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Abstract

This article deals with Cartesian ovals and one of the many methods of their construc-
tion - the so-called Chasles construction. The paper first shows an alternative justification
of why points constructed by the Chasles construction satisfy foci definition of Cartesian
oval, and - as a part of this justification - shows why the oval has three foci and how to
construct the third focus by Euclidean means (assuming the oval is defined by two foci).
Finally, the special case in which one of the circles in the construction is replaced by a
straight line is discussed. It is shown synthetically that in such a case the construction
renders a conic, and moreover, it can be shown that the focal definition of a conic and the
definition using a directrix line are equivalent (but proof is not included in the article).

1 Introduction

The foci definition of the Cartesian oval has the following form:

c1|PF1|+ c2|PF2| = k (1)

where F1 and F2 are given points (foci) and c1, c2 and k are given constants. All points P ,
satisfying the equation, belong to the oval.
There are many ways to construct the points of an oval geometrically. The most elementary one
is to choose the distance PF2 arbitrarily and calculate PF1. If both distances are non-negative
and satisfy the triangle inequality, the point P is constructed as the intersection of two circles.
However, there are subtler and faster constructions, one of which is that of Chasles [1] (Michel
Chasles, French mathematician, 1793-1880). His procedure follows (Figure 1):

Chasles construction
Let two circles k1(F1, R1) and k2(F2, R2) are given. Let us choose a fixed point X on the line
F1F2. Let an arbitrary line through the point X intersects k1 at P1 and k2 at P2. Denote P the
intersection of the lines P1F1 and P2F2. Then the point P belongs to the oval whose equation
is:

|XF1|
R1

|PF1| −
|XF2|
R2

|PF2| = |XF1| − |XF2| (2)



Figure 1: Chasles construction of oval

Since |XF1|/R1, |XF2|/R2 and |XF1|− |XF2|, are constants, this equation is equivalent to (1).
This statement can be derived using Menelaus theorem (the line XP1P2 intersects the sides
of the triangle F1PF2) or by spatial reasoning and subsequent projection onto a plane. These
derivations are mentioned on the website [2], and we will not present them here.
Note: A line through X can intersect each circle at two points, so we can construct up to four
points of P . It can be shown that two points belong to the oval with equation (2) and the
remaining two points belong to the oval whose equation is similar to the equation (2), except
that one of the mentioned three constants has the opposite sign. These two ovals are so called
conjugate.
The article is divided into three parts. First, we give a new justification of why the points of P
constructed using the Chasles construction belong to the oval. As a part of this justification,
we show why a Cartesian oval has three foci and how to construct its third focus geometrically.
In the second part, we show how to perform the Chasles construction of the oval, if two foci of
the oval and its equation (1) are given. Finally, we consider the case where one of the circles
is a straight line and show that in this case the construction depicts a conic. A by-product of
this proof is a justification why the definition of a conic using a directrix line is equivalent to
the definition using a foci definition.

2 Chasles construction and third focus of oval

We start from the construction described in the previous section. Our aim is to justify the
following
Theorem 2.1 The points P constructed by Chasles’ construction satisfy the equation (2).
Proof. Construct inverse points X1, X2 of the point X with respect to the circles k1 and
k2, respectively. Then construct the intersection E of the lines X1P1 and X2P2 and finally
construct the intersection F3 of the lines EP and F1F2 (Figure 2).

Due to the definition of inversion,

|XF1|
|P1F1|

=
|P1F1|
|X1F1|

,



Figure 2: Chasles construction and the third focus

the triangles X1F1P1 and P1F1X are similar. Therefore

∠F1P1X1 = ∠F1XP1 = α

In the same way we derive the similarity of the triangles F2P2X and F2X2P2 and the equality

∠F2P2X2 = ∠F2XP2 = α

From the above equations follows that the quadrilateral P2P1PE is cyclic, therefore ∠XP2X2 =
∠XP2E = ∠P1PE. Hence, the triangles EPP1 and X2P2X are similar. Since the triangles
F2P2X2 and F2XP2 are also similar, it holds:

|EP |
|PP1|

=
|P2X2|
|P2X|

=
|P2F2|
|XF2|

(3)

In the same way, we arrive at equality

|EP |
|PP2|

=
|P1X1|
|P1X|

=
|P1F1|
|XF1|

(4)

Therefore,

|PP1|
|PP2|

=
|F1P1| − |F1P |
|F2P2| − |F2P |

=

|P1F1|
|XF1|
|P2F2|
|XF2|

=
|P1F1|
|XF1|

· |XF2|
|P2F2|

, (5)

which, after easy rearrangement, gives the equation

|XF1|
|P1F1|

· |PF1| −
|XF2|
|P2F2|

· |PF2| = |XF1| − |XF2| (6)



identical to the equation (2).
Theorem 2.2 Point F3 is the third focus of the oval.

