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ABSTRACT: In this paper, a generalized form of the Zero-Probability Theorem (initially called a paradox) is 
established. Originally, it was proved for the standard hypothesized form that contains a single number. New version 
demonstrates that when testing a mean of the normal population using a point null hypothesis which is formulated as a 
set of all countably infinite algebraic numbers, the probability of such hypothesis is zero within the set of all real numbers. 
This result shows that point-null hypothesis paradigm is based on flimsy foundation and points to one of the most 
important root causes of the current reproducibility crisis in science. We explore implications of this theorem on the 
Fisherian significance testing, Neyman-Pearson hypothesis testing, and Bayesian testing based upon the Bayes factor. 
We recommend that point-null hypotheses of a normal mean should be immediately abandoned. For decades, their testing 
has produced countless criticisms and recently even methodological crises in many fields of science and has done serious 
damage to the image of statistics and statisticians. The new model should be based on the negligible null hypotheses 
accompanied by the practically relevant alternative hypotheses. We regard this simply achieved modification as a new 
paradigm in the Kuhn's sense. Enough arguments are provided to confirm that this will not only eradicate most of the 
objections against frequentist testing and breathe a new life into them, but also considerably reconcile communication in 
inference between frequentist and Bayesian approaches. In conclusion, no frequentist nor Bayesian should test point-null 
hypotheses for continuous parameters.  

 
1. Introduction 

“We will all be Bayesians in 2020, and then we can be a united profession.” 
D.V. Lindley’s 1995 interview with A.F.M Smith, Statistical Science. 

 “I have lamented that Bayesian statisticians do not stick closely enough to the 
pattern laid down by Bayes himself: if they would only do as he did and publish 
posthumously we should all be saved a lot of trouble.” [M. Kendall, On the 
Future of Statistics, JRSS(A), (1968), 131, 182-204]. 

The first formal significance test was conducted by Arbuthnott [4]. From today's perspective, it can 
be argued that this was an auspicious event in statistics history. However, at the same time, Arbuthnott 
opened Pandora’s box foreshadowing the controversies about the role of statistical tests. From one 
standpoint, he correctly analyzed data on the yearly number of male and female christenings in 
London from 1629 to 1710 and demonstrated that males were born at a greater rate than females. 
Notwithstanding this distinguished achievement, this is also the first recorded case of confusing 
statistical with scientific hypotheses. That is, Arbuthnott paralleled mere rejection of a null hypothesis 
with an irrefutable statistical argument for divine providence. Moreover, his approach in testing was 
without delay challenged by several scientists, including W.J. 'sGravesande, Nicholas Bernoulli and 
de Moivre (see [45] pp. 275-285.).  

Broadly speaking present-day hypothesis testing can be conducted in two methodologically 
different ways, using frequentist concepts and using Bayesian perceptions. Frequentist concepts are 
based on the idea that probability is a limiting relative frequency and Bayesians rely on the notion 
that probability is a degree of personal belief that some event will occur. The pivotal indicator in 
modern frequentist testing is a p-value (see, for example, [19]), and Bayesian testing is founded on 



 
 

posterior probabilities and Bayes factor ([55], [56], [58], [41], [48]). Frequentist statisticians are 
currently still in the majority regardless of the famous prediction made by Lindley [95] given above. 

One of the most fundamental problems in Statistical science is that we can analyze the same dataset 
using those two different concepts and reach divergent results. More importantly, as shown for 
example in Lovric [66], as the sample size increases frequentist tests will tend to reject point (sharp) 
null hypothesis and Bayesian testing will incline to support the same null hypothesis. This is the 
essence of the famous Jeffreys-Lindley paradox. For the past sixty years many statisticians have been 
trying to find a cure and reunite Bayesian and frequentist inference but without success. Recently, 
Gelman and Shalizi [32] concluded that the Jeffreys-Lindley paradox is really a problem without a 
solution.  

