mid 1940’s [8], it was really a
paper in 1965 which started to bring the notion into prominence. The lawyer John Banzhaf [1]
was asked to mediate in a discussion of the fairness of voting allocation in Nassau County, New
York state, which had been made as shown in table 1.

There were thus 30 votes in total, of which 16 (a majority) were required for any motion
to pass. To determine if power was correlated with votes, Banzhaf made a list of all possible
combinations which could win; that is, sum to 16 or greater. In each such combination, he then
determined if a particular block was necessary for that win.

Alasdair.McAndrew@vu.edu.au

Municipality Number of votes
Hempstead (No. 1): 9
Hempstead (No. 2): 9
North Hempstead: 7
Oyster Bay: 3
Glen Cove: 1
Long Beach: 1

Table 1: Nassau County voting allocations

For example, one winning combination would be Hempstead (No. 1), Hempstead (No. 2),
Oyster Bay, and Glen Cove, for a total of 22 votes. However, both the Hempsteads are necessary
for this combination, because if either withdrew their support, the votes would drop from 22
to 13. And neither Oyster Bay or Glen Cove are necessary, since if either or both withdrew
their support, the total votes would drop to no lower than 18, which is still enough for a win.
A necessary voting block in a winning combination is also called a “swinging” block.

Banzhaf identified 32 different winning combinations, and with them 48 different possible
swings, with numbers as shown in table 2.

Municipality Number of swings
Hempstead (No. 1): 16
Hempstead (No. 2): 16
North Hempstead: 16
Oyster Bay: 0
Glen Cove: 0
Long Beach: 0

Table 2: Nassau County necessary votes

It can be seen then that in spite of their different voting numbers, Hempstead 1, Hempstead
2 and North Hempstead are all exactly equal in their abilities to influence a vote; conversely
Oyster Bay, Glen Cove and Long Beach have no power at all : it doesn’t matter how they vote,
because in any combination which reaches a winning value, none of their votes are actually
necessary.

The conclusion was that the original voting allocation was manifestly unfair, and some other
allocation was required so that the smaller blocks had non-zero power. As Banzhaf said in the
article: “It is hard to conceive of any theory of representative government which could justify
a system under which the representatives of three of the six municipalities ”represented” are
allowed to attend meetings and cast votes, but are unable to have any effect on legislative
decisions. Yet this is exactly what occurs now in Nassau County.”

Although Banzhaf had in a sense reinvented a method original proposed by Lionel Pen-
rose (and that had gone completely unnoticed), it was again reinvented in 1971 by James
Coleman [3]. These indices are thus known as the Banzhaf, or the Banzhaf-Coleman, or the
Penrose-Banzhaf-Coleman, power indices. In this article the term Banzhaf power index will be
used.

Preceding Banzhaf by over 10 years, in 1954 the economists Lloyd Shapley (who would win
the Nobel Prize in 2012) and Martin Shubik developed a power index now known by their

names. To compute the power index, every possible permutation of the voting blocks is listed,
and reading from left to right, a block is said to be pivotal if it changes a hitherto losing
combination to a winning one. For instance, with the Nassau County municipalities, one of the
6! = 720 permutations is given in table 3.

Municipality Votes Cumulative Sum
Glen Cove: 1 1
North Hempstead: 7 8

Hempstead (No. 2): 9 17
Oyster Bay: 3 20
Long Beach: 1 21
Hempstead (No. 1): 9 30

Table 3: A permutation with its pivotal block

We see that in this permutation, Hempstead 2 is pivotal. The Shapley-Shubik index
counts the number of times each block has been pivotal. (There are better ways of com-
puting this than enumerating all permutations.) For this example they can be computed to
be (240, 240, 240, 0, 0, 0); so as for the Banzhaf indices: the top three municipalities have equal
power, and the lower three have no power. We note that by definition the sum of these indices
must be n!, where n is the number of voting blocks.

It is more convenient to scale indices so that their sum is one; in this instance then both
the Banzhaf and Shapley-Shubik indices return (1/3, 1/3, 1/3, 0, 0, 0). Although the two indices
can agree, they are generally different.