Proof. To prove this statement, it is necessary to justify two facts:
1) The point F3 is fixed, i.e. it does not depend on the position of the line XP2P1. 2) Points
P of the oval with foci F1F2 also lie on the (identical) ovals with foci F3F1 and F3F2

Due to the equality ∠X1EX2 = ∠P2EP1 = ∠P2PP1 and ∠X2X1E = ∠F1X1P1 = ∠F1P1X =
∠PP1P2 the triangles X2EX1 and P1PP2 are similar. Since the ratio of of the sides |PP1|/|PP2|
is constant according to equation (5), the ratio of the sides |EX2|/|EX1| is also constant. Let
us denote this constant e:

|EX2|
|EX1|

= e

Furthermore, the triangles F3EX1 and F3X2E are also similar since they share the angle at the
vertex F3 and the following equality holds:

∠X1EF3 = ∠P1EP = ∠P1P2P = ∠P1P2F2 = α + ∠P2F2X2 = ∠P2X2F3

Hence:

|F3X2|
|F3E|

= e and
|F3E|
|F3X1|

= e (7)

Multiplying these identities one gets

|F3X2| = e2 · |F3X1|

But
|X2X1| = |F3X2| − |F3X1| = |F3X1| · (e2 − 1)

Since the length of |X2X1| is constant, the length of |F3X1| is constant too and the point F3 is
fixed. (More precisely, it is the centre of the Apollonius circle for the triangle X1EX2.) This
completes the first part of the proof.
In the second part, it suffices to consider the foci of F3F1. In the case of the foci of F3F2 the
procedure is analogous. Let’s consider an equation

|XF2|
|P2F2|

· |F3P |+ |F1P | = k (8)

As |XF2|/|P2F2| = c is a constant, it is sufficient to show that k is also a constant. Putting
the identity |F3P | = |F3E|+ |EP | into the equation (8) and using the relation (3), in the form
|XF2|/|P2F2| · |EP | = |PP1|, one gets

|XF2|
|P2F2|

· |F3E|+ |XF2|
|P2F2|

· |EP |+ |F1P | = |XF2|
|P2F2|

· |F3E|+ |PP1|+ |F1P | = |XF2|
|P2F2|

· |F3E|+ |F1P1|

The right-hand side of the equation is constant if and only if |F3E| is a constant. Equation (7)
implies

|F3E| = e · |F3X1|

Since we have proved that |F3X1| is constant, |F3E| is also constant. The proof is complete.



3 Chasles construction of an oval given by focal equation

In this section we solve the following
Problem 3.1
Let an oval is given by two foci F3 and F2 and by the equation

c3 · |PF3|+ c2 · |PF2| = k

where c3, c2 and k are constants. How to perform the Chasles construction of the oval?

Before we show the solution to this problem, we will return to the classical construction
mentioned in the introduction. We will show that it is not unique, namely, that there are
an infinite number of constructions giving the same oval. We choose one of them suitable for
solving our problem.
Let the circles k1, k2 and the point X on the line of their centres be given. These objects, as
we already know, determine the oval by the construction. Next, let us choose another point
Y ̸= X on this line. How to modify the circles k1 and k2 to l1 and l2, respectively, so that l1,
l2 and Y determine the same oval? (Figure 3)

Figure 3: Chasles constructions of the same oval

Let the line XP1P2 determine the point P of the oval. Let us draw a parallel to this
line through the point Y , which intersects the lines P2F2 and P1F1 at the points P ′

2 and P ′
1,

respectively. Then the intersection of the lines P ′
2F2 and P ′

1F1 coincides with the point P .
It remains to justify that the points P ′

2 and P ′
1 move on the circles with centres F2 and F1,

respectively. From the similarity of the triangles XP2F2 and Y P ′
2F2 follows:

|P ′
2F2| = |P2F2| ·

|F2Y |
|F2X|



As the right-hand side of the equation is a constant, the point P ′
2 moves on the circle l2 centred

at F2. Similarly, we prove that the point P ′
1 moves on the circle l1 centred at F1.