Frequentist statistical tests are usually regarded as an anonymous hybrid of two divergent classical 
statistical paradigms. Fisherian significance testing is founded on a single null hypothesis, p values, 
inductive reasoning, and drawing conclusions. By contrast, Neyman-Pearson hypothesis testing is 
established on two hypotheses: null and an alternative, two types of errors, fixed-level significance 
statements, making decisions, and deductive reasoning but inductive behavior. These opposing views 
about the proper manner to conduct a test were never reconciled by their authors, nonetheless, been 
amalgamated by contemporary authors of statistics textbooks. As pointed out by Berger [10, p. 4] 
“disagreement between Fisher and Neyman has had a significantly deleterious effect on the practice 
of statistics in science, essentially because it has led to widespread confusion and inappropriate use 
of testing methodology in the scientific community.” In contrast, Lehmann [60] argues that the 
differences between Fisherian and Neyman-Pearson testing approaches to testing are largely 
rhetorical rather than substantial and that two theories are complementary rather than contradictory. 

Frequentist statistical testing has become extensively accepted by almost all researchers as the 
most common statistical inferential approach in almost all fields of science. However, over the past 
80 years, numerous objections and severe criticisms have been raised against their usefulness to the 
point that they should be banned. Many critics also emphasize that statistical tests are very often 
misinterpreted and misused. Specifically, there is almost universal confusion over the interpretation 
of the p-values and significance levels. P-value is one of the most pervasive and at the same time, 
misapprehended statistical indicators in scientific research (for a review of twelve typical 
misconceptions, see Goodman [42]). We will illustrate this statement with the following two 
examples. 

(1) In the recent paper written by seven eminent world statisticians (Greenland, Senn, Rothman, 
Carlin, Poole, Goodman, and Altman 2016) with the title “Statistical tests, p values, 
confidence intervals, and power: a guide to misinterpretations”, authors have provided an 
explanatory list of 25 misinterpretations of p values. To educate their readers they have given 
their “correct” definition (p. 339): “The p value is then the probability that the chosen test 
statistic would have been at least as large as its observed value if every model assumption 
were correct, including the test hypothesis”. However, this definition is very wrong since it 
includes only right-tailed tests and should be included in their list. Dr. Greenland admitted 
that they made a mistake, but regretfully that paper was cited by 1594 authors and downloaded 
169,000 times, apparently nobody noticed this vast error.  

(2) Haller and Krauss [46] asked participants from psychology departments in 6 German 
universities to fill out a short questionnaire in order to assess their functional knowledge of p-
values. They discovered that 100% of psychology students lack this understanding, 97% of 

https://errorstatistics.com/2019/06/17/the-2019-asa-guide-to-p-values-and-statistical-significance-dont-say-what-you-dont-mean-some-recommendations/


 
 

academic psychologists don’t understand p-values, and the most alarming finding was that 
80% of statistics instructors misunderstand p-values. 

The remaining of this paper is structured as follows. In the next section, we provide a brief 
overview of the main objections against point null-hypothesis testing. Section 3 is the heart of the 
paper. We focus on the inferential aspects to the problem of testing a point-null hypothesis of a normal 
mean. In that section, we prove the Generalized Zero probability theorem. This theorem states that in 
testing a mean of the normal population, even when a null hypothesis is formulated as a set of all 
countable infinite algebraic numbers, it has zero probability. In light of this, in Section 4 we briefly 
explore the consequences of the Zero theorem on Fisherian, Neyman-Pearson, and in the Bayesian 
approach in testing. We show that the dismissal of the famous Jeffreys-Lindley paradox is one of the 
direct implications of the theorem. In the last section, we propose a paradigm shift in the foundation 
of statistical science. We give arguments to confirm our thesis that this is a paradigm shift in Kuhn's 
sense. It will not only eliminate most of the objections against frequentist testing but also considerably 
reconcile communication in inference between frequentist and Bayesian testing methodologies. 

It is, however, important to note that this paper focuses only on testing of a parameter in the case 
of one sample, based upon the model that assumes absolutely continuous distribution with respect to 
the Lebesgue measure λ. 

 

1. Statistical crisis in science 

Since Buchanan-Wollaston [15] raised the first criticism against significance testing, this 
foundational field of statistics has drawn increasingly active and stronger opposition in numerous 
fields of science, including the prohibition of statistical inference [99], that the term “statistical 
significance” [102] should be banned, and p-values abandoned [11]. We regard that majority1 of 
researchers and statisticians are incognizant of the dimension and intensity of this problem.  
Therefore, we consider that it is essential to provide a short compendium of selected references (from 
the voluminous literature, enormous in breadth and details) in which notable critics have raised their 
voices against significance testing, from the following scientific disciplines: 

Accounting [65], Atmospheric research [78], climate science [3],  clinical medicine and 
epidemiology ([84], [40], [97]), consumer research [53], criminology [16], ecology and 
evolutionary biology [98], economics ([69], [70]), ergonomics [100], forecasting [5], forest 
sciences [26],  management science [91], marine ecology [8], marketing [51],  neuroscience 
[49], organizational science [92], political sciences [36], psychology and education ([86],  [6], 
[17], [72], [80], [35], [22], [27], [89], [46], [67]), road safety research [47], scieontometrics 
[90], sociology [74], and wildlife field [57]. 