2 Formal definitions

A weighted voting game consists of a sequence of weights wi for 1 ≤ i ≤ n and a quota q. The
quota represents the number of votes needed for a win, hence it must be less than or equal to
the sum of all the weights. Such a game is notated as

[q;w1, w2, . . . , wn].

The Nassau County issue discussed in the introduction would thus be notated as

[16; 9, 9, 7, 3, 1, 1].

A coalition is any non-empty set of weights, and a winning coalition is a coalition whose weights
sum to q or more. In a winning coalition, voter i is pivotal or necessary if the removal of i from
the coalition reduces the sum to below the quota.

2.1 Computation of power indices

We have seen in the introduction that the Banzhaf power indices require consideration of all sub-
sets of voters, and the Shapley-Shubik power indices require consideration of all permutations of
voters. In either case, the computation is exponential in terms of the number of voters. Efficient

computation is therefore a major consideration. For example, if we consider the American Elec-
toral College as a weighted voting game with 51 voters (50 states plus DC) where the weights
are the number of electors in each state1, we would require 251 = 2, 251, 799, 813, 685, 248 com-
putations, and for the Shapley-Shubik indices we would need 51! ≈ 1.55× 1066 computations.

Banzhaf power indices

We can of course compute these by simply enumerating each subset S ⊆ {1, 2, 3, . . . , n} and if
it is a winning coalition, determining which voter is necessary. But a neater polynomial method
was developed by Brams and Affuso in 1976 [2], and for demonstration we shall consider the
voting game

[39; 34, 33, 7, 1, 1].

This games represents the Australian Federal Senate, or upper house, in 1985. The parties are
Labor (34), Liberal/National (33), Democrats (7), Nuclear Disarmament (1), Independent (1).

To determine the power of voter k, first create the formal polynomial

pk(x) =
n∏

i=1
i6=k

(1 + xwi)

so that for the first voter above,

p1(x) = (1 + x33)(1 + x7)(1 + x)(1 + x).

Then the coefficient of xj in this polynomial is the number of ways all the other voters can
combine to form a coalition with j votes. Expanding the polynomial:

p1(x) = x42 + 2x41 + x40 + x35 + 2x34 + x33 + x9 + 2x8 + x7 + x2 + 2x + 1

shows that there are two ways, for example, of obtaining a total of 41 votes (voters 2, 3, and 4,
or voters 2, 3, and 5). For the votes already above the quotient of 39, the addition of the new
voter won’t make any difference; the voter cannot be necessary. Voter k becomes necessary
only for those votes with a sum less than the quotient q, but not less than q − wk. The latter
restriction is necessary because if a sum is less than q−wk, then the addition of the weight wk

cannot produce a sum equal to or greater than the quotient. This means that the number we
want is the sum of coefficients of all powers xm for which q − wk ≤ m < q, so that the k-th
Banzhaf index, bk can be computed as

bk =

q−1∑
j=q−wk

cj

where cj is the coefficient of xj in the polynomial.
In our example, given p1(x) above, we look at coefficients of powers xm for which 39− 34 ≤

m < 39:

x35 + 2x34 + x33 + x9 + 2x8 + x7

and there are six such terms with coefficients summing to 8. Thus the Banzhaf power index
for the first voter is 8.

This can be easily implemented in Python using the SymPy library as shown in Listing 1.

1The situation is slightly muddled in actuality in that two states: Maine and Nebraska, allocate their electoral
votes at least partially according to the popular vote. In all other states it’s “winner take all”.

> import sympy as sy

> x = sy.Symbols(’x’)

> def banzhaf(q,w):

for k in range(n):

qe = sy.prod([(1+x**w[i]) for i in range(n) if i != k]).expand()

b[k] = sum(qe.coeff(x,m) for m in range(q-w[k],q))

return(b)

> banzhaf(39,[34,33,7,1,1])

[8,8,8,0,0]

Listing 1: Computing the Banzhaf power indices using polynomials

The output, showing the Banzhaf indices, indicate that the three largest parties in the
Senate have equivalent power, in spite of one being very much smaller than the other2, and
the two small parties have no power at all. As mentioned above, the “raw” indices can be
normalized to sum to one.