Also, the focal point F3, whose construction is described in the previous section, remains the
same since (Figure 2 and Figure 3)

∠P1PF3 = ∠XP2X2 = ∠XP2F2 − α = ∠Y P ′
2F2 − α = ∠Y P ′

2Y2 = ∠P ′
1PF3

where Y2 is the inverse of the point Y with respect to the circle l2.
Now it is possible to choose a point Y in such a way that its inverse image Y1 with respect the
circle l1 is identical to the inverse image Y2 of Y with respect to the circle l2. Such a point
always exists unless the point X - and Y - is not centre of similitude of the circles. In such case
the solution is a conic and the third focus does not exist.

The proofs of these two propositions will be only sketched. Firstly, we show the existence
of the point Y . Since Y1 is inverse of Y in l1, it holds:

R2
l1
= |F1Y | · |F1Y1|

where Rl1 is radii of the circle. Dividing the equation by |F1Y |2 we get(
Rl1

|F1Y |

)2

=
|F1Y1|
|F1Y |

But the left hand side of the equation is constant for all points Y . Hence, the point Y1 is the
image of Y in homothethy h1, with centre at F1 and coefficient (Rl1/|F1Y |)2. Similarly, we
arrive at the conclusion that the point Y2 is the image of Y in a homothethy h2. Hence

h1 ◦ h(−1)
2 (Y2) = Y1

Now, composition of two homotheties h1 ◦ h
(−1)
2 is a third homothethy h3 if and only if the

product of the coefficients of homotheties is not equal 1, in which case it is a translation. It is
clear that the centre Z of the h3 fulfils

h3(Z) = Z

Therefore we can select Y in a way that Z = Y1 = Y2.
The second case (translation) occurs only if the point Y is the centre of similitude of the circles.
In such case, the lines P1F1 and P2F2 intersect for the points P1 and P2 being antihomologous
(for details see website [3]). They intersect in a centre of a circle tangent to the circles l1 and l2.
It is possible to show that the intersections belong to hyperbola with foci F1, F2, if the tangent
circle touches both circles externally or internally, and to ellipse, if the tangent circle touches
one circle externally and second internally.

Let’s return to the problem. The intersection E (Figure 2 with substitution of point labels
Y , Y1 and Y2 for the labels X, X1 and X2) is identical to this common image, and since it lies
on the line F1F2, it must be the third focus F3.

Let us denote this point Y by X again, this time knowing that F3 = X1 = X2. The updated
Figure 2 then looks as follows (Figure 4):



Figure 4: Chasles constructions with F3 = X1 = X2

Denoting the radii of the circles |P1F1| = R1 and |P2F2| = R2, the new equations (3), (4),
(6) and (8) are

|F3P |
|PP1|

=
|P2F3|
|P2X|

=
R2

|XF2|
|F3P |
|PP2|

=
|P1F3|
|P1X|

=
R1

|XF1|
(9)

|XF1|
R1

· |PF1| −
|XF2|
R2

· |PF2| = |XF1| − |XF2| (10)

|XF2|
R2

· |F3P |+ |F1P | = R1 (11)

|XF1|
R1

· |F3P |+ |F2P | = R2 (12)

Equations (10), (11) and (12) express an oval with foci F1F2, F3F1 and F3F2.
Solution of problem 3.1

In order to solve the problem 3.1, we will modify the oval equation to the form (12). Then we
will proceed as follows:
1) Construct the circle k2(F2, R2).
2) Construct the inverse image X of the point F3 with respect to circle k2.
3) Construct the Apollonius circle k1 with the ratio distances of its points P1 to the points F3

and X equal to (9), |P1F3|
|P1X| = R1

|XF1| . This ratio is given by equation (12). Denote the centre of
this circle by F1.
4) The circles k1, k2 and the point X determine the oval given by equation (12).
Negative constant in equation (12) does not change the above procedure - we work with absolute
values of these constants. It may seem that absolute values of the two constants determine a
total of four different equations (12) but the Chasles construction determines only two of them.
It can be shown, however, that two of these four ovals are empty sets. Particularly, the oval
of the equation (12) with |XF1|/R1 > 0 and R2 < 0 is excluded immediately. One of the
remaining three equations is always excluded due to the improper focal distance F2F3.



4 Chasles construction for one of the circles replaced by

a line

Now we prove that replacing one circle in the Chasles construction by a line, the set of points
P is a conic. For completeness we describe the construction (Fig. 5) in detail.

Special case of the Chasles construction
Let a circle k(F2, R2) and a line l be given and let the line p passes through F2 and is perpen-
dicular to the line l. Choose a point X on the line p. Let an arbitrary line passing through X
intersects the line l at P1 and the circle k at P2. Draw the perpendicular line p1 to the line l at
P1 and denote the intersection of the lines P2F2 and p1 as P .