Some of the main arguments against significance testing can be found in the following list. We argue 
that almost all of these objections can be ruled out with the wide approval of a new proposal to make 
a shift to the interval hypothesis testing paradigm.  

1. The dichotomous reject/fail to reject criteria is arbitrary and contributes to black-and-white 
thinking. 

                                                           
1 For example, Spanos [96] p. 645) claims that “the use, abuse, interpretations and reinterpretations of the notion of a P value has been 
a hot topic of controversy since the 1950s in statistics and several [italicized by the author] applied fields, including psychology, 
sociology, ecology, medicine, and economics.” 



 
 

2. A specific null hypothesis is almost always nil null (that is specified as a point null). 
3. The null hypothesis cannot be literally true. 
4. Traditional testing is a “trivial exercise,” because the null hypothesis can always be rejected, 

given a large enough sample size. 
5. Apparent validity of findings depends on researchers’ efforts to obtain enough data.  
6. Traditional testing obscure important findings. 
7. The vast majority of null hypotheses are false and scientifically irrelevant. 
8. “p < .05” does not actually refer to anything very interesting. 
9. Traditional significance testing ignores effect size. 
10. It can, at best, only test statistical (not substantive) null hypotheses. 
11. Traditional significance testing leads to misinterpretation of results. 
12. Focus on α=0.05 ignores or leads to low power. 
13. Procedure does not tell researchers what they want to know, that is the probability that the 

null hypothesis is true given that we have obtained a set of data. 
14. A common misconception involves interpreting statistical significance as theoretical or 

practical significance. 
15. Traditional testing highlights trivial findings. 
16. Increases type-I error rate in published papers. 
17. Contributes substantially to publication bias. 
18. Promotes arbitrary data dredging (“p-value fishing”). 
19. Leads to erosion of researchers’ devotion since repeated and very public misuse of testing s 

creates cynicism and confusion. 
20. Misinterpretation of statistical non-significant result as evidence that the null hypothesis is 

true. 

Many non-statisticians advocate the reform of statistical inference and statistics education. They 
claim that less emphasis should be placed upon the reporting of p values and more on effect size, 
confidence intervals, use of information-theoretic approaches, and Bayesian inference. Nevertheless, 
they are aware that neither reliance on confidence intervals nor Bayesian inference will suffice to 
preclude injudicious statistical conclusions. As Abelson ([2] p. 13) warned, “Under the Law of 
Diffusion of Idiocy, every foolish application of significance testing will beget a corresponding 
foolish practice for confidence limits.” 

By contrast, there are also some examples of papers that support null hypothesis statistical testing, 
including Fleiss [29], Frick [30], Abelson [1], Hagen [44], Cortina and Dunlap [24], Chow [20], 
Hagen [44], Mulaik, Raju, and Harshman [74], Wainer and Robinson [101], Dennis [25], Mogie [73], 
Sawilowsky [88], and Murtaugh [76]. Some of the defenders assert that a great deal of the criticism 
concerning these problems “is related to the misapplication and misunderstanding of NHST [Null 
Hypothesis Significance Testing] and, specifically, the use of p values by researchers, editors, and 
consumers of research” (LeMire [61]). Senn [93] thinks that p values can have some limited usage, 
but that “Bayesians in particular, find them ridiculous” (p. 193) and that “p-values are a practical 
success but a critical failure.” Gibson [34] argues that the reproducibility crisis in modern science is 
not the fault of p-values, but rather mainly a consequence of unwarranted optimism. Begleya and 
Snapinn [7] agree with Gibson and point out that p-values are not the cause of the problem but a tool 
that is frequently used inappropriately.  In contrast, the substantial support to frequentist reasoning is 
maintained by the error statistics paradigm accompanied by severity testing established by Mayo and 
Spanos [68].  