Shapley-Shubik indices

The use of polynomials here predates the work of Brams and Affuso; in fact Shapley himself,
working with Irwin Mann, produced a polynomial computation in 1962 [7]. However, before
introducing the polynomials, we shall see how the Shapley-Shubik indices can be determined by
a method very similar to the Banzhaf indices. Suppose that voter k is necessary in a coalition
S, being a subset of V = {1, 2, 3, . . . , n}. Consider the two sets Sk = S−{k} and V −S. Then
k is pivotal in any permutation of the form:

[any permutation of the elements of Sk], k, [any permutation of V − S].

If S has r members, then the number of such permutations is (r− 1)!(n− r)!. This means that
the Shapley-Shubik index for a voter k can be calculated as∑

S

(|S| − 1)!(n− |S|)!

where the sum is taken over all coalitions in which k is necessary. For the Australian Senate
example, the first voter is necessary to the coalitions

{1, 2}, {1, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 4, 5}, {1, 3, 4}, {1, 3, 5}, {1, 3, 4, 5}

and hence its power index will be

1!3! + 1!3! + 2!2! + 2!2! + 3!1! + 2!2! + 2!2! + 3!1! = 40.

2This smaller party, the “Australian Democrats” was created precisely for this purpose, to maintain a
“balance of power in the Senate” and in the words of its founder: “to keep the bastards honest”. In spite of
small numbers, the Democrats were a significant player in Australian politics for over a decade.

To use polynomials here, we need—as well as knowing when a voter k is necessary for a
coalition—to know the size of the coalition. This is easily done by introducing a new variable
y which will act as a counter:

pk(x) =
n∏

i=1
i6=k

(1 + xwiy).

For the first voter in the Senate example,

p1(x, y) = (1 + x33y)(1 + x7y)(1 + xy)(1 + xy)

= x42y4 + 2x41y3 + x40y2 + x35y3 + 2x34y2 + x33y + x9y3 + 2x8y2

+ x7y + x2y2 + 2xy + 1.

This shows, for example, that a coalition with combined weight 41 can be obtained with 3
voters in 2 ways. For the Banzhaf example, we knew that coalitions of weight 41 could be
obtained in two ways, but the polynomial did not include the information about the numbers
of voters.

As with the Banzhaf indices, to obtain a coalition in which k is necessary, we add the
coefficients of xiyj for which q − wk ≤ i < q. For p1(x, y) above, this produces

x35y3 + 2x34y2 + x33y + x9y3 + 2x8y2 + x7y

and adding the coefficients of the powers of x produces

2y3 + 4y2 + 2y.

In this last polynomial in y, the powers are the sizes of the winning coalitions.
This means that the Banzhaf procedure given in Listing 1 can be used as the basis for a

very similar procedure for computing the Shapley-Shubik indices; this is given in Listing 2.
This procedure can be easily adjusted to return the normalized values of [1/3, 1/3, 1/3, 0, 0].

2.2 Deegan-Packel and Holler indices

More recently, some other power indices have been proposed. In 1978, Deegan and Packel [4]
proposed an index based on minimal winning coalitions, abbreviated as MWCs, which are
coalitions in which every party is critical. For example, with w = [15, 12, 7, 4, 3, 2] and q = 22,
then (15, 4, 3) is a minimal winning coalition, as is (12, 7, 3). However, (15, 12, 4) is a winning
coalition, but it is not minimal, since 4 is not needed. Let W be the set of all such minimal
winning coalitions, and let Wi ⊂ W be those that contain voter i. Then the Deegan-Packel
power index is defined as

di =
∑
S∈Wi

1

|S|
.

For example, with the Nassau County example, the MWCs are

(91, 92), (91, 7), (92, 7).

> import sympy as sy

> x = sy.Symbols(’x’)

> def shapley_shubik(q,w):

n = len(w)

ss = [0]*n

for k in range(n):

pe = sy.prod([(1+x**w[i]*y) for i in range(n) if i != k]).expand()

py = sum(pe.coeff(x,m) for m in range(q-w[k],q))

ss[k] = sum(sy.factorial(m)*sy.factorial(n-1-m)*py.coeff(y,m)\

for m in range(n))

return(ss)

> ss(39,[34,33,7,1,1])

[40,40,40,0,0]

Listing 2: Computing the Shapley-Shubik power indices using polynomials

where we have distinguished the two largest voters with subscripts. Since each voter is a
member of exactly two of these three coalitions, each one has the index 1/2 + 1/2 = 1. As
with the Banzhaf and Shapley-Shubik indices, the top three voters have equal power; the lower
three none at all.