Figure 5: Special case of Chasles constructions

Theorem 4.1 The set of points P constructed in this way is a conic.
Theorem 4.2 The focus F1 of this conic is constructed as follows (Figure 6):
1) Construct the axisymmetric image X1 of the point X with respect to the line l.
2) Construct the inversion image X2 of the point X with respect to the circle k.
3) Construct the intersection E of the lines P1X1 and P2X2.
4) Denote F1 the intersection of the lines EP and p.

Figure 6: Construction of a focus of a conic

Proof of 4.1 and 4.2.
Let’s start with a few obvious facts. It holds



α = ∠F2P2X2 = ∠F2XP2 = ∠PP1P2 = ∠PP1E

Since ∠PP1E = ∠PP2X2 = ∠PP2E, the quadrilateral PP2P1E is cyclic and hence

α = ∠PP1P2 = ∠PEP2

Firstly, we will show that the point F1 is fixed for any line XP1P2. As the triangles X1X2E
and P2X2F2 are similar, we have

|X1X2| · |X2F2| = |X2E| · |X2P2|.

The left side of this equation is a constant, therefore the product on the right side is also con-
stant.
From the similarity of the triangles X2F1E and X2P2X follows

|X2E| · |X2P2| = |X2X| · |X2F1|.

The product on the left side is constant and the length of the line segment |X2X| is fixed.
Therefore, the length of the line segment |X2F1| is also fixed and the point F1 is common to
all lines XP1P2.
Since ∠PP2E = ∠PEP2, the triangle P2PE is isosceles.
Now we are at a crossroads: if the point X lies outside the circle k, the locus will be an ellipse
(see below), if it lies inside the locus will be a hyperbola, finally if the point X lies at the
intersection of p and k, the locus is parabolla. We only hint why this proposition is true in the
conclusion of the article, but before it, lets focus on the case of ellipse (Figure 6).

R2 = |F2P2| = |PF2|+ |PE| = |F2P |+ |F1P |+ |F1E|

Otherwise written:

R2 − |F1E| = |F2P |+ |F1P | (13)

This equation represents a focus definition of an ellipse if and only if |F1E| is constant. The
similarity of the triangles F1EX2 and F1X1E implies

|F1X1| · |F1X2| = |F1E|2.

The product on the left-hand side is constant and the proof is completed.
As in the case of the classical Chasel construction, the ”special one” is not unique. Let S is
the intersection of the lines l and p. Choose a point Y ̸= X on the line p, construct a circle k2
with centre F2 and radius R′

2 = R2 · |Y F2|/|F2X| and a line l2 parallel to the line l such that
the distance of intersection S2 of lines p and l2 to the point S is equal, SS2 = XY (equality of
oriented distances). Then the line l2, the circle k2 and the point Y determine the same conic.

As in the previous case, the point Y can be chosen in such a way that the points Y1 (axisym-
metric point with respect to the line l2) and Y2 (the inverse image of the point Y with respect
to the circle k2) are identical, i.e. Y1 = Y2 = F1. (To be exact: such a point always exists,
unless the point Y does not lie on the circle k2, in which case the focus F1 does not exist and
the locus is a parabola.) By this transformation the relative position of the point Y and the



circle k2 is preserved. It means that the points Y lie either inside of the circles k2 in all of the
configurations or outside in all of them. So we have the following configuration: points Y , F1,
line l2 (symmetrical axis of the points) and the circle k2 with the property, that inverse image
of Y is F1 and vice versa. In this configuration the circle k2 and the line l2 are nonintersecting
and it is possible to show: If the point Y lies outside of the circle, the locus is an ellipse If it
lies inside, the locus is a hyperbola. We only sketch the proof. Let’s begin the proof with the
former case, Figure 7:

Figure 7: Directrix line and director circle in Chasles construction

We know, that |EP | = |PP2| and (in this configuration) E = F1, so |F1P | = |PP2|. From
the Figure 7 it is obvious that P lies always within the segment F2P2. Hence

Constant = |F2P2| = |F2P |+ |PP2| = |F2P |+ |F1P |,

which is focal definition of ellipse.
The case of a hyperbola is analogous with the exception that the labels of the points Y and F1 in
the Figure 7 are interchanged (since the point Y lies inside of the circle). Again |EP | = |PP2|,
E = F1 and |F1P | = |PP2|, but in this case, the point P lies outside of the segment F2P2.
Hence:

Constant = |F2P2| = |F2P | − |PP2| = |F2P | − |F1P |,

which is focal definition of the hyperbola. The exact proof why the point P lies in/out – side
of the segment in respective cases is left to the reader. It is not hard to show that in this
configuration the line l2 is the directrix line of the conic.
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