 
 

We regard that we have rendered enough arguments to ascertain that there is a profound statistical 
crisis in science. The most obvious reflection of this is the so-called reproducibility (replicability) 
crisis in modern science. This was initiated by Ioannidis [54] in his famous paper titled “Why most 
published research findings are false”.  He pointed out that published laboratory research findings 
were found not to being repeatable when researchers tried to follow them up. Recently, there has been 
an explosion of papers about the origins of the reproducibility crisis and many tend to blame the 
widespread use of p-values (for example, Branch [14]). 

We further illustrate our thesis of statistical crisis with the following three quotes: 

“It’s science’s dirtiest secret: The ’scientific method’ of testing hypotheses by statistical 
analysis stands on a flimsy foundation… As a result, countless conclusions in the scientific 
literature are erroneous.” (Siegfried, Science News [94]) 

“Despite the …cautions about p values not being Type I error rates, it is sobering to note 
that even well-known statisticians such as Barnard (1985), Gibbons and Pratt (1975) and 
Hinkley (1987) nevertheless make the mistake of equating them… Lehmann (1993) 
similarly fails to distinguish between measures of evidence versus error.” (Hubbard [50], 
p. 307). 

“Since professional statisticians are among those who do not understand these tests 
[italicized by the author], no one should be surprised to discover widespread confusion 
about NHST, in the public and by the people who have studied statistics…this combination 
of inherent limitations [addressed on the previous page] and inappropriate applications of 
NHST impedes the accumulation of knowledge” (Schwab and Starbuck [91] p. 31). 

We argue that this crisis and almost universal misapprehension of hypothesis testing and especially 
p values produced a very negative image of statistics and statisticians. It is therefore imperative to 
provide appropriate answers to the highly unsatisfied scientific researchers. In principle, there are 
four possible actions based on four different type of thinking.  

(1) Status quo ante: turn a blind eye on the problem; 

(2) Draconian: Proclaim that traditional tests are deficient and throw them away. Furthermore, 
abandon all other frequentist methods, as being advocated by Lindley ([63] p. 112), “What shall we 
do with sampling theory statistics, with significance tests, with confidence intervals; with all those 
methods that violate the likelihood principle? The answer is, let them die… I see no excuse for 
wasting our time on them except in a course on the history of our subject… How about a moratorium 
on research for two years? In the first of these we will all read de Finetti's first volume: the next year 
will do for the second.” 

(3) Integrative: provide the scientific world with a unified frequentist/Bayesian testing methodology 
(for example, Berger et al. [9], Berger [10]; and 

(4) Lateral: Present a solution that appears as "obvious" in hindsight; modify traditional tests in such 
a way to eliminate as many criticisms as possible and upswing their public stature.  

The aim of this paper is to propose lateral thinking. We will show that proof of a seemingly 
impossible theorem logically leads towards the conclusion that point-null hypotheses are meaningless 
in real-life research. This theorem implicitly suggests that the main sources of problems with 
significance tests are caused by the point-null hypotheses. We argue that point-null hypotheses should 



 
 

be abandoned in science, not the significance testing. We, therefore, propose that point-null 
hypotheses have to be replaced by interval nulls, or negligible nulls. Paradoxically, in turn, this will 
not only eradicate most of the arguments against frequentist testing and breathe a new life into them, 
but also considerably reconcile communication in inference between frequentist and Bayesian 
approaches. We regard this as a direct answer to the challenge posed by Schwab ([92] p. 1117) “No 
one has proposed changes to NHSTs that purport to correct the main problems”.  

 

2. General zero probability theorem 

In this section, we prove that in real-world research, the probability of an exact formulation 
(“guessing”) of a mean of a normally distributed population is zero. We show that even if we state a 
null hypothesis of the normal mean not as a single rational number but as a collection of all countable 
infinite set of all rationals, the probability of such a null hypothesis is still zero. The General Zero 
Probability theorem is an extension of the Zero Probability paradox enunciated by C.R. Rao and 
Lovric in 2016. In this paper, authors have observed a null hypothesis that is made of a single number. 
Here, we will extend the null by including all rational numbers. In other words, the null hypothesis 
will state that the population means can be any rational number. 

Certainly, this kind of infinitely integrated null hypothesis cannot be regarded as an orthodox point 
null. Nevertheless, we provide this generalized proof since intuition could suggest that a null 
hypothesis that is composed of all point null hypotheses that have been formulated so far by 
researchers “significantly” increases the odds for the null in comparison to the alternative. Once we 
have proven this generalized case, by straightforward deduction, it is easy to see that a point null that 
includes just a single hypothesized value also has probability zero to be true. In addition, we focus 
our attention only on the inferential aspect of the problem, not on the decision-making approach.  