Using MWCs only accords with Riker’s size principle, that “parties seek to increase votes
only up to the size of a minimum coalition” [6]. This makes political sense, and hence winning
coalitions that include non-critical parties may be considered as irrelevant to voting power (if
the size principle is assumed).

Holler’s public good index [6] is obtained by normalizing the values of |Wi| for each voter.
Since these values are (2, 2, 2, 0, 0, 0), then the public good indices are (1/3, 1/3, 1/3, 0, 0, 0) as
they are for all the other indices.

Although the different indices return the same values for the Nassau County example, this
is not normally the case. For example, with w = [28, 16, 5, 4, 3, 3] and q = 30, the various
normalized indices are:

Banzhaf :

[
3

4
,

1

20
,

1

20
,

1

20
,

1

20
,

1

20

]
≈ [0.75, 0.05, 0.05, 0.05, 0.05]

Shapley-Shubik :

[
2

3
,

1

15
,

1

15
,

1

15
,

1

15
,

1

15

]
≈ [0.67, 0.067, 0.067, 0.067, 0.067, 0.067]

Deegan-Packel :

[
5

12
,

7

60
,

7

60
,

7

60
,

7

60
,

7

60

]
≈ [0.42, 0.117, 0.117, 0.117, 0.117, 0.117]

Holler :

[
1

3
,

2

15
,

2

15
,

2

15
,

2

15
,

2

15

]
≈ [0.33, 0.133, 0.133, 0.133, 0.133, 0.133]

Although all indices give the same smaller value to the five smaller parties, the relative weight-
ings are different.

> q = 30

> w = [28,16,5,4,3,3]

> n = len(w)

> xs = sy.var(’x0:%d’%n)

> pr = sy.prod([1+xs[i]**w[i] for i in range(n)]).expand()

> pa = pr.args

> pw = [x for x in pa[1:] if sum(sy.degree_list(x)) >= q]

Listing 3: Using multivariate polynomials

The Deegan-Packel indices are non-monotonic; in that it is possible for a smaller party to
have a greater index. For example (the values are approximate only):

[51; 35, 20, 15, 15, 15]⇒ (1.5, 0.75, 0.92, 0.92, 0.92)

and we see that a party of size 15 is assigned a greater voting power than a party of size 20.
Holler’s public good index conforms with Riker’s size principle, but is also non-monotonic. The
difference between the Deegan-Packel and Holler indices is that Deegan-Packel gives higher
weight to coalitions with smaller numbers: a party that can influence an MWC of two members
only is seen to have greater power than one which requires three or more members before it
can be critical; Holler simply counts the number of MWCs for which a party is critical.

3 Working with multivariate polynomials

In order to deal with “coalitions” (when two or more parties join together), or with “quarreling”
parties (who never agree), it will be convenient to use a different symbol for each party. Listing 3
shows how this can be done using SymPy.

In this script, the fourth line creates a list (named “xs”) of the variables

x0, x1, . . . , xn−1

and the next line creates the polynomial

pr =
n−1∏
i=1

(1 + xwi
i).

The next two lines first break the polynomial up into its monomials, and then selects those for
which the degree sum is not less than q. In this case there are 28 of them. These monomials
correspond to all the winning coalitions. We shall call this polynomial the encoding polynomial
of the winning coalitions.

To obtain the minimal winning coalitions, what we need to do now is to sieve out all those
monomials which are multiples of another one, and we can write a recursive function to do this.