Many statisticians and non-statisticians stated the claim that in reality, point-null hypotheses are 
almost always false (Good [39], Savage [87], Nunnally [79], Meehl [71], Cohen [21], Ghosh et al. 
[33], Berger and Delampady [11], Krueger [59]). However, they supported this statement only by 
intuitive arguments and common sense. 

To fully understand the proof, we recommend a prior reading of an excellent paper “Types of 
infinity” by Cook and Bossé [23]. 

General Zero Probability theorem. Suppose, that a random sample of size n, X = (X1, X2,…, Xn), is 
selected from the normal population N(θ, σ2), where θ is an unknown mean that can assume values 
in a parameter space Θ ⊂  1

 . Without loss of generality, suppose that the variance, σ2> 0 is known. 
Let   be the set of all rational real numbers and  the set of all integers. Split parameter space into 
two disjoints sets Θ



and \Θ
 

that are mutually exclusive \( )Θ ∩Θ =∅
  

 and exhaustive 

\( )Θ = Θ ∪Θ
  

. From this we see that  the setΘ


represents the set of all population means 
expressed as rational numbers  and \Θ

 

 set of all the means that are irrational numbers \   .  

It is required to test the composite null hypothesis 0 :H θ ∈Θ


 versus an unspecified alternative 
hypothesis 1 :H θ ∉Θ



, that is 1 \:H θ ∈Θ
 

 . Then, the probability of this composite null hypothesis 
(that encompasses all normal means expressed as rational numbers) is equal to zero: 



 
 

P({ 0H | θ∀ ∈Θ


})=0 

This is equivalent to saying that probability of the null hypothesis  

0 0(  0, or  ( ) = 0: )= :  is any rational numberP PH Hθ θ∈Θ


, and 

1 \ 1(  1, or  ( ) = 1: )= :  is any irrational numberRP PH Hθ θ∈Θ


 

As stated previously we regard rational numbers on the number line as pointers of the means of the 
matched normal populations that have rational numbers as their means. 

Proof: 

In real-life research any point null hypothesis in the standard normal model is almost always stated 
as a single rational number. This statement can be further extended by including any algebraic number 
(like all roots of integers). Cantor proved that there is in one-one correspondence between rational 
numbers and natural numbers. In other words, rational numbers are countable.  Therefore, we may 
enumerate them as a sequence { }iq , or { }

1 ii
q

∞

=
=


.  In hypothesis testing this is tantamount to saying 

that the set of all point null hypothesized values, expressed as rational numbers, Θ


, is also countable. 

Since every countable set has Lebesgue measure zero, Lebesgue measure of the set of all rationals 

is also zero, that is { } { }
1

1

( ) ( ) ( 0.
i ii

i

q qλ λ λ
∞

∞

=

=

= = =∑



Therefore, Lebesgue measure of the set of all point 

null hypothesis stated as rationals is also zero because this set is countable, ( ) 0.λ Θ =


 

It is well-known that the Normal distribution is absolutely continuous with respect to the Lebesgue 
measure λ. This implies that all sets which have zero Lebesgue measure must also have zero 
probability under probability measure. Since for an absolutely continuous distribution, a countably 
infinite set of all rational numbers has Lebesgue measure zero we conclude that its probability 
measure is also zero. 

Finally, the probability measure for a composite null hypothesis that is composed of all rational 
numbers in testing a normal mean is zero, P({ 0H | θ∀ ∈Θ



})=0. 

This clearly amounts to the deduction that any single-point null hypothesis about the normal mean 
has also probability zero, that is,  

  P(Point null hypothesis formulated as a rational number | distribution is absolutely continuous) = 0, 

since a singleton has Lebesgue measure zero.  

The comprehensiveness of the General Zero Probability theorem can be further extended by 
observing an even more general set of all point null hypotheses stated as real algebraic numbers, that 
is, the roots of single-variable polynomial equations whose coefficients are all integers. This set 
includes rational numbers, Gaussian integers, golden ratio, constructible numbers, some irrational 
numbers like √2, etc. Since this set is countable, it has Lebesgue measure zero and therefore under 
Normal distribution, its probability is zero. The cardinality (the number of elements in the set) of the 



 
 

algebraic numbers is ℵ0 (aleph-naught), the same as the cardinality of natural numbers and rational 
numbers,  

card(A) = card( ) = card( ) = ℵ0, 

while the cardinality of the set of transcendental numbers is the same as that of the set of real numbers, 
i.e. the cardinality of the continuum. 