The idea is that at the beginning of the sieving routine, t is an empty list, and p consists of
all the monomials. As the function works through its iterations, t picks up the “lowest” values
from p, while p is reduced by multiples of the elements of t. For example:

def sieve(t,p):

if len(p)==0:

return(t)

else:

for x in p[1:]:

if sy.rem(x,p[0]) == 0:

p.remove(x)

return(sieve(t+[p[0]],p[1:]))

Listing 4: A sieve function to remove polynomial multiples

> pw2 = pw.copy()

> pws = sieve([],pw2)

> pws[
x28
0 x16

1 , x28
0 x5

2, x28
0 x4

3, x28
0 x3

4, x28
0 x3

5, x16
1 x5

2x
4
3x

3
4x

3
5

]
The sum of these monomials will be a polynomial which, as before, can be referred to as the

encoding polynomial of the MWCs. To obtain (for example) the Deegan-Packel power indices,
we can work with in dictionary whose keys are the variables, and whose values will be increased
by 1/k where k is the number of variables in each monomial:

> dp = {xs[i]:0 for i in range(n)}

> for p in pws:

pv = p.free_symbols

pm = len(pv)

for x in pv:

dp[x] += sy.Rational(1,pm)

> dp{
x0 :

5

2
, x1 :

7

10
, x2 :

7

10
, x3 :

7

10
, x4 :

7

10
, x5 :

7

10

}
and this can be normalized to add to one:

> dpn = {xs[i]:0 for i in range(n)}

> s = sum(dp.values())

> for z in dpn.keys():

dpn[z] = dp[z]/s

> dpn{
x0 :

5

12
, x1 :

7

60
, x2 :

7

60
, x3 :

7

60
, x4 :

7

60
, x5 :

7

60

}
As a proof-of-concept of the use of such polynomials, we’ll consider the Banzhaf power

indices for [16; 10, 9, 6, 5]. We start as above by creating four variables xi and computing the
product

> q, w = 16, [10,9,6,5]

> p = \prod_{i=0}^3(1+x_i^{w_i}).

This is done exactly as in Listing 3 and the polynomial returned is

x10
0 x9

1x
6
2x

5
3 + x10

0 x9
1x

6
2 + x10

0 x9
1x

5
3 + x10

0 x9
1 + x10

0 x6
2x

5
3 + x10

0 x6
2 + x10

0 x5
3 + x10

0 + x9
1x

6
2x

5
3

+ x9
1x

6
2 + x9

1x
5
3 + x9

1 + x6
2x

5
3 + x6

2 + x5
3 + 1

To find the i-th power index, we reduce the polynomial modulo xwi
i , and add up the coefficients

of those monomials whose degree sum is between q − wi and q. The reduction can be done
either with a polynomial division or using Groebner bases; for this simple operation a division
is adequate:

> i = 0

> quo, rem = sy.div(p,xs[i]**w[i])

and the remainder (which is what we want) is

x9
1x

6
2x

5
3 + x9

1x
6
2 + x9

1x
5
3 + x9

1 + x6
2x

5
3 + x6

2 + x5
3 + 1.

We can find the coefficients and degree sums, and add the appropriate coefficients:

> m = list(rem.args)

> cs = [Poly(rem).coeff_monomial(x) for x in m]

> ds = [1] + [sym(sy.degree_list*x(for x in m[1:]]

> sum(x for x,y in zip(cs,ds) if (y >= q-w[i]) and (y < q))

These last scripts can be placed in a loop to run through all values of i.
Clearly this method is overkill for the computation of the Banzhaf indices: as we have

seen earlier working with a univariate polynomial is quite sufficient. However, that polynomial
cannot indicate which parties have met to form each coalition.

With the voting game [16; 10, 9, 6, 5] the products of all of (1 + xwi) except for each term in
turn are:

x20 + x15 + x14 + x11 + x9 + x6 + x5 + 1

x21 + x16 + x15 + x11 + x10 + x6 + x5 + 1

x24 + x19 + x15 + x14 + x10 + x9 + x5 + 1

x25 + x19 + x16 + x15 + x10 + x9 + x6 + 1

In the i-th polynomial, we then have to see which of the terms when multiplied by xwi will
push the degree from under to at or over the quota q.

Using different variables, we can first find the product of (1 + xwi
i) and eliminate all terms

with a degree sum less than q. This leads to the encoding polynomial:

x10
0 x9

1x
6
2x

5
3 + x10

0 x9
1x

6
2 + x10

0 x9
1x

5
3 + x10

0 x9
1 + x10

0 x6
2x

5
3 + x10

0 x6
2 + x9

1x
6
2x

5
3

and we can see immediately which parties have met to form which coalition. The encoding
polynomial thus does encode all the individual winning coalitions.