  

3. Implications of the General zero probability theorem 

Let us first restate the General Zero probability theorem in the following way: In practice, when 
testing a mean of the normal distribution using a point null hypothesis, the probability of that 
hypothesis is zero. This is based upon the stipulation that researchers, in reality, will almost surely 
state their null as an algebraic number. 

It is important to stress out that this theorem applies both in the case when the population variance 
is known and unknown. Likewise, it is germane for testing parameters for all distributions that are 
absolutely continuous with respect to the Lebesgue measure λ including the beta, the Cauchy, the 
gamma, the uniform, chi-square, Student, exponential, etc. A typical example is in testing population 
variance using the classical chi-square test. Probability of any point null hypothesis that specifies a 
rational value of the population variance is always zero. 

We now briefly discuss implications of the Zero probability theorem for the Fisherian significance 
tests, Neyman-Pearson tests, Bayesian analysis. Discussion is limited to the one-sample testing of a 
normal mean.  

4.1 Fisherian significance testing. Frequentist significance tests (Z and t-test) are consistent, and as 
the sample size increase, they will detect even the smallest disagreement from the hypothesized 
(almost surely false) null hypothesis. This indicates that in the real-world testing, any point-null 
hypothesis of the normal mean will be eventually, almost surely, rejected with a large enough sample 
size. This is sometimes called a “large sample” problem, but this is not a problem at all, just the 
natural consequence of the false null hypotheses. Therefore, before conducting any significance test, 
we know that the resulting p value will be less than any preselected level of significance (in Fisher’s 
sense) and that the point null hypothesis will be rejected. The only condition to reach this conclusion 
is to collect enough data.  

Fisher ([28] p. 18) argued that “every experiment may be said to exist only in order to give the 
facts a chance of disproving the null hypothesis.” Zero probability theorem demonstrates that this is 
purposeless under the current paradigm: almost every point null hypothesis of a normal mean is false, 
and could be refuted a priori, without wasting time in performing any experimental study.  

4.2 Neyman-Pearson hypothesis testing approach. Let us now consider the Neyman-Pearson 
paradigm, as a “procedure for choosing between two hypotheses” ([85] p. 132). The practical 
consequences of the Zero probability theorem applied on testing a sharp null hypothesis under the 
model that presumes absolute continuous distribution in respect to the Lebesgue measure are as 
follows. 



 
 

First, type I errors (rejecting the null hypothesis when it is true) in the normal mean testing are 
extremely unlikely to be committed since point nulls are almost always false. Thus, the probability 
of a Type I error is almost surely equal to zero. Furthermore, Type II error (failure to reject a null 
hypothesis when it is false) could almost never happen as long as a researcher adopts a “rule of 
behavior” to reject any point null hypothesis, without even seeing her data! On almost every occasion, 
she will make the correct choice. By following this kind of paradoxically uniform “inductive 
behavior”, a researcher will also ensure that the power of her test (probability of correctly rejecting 
the null hypothesis when it is false) is almost always equal to one, regardless of the sample size.  

Neyman and Pearson ([77] p. 291) argued that “as far as a particular hypothesis is concerned, no 
test based upon the theory of probability can by itself provide any valuable evidence of the truth or 
falsehood of that hypothesis.” However, we do not need the test, but the probabilistic logic exposed 
in the Zero probability theorem to confirm that as far as a particular point hypothesis of the normal 
mean is concerned, we have valuable evidence of the falsehood of that hypothesis.  

We acknowledge that classical Neyman-Pearson lemma does have significant importance from a 
conceptual viewpoint. However, it considers only two point hypotheses 0 0:H θ θ= and 1 1:H θ θ= . 
From the inferential perspective, its practical relevance in real-life parameters testing within the 
models that specify absolutely continuous distributions is highly limited. The reason is simple: the 
probability of both simple hypotheses stated as rational (or algebraic) numbers is zero. 

 

3.3 Bayesian testing of a point-null hypothesis. 

According to one of the leading proponents of the “objective” Bayesian statistics, Bernardo, the 
Bayesian approach provides a complete coherent paradigm for both statistical inference and decision 
making under uncertainty; it constitutes a “scientific revolution in Kuhn’s sense” (Bernardo [12] p. 
108). Notwithstanding Gelman’s ([31] p. 445) claim that “Bayesian inference is one of the more 
controversial approaches to statistics”, Bayes theorem provides an easy, elegant, and extremely 
powerful way to show the full repercussions of the Zero probability theorem.   

A typical criticism of the Bayesian approach is embedded in the question: where do the priors 
come from? In our analysis, it is easy to dismiss it; priors come from the knowledge base, that is from 
the Zero probability theorem. The assignment of the prior probability to the point null hypothesis is 
straightforward: it has to be zero, that is

0( ) 0Pπ θ θ= = . As a consequence, the posterior probability 
for any data is equal to zero, that is 0(H xπ | ) = 0 , and the point null hypothesis will always be rejected. 

Thus, the Bayesian theorem undoubtedly confirms that testing a point null hypothesis of a 
continuous parameter is an irrational task. In that illogical procedure, for decades, researchers have 
been assessing a probability of picking a set that consists of one single point on the real line (singleton) 
out from the "number of elements in the uncountably infinite set of all real numbers" (the cardinality 
of continuum). This probability, as has been shown, is less than a probability of picking by chance a 
particular atom in the entire multiverse. Even if the alternative hypothesis is substituted by a more 
reasonable open interval that does not contain 0θ , that interval is still equinumerous with cardinality 
of continuum. The controversial point null paradigm has been sometimes justified by the 
philosophical stance that “we wish to learn (via significance tests) ‘how false’ the null is.”  ([68] p. 
120). However, we do not believe that millions of researchers would agree to waste their careers in 
measuring a degree of the falsehood of the false point null hypotheses.  



 
 

The above approach is in accordance with Bernardo’s view ([13] p. 57), that “π(θ0) = 0 is not in 
violation of Cromwell’s rule2, but a simple consequence of the fact that H0 is a measure zero set in 
this setting [point null hypothesis when θ  is a continuous parameter].” He further correctly argues 
that it is justifiable to assign positive prior under H0 only when the parameter space is finite. 

However, the adherents of the Cromwell’s rule would most probably argue that the account of the 
last paragraph is crucially mistaken. For example, Pericchi ([82] p. 26) strongly points out that 
assigning null hypothesis a zero probability is “a case of pure dogmatism or a violation of the 
Cromwell rule described by Lindley” (Pericchi [82] p. 26).  

 

4. Concluding remarks (what should be done) 

During the past 80 years, too many disturbing anomalies have accumulated in statistical testing of a 
point null hypothesis within both frequentist and Bayesian framework and reached the point so 
serious that have created the statistical crisis in science. Overcoming accumulated inconsistencies is 
always a crucial method in science. As pointed out by Good ([37] p. 107) “The resolution of 
inconsistencies will always be an essential method in science” and Good ([38] p. 489) “a Bayes/non-
Bayes compromise or synthesis is necessary for human reasoning”. 

We regard that it is imperative to abandon the obsolete paradigm. As stated before, we limit our 
argument to a single sample point-null hypothesis testing of a normal mean. Before discussing the 
advantages of the proposed paradigm, it is important to emphasize that, in principle, there is no 
collision between frequentist and Bayesian approaches in testing one-sided null hypothesis and 
between frequentist confidence intervals and Bayesian credible intervals based on certain “flat” 
priors.   

(1) In one-sided testing, for many classes of reasonable prior distributions the infimum of the 
Bayesian posterior probability of H0 is equal to the p-value, or even strictly lower bound on 
the p-value (Casella and Berger 1987). Particularly, for one-sided testing of a normal mean, 
frequentist measure yields essentially the same answer, as does Bayesian analysis with a 
noninformative prior.  

(2) Two-sided frequentist confidence intervals and Bayesian HPD ((Highest Posterior Density) 
intervals are numerically equivalent for certain classes of noninformative (“flat”) priors. 
These two intervals are also approximately equivalent under conjugate normal priors, and for 
large samples nearly identical. 

Hence, harmonization must be achieved in two-sided testing since as the sample size increases, by 
virtue of the Jeffreys-Lindley paradox the number of opposite conclusions between frequentist and 
Bayesian testing will start to upsurge. Thus, with the point-null paradigm frequentist and Bayesian 
concepts will show irreconcilable differences. We argue that this reconciliation will be accomplished 
if we abolish point-nulls. 