An alternative approach is to start with the encoding polynomial, and for the i-th party,
take the quotient when divided by xwi

i . The number of monomials in the quotient with degree
sum less than q will be the i-th Banzhaf power index.

4 Quarreling parties

These are parties who—either temporarily or permanently—refuse to vote together. This might
be a matter of principle, or of irreconcilable political differences. If the j-th and k-parties are
quarreling, then the polynomial

∏
(1 + xwi

i) must be reduced modulo xjxk. In other words, we
remove all monomials which include both xj and xk.

As an example, we consider the 2021 composition of the Australian Federal Senate:

Party Support & Ideology Numbers
Coalition Liberal Business & economy, right wing 31

National Primary Producers, right wing 5

Opposition Labor Workers, centre left 26

Cross-bench Greens Environment & sustainability, left 9
One Nation Anti-immigration, far right 2
Centre Alliance Centrist 1
Lambie Network Populist 1
Patrick Team Regional 1

Table 4: Australian Federal Senate, 2021

Confusingly, the Liberal3 and National parties are separate political entities, but for the
purposes of obtaining the numbers needed to form a government, have an alliance known as
“The Coalition”. And “cross-bench” simply means that the senators in those parties are not
bound by coalition or opposition party lines, but can vote according to their consciences. As
of late 2021, the Coalition are the governing body in Australia.

As a majority is required to pass any motion, the voting game is thus

[39; 31, 5, 26, 9, 2, 1, 1, 1]

but given the Liberal-National coalition, this is better expressed as

[39; 36, 26, 9, 2, 1, 1, 1]

The Banzhaf, Shapley-Shubik, Deegan-Packel indices with their normalizations, and the Holler
index, are respectively:

[52, 12, 12, 10, 4, 4, 4]⇒ [0.531, 0.122, 0.122, 0.102, 0.041, 0.041, 0.041]

[2616, 684, 684, 516, 180, 180, 180]⇒ [0.519, 0.136, 0.136, 0.102, 0.036, 0.036, 0.036][
9

4
,
11

10
,
11

10
,
8

5
,
59

60
,
59

60
,
59

60

]
⇒ [0.25, 0.122, 0.122, 0.178, 0.109, 0.109, 0.109]

1

16
[3, 2, 2, 3, 2, 2, 2] = [0.1875, 0.125, 0.125, 0.1875, 0.125, 0.125, 0.125]

Suppose that Labor and the Coalition are quarrelling; and will not vote together. We can
encode this by determining the encoding polynomial modulo x0x1. We can start by creating the
polynomial

∏
(1 + xwi

i) as shown in Listing 3, and from that obtain the encoding polynomial:

3Note that “Liberal” here has a very different meaning to that in America; Australia’s Liberal Party is a
right-wing conservative party.

bsq = [0]*n

for i in range(n):

Gi = sy.groebner([xs[i]**ws[i]],xs)

quo_i, rem_i = Gi.reduce(rem)

mn = Poly(quo_i[0],xs).monoms()

bsq[i] = len([x for x in qi if sum(x) < qs])

Listing 5: Computing the Banzhaf indices in the case of a quarrel

> pmn = Poly(pr,xs).monoms()

> pmnw = [x for x in pmn if sum(x) >= qs]

> p_enc = sum([sy.prod(x**y for x,y in zip(xs,p)) for p in pmnw])

and then reduce it:

> Gs = sy.groebner([xs[0]*xs[1]],xs1)

> quo,rem = Gs.reduce(p_enc)

> display(rem)

x36
0 x9

2x
2
3x4x5x6 + x36

0 x9
2x

2
3x4x5 + 24 terms omitted + x26

1 x9
2x

2
3x4x6 + x26

1 x9
2x

2
3x5x6

We can now compute the Banzhaf power indices by seeing to which winning coalitions party
i is necessary. We can do this by finding the quotient modulo xwi

i and determining the number
of monomials whose degree sum is less than q. This is shown in Listing 5 and the index list,
with its normalization, is:

[24, 4, 12, 10, 4, 4, 4]⇒ [0.387, 0.065, 0.194, 0.161, 0.065, 0.065, 0.065]

Comparing these values with the previous (non-quarreling results) we see the Liberal/Na-
tionals (the first term) have decreased in power slightly, Labor (the second term) has decreased
in power drastically, and the loss is distributed among the other parties. The lesson here is that
it would be very unwise for Labor to adopt a permanent quarrelling stance with the Coalition.

Suppose that the Greens and One Nation are quarrelling (which is a very reasonable as-
sumption, given their respective ideologies); this requires reducing modulo x2x3. The resulting
encoding polynomial has 40 terms, and the Banzhaf indices can be found to be

[40, 8, 7, 6, 2, 2, 2]⇒ [0.597, 0.119, 0.104, 0.09, 0.03, 0.03, 0.03]

and so this particular quarrel has the effect of increasing the power of the Coalition.
A diagram of the quarrels and their effects on the normalized Banzhaf indices is given in

Figure 1. One counter-intuitive result is that a quarrel may increase the power of the non-
quarreling parties.

Clearly the method outlined can be used for multiple simultaneous quarrels.

5 Conclusions

Assessing the power of a voting body in weighted voting is a fundamental aspect of modern
decision making; we expect and assume that voting power will be roughly proportional to the

No quarrels

Coalition and Labor quarrel

Greens and One Nation quarrel

Coalition Labor Greens One Nation

Figure 1: Effects of quarreling

voter’s weight. However, this is rarely the case. Over 60 years of investigation into power indices
have resulted in many different methods of assigning power, each with particular strengths and
weaknesses. And there is now a sizable literature into axiomatic power indexing: what are the
basic axioms we would expect a power index to satisfy, and can they be made consistent? And
if not, what properties are we prepared to forsake? As we have seen, monotonicity may be a
desirable property, which is not satisfied by either the Deegan-Packel or Holler indices. Power is
thus a vital topic in decision theory, and such relatively recent upheavals as Brexit may require
voting weights to be reassigned so that no country increases power at the cost of another [5].

This means that the computation of voting power indices is also an important topic, and
polynomials and various combinatorial algorithms are still popular. We have shown how stan-
dard polynomial methods can be enlarged and deepened, using the theory of ideals, can provide
a highly general approach that can also deal with quarrels.

Acknowledgements

The author gratefully acknowledges the close reading of the reviewers, who pointed out a
number of errors: factual, typographical, and mathematical, (hopefully all of) which have been
amended.

References

[1] John Banzhaf. “Weighted voting doesn’t work: a mathematical analysis”. In: Rutgers
Law Review 19.2 (1964), pp. 317–343.

[2] Steven J. Brams and Paul J. Affuso. “Power and size: a new paradox”. In: Theory and
Decision 7 (1976), pp. 29–56.

[3] James S. Coleman. “Control of Collectives and the Power of a Collectivity to Act”. In:
Social Choice. Ed. by Bernhardt Liebermann. Gordon and Breach, 1971, pp. 192–225.

[4] John Deegan and Edward W. Packel. “A new index of power for simple n-person games”.
In: International Journal of Game Theory 7.2 (1978), pp. 113–123.

[5] Philip Grech. “Power in the Council of the EU: organizing theory, a new index, and
Brexit”. In: Social Choice and Welfare 56.2 (2021), pp. 223–258.

[6] Manfred J. Holler. “Forming coalitions and measuring voting power”. In: Political stud-
ies 30.2 (1982), pp. 262–271.

[7] Irwin Mann and Lloyd S. Shapley. Values of Large Games, VI: Evaluating the Electoral
College Exactly. Tech. rep. United States Air Force Project Rand Memorandum PM-
3158-PR, May 1962.

[8] Lionel Penrose. “The Elementary Statistics of Majority Voting”. In: Journal of the Royal
Statistical Society 109.1 (1946), pp. 53–57.

	Introduction
	Formal definitions
	Computation of power indices
	Deegan-Packel and Holler indices

	Working with multivariate polynomials
	Quarreling parties
	Conclusions