We recommend a paradigm shift in statistical inference. Instead of looking for the statistical 
significance, we propose searching for the practical significance. In other words, as an alternative to 

                                                           
2 Lindley advocated that zero prior probabilities should be used only for logically false statements. He ([64] p. 104) 
advised Bayesians to “leave a little probability for the moon being made of green cheese; it can be as small as 1 in a 
million.” 



 
 

the obsolete and almost always false point-null hypotheses, as a natural replacement, we advocate 
testing a negligible null hypothesis: 

0 0:H θ θ δ− ≤  (Effect size is unimportant) against 

1 0:H θ θ δ− > (Effect size is practically meaningful), result will be practically significant. 

We argue that this configuration corresponds to the goal of the majority of researchers. It has many-
sided advantages in comparison to the traditional one, as being supported by the following arguments. 

(1) Mathematical statisticians are responsible to provide researchers in other sciences with non-
conflicting, coherent, and consistent concepts of testing the statistical hypotheses. Otherwise, 
statistical tests will harm progress in science. Researchers and scientists will feel confused and 
deceived by statistics and statisticians.  
     In sharp contrast to the current point-nulls model, it is possible to harmonize inferential 
results of frequentist and Bayesian testing within the new framework. In other words, 
frequentist and Bayesian inference will become, in principle, compatible and would (or at least 
could) lead to similar conclusions in (a) one-sided testing, (b) two-sided testing, and (c) interval 
estimation. 

  This easily achievable reform in statistical testing is the greatest positive effect; 
(2) One of the main objections to significance statistical testing, that all the nulls are false from the 

outset, vanishes in the air since the probability that a realized value from the interval null is 
larger than zero. 

(3) All logical inconsistencies of Fisherian significance testing (considered in 4.1) and Neyman-
Pearson hypothesis testing (discussed in 4.2) will be eradicated; 

(4) Famous Berkson’s large sample significance paradox will be eliminated. This paradox states 
that with increasing sample size frequentist tests will reject point-null hypothesis. This is called 
paradox since a researcher who is aware of it does not have to perform any test since they know 
in advance that with sufficiently large sample null hypothesis will be rejected. Surely, this logic 
cannot be applied to the interval null hypotheses that contain an infinite number of values. 

(5) In Bayesian testing there would be no longer a necessity to assign highly polemic and unnatural 
point mass on the null value; 

(6) Jeffreys-Lindley paradox, the point of the irreconcilable divergence between the frequentist and 
Bayesian inference will be annihilated. As confirmed by Berger and Delampady ([11] p. 322), 
testing interval null hypothesis “will often result in 0( )nP H x α → as n →∞ in marked contrast 
to Jeffreys’s paradox”.   

(7) A well-known limitation of frequentist hypothesis tests is their inability to distinguish between 
statistical significance and practical significance. The negligible-null setup eradicates this. 
From the frequentist perspective, rejection of the negligible null hypothesis implies that the p-
value indicates at least the existence of the pre-specified effect sizeδ (certainly under the 
condition that the Type I error was not committed). In other words, the observed effect bears 
practical meaning. In contrast, a significant p-value in the traditional setup only can, at most, 
suggests that the effect size is non-zero. Such test outcome is trivial and almost absolutely 
noninformative. With very large samples, impressive-looking p values can simply signify that 
the magnitude of the effect is less than, say, 10-10, which does not have any real-world 



 
 

importance. This is one of the most widely recognized limitations of frequentist tests. As 
Abelson ([1] p. 121) remarks, "Typically, mere difference from zero is totally uninteresting"; 

(8) The real scientific interest is in testing negligible nulls, that is, in hypotheses that the parameter 
value is relatively close to θ0. As Levine et al. ([62] p. 181) remark, “researchers are interested 
in making substantive claims, and statistical analyses are only meaningful to the extent they are 
informative about the viability of substantive hypotheses.”; 

(9) In frequentist testing, an embarrassing situation in which every study will eventually produce a 
statistically significant effect when researchers collect enough data is eliminated. As we have 
seen, this large sample problem is generated by the falsehood of the point nulls. By specifying 
a demarcation point (which is a major challenge) between negligible and practically meaningful 
effects a crucial step towards building a tool for massive data set is achieved; 

(10) Some important misconceptions that are shared among many researchers are inherently 
eradicated by the nature of the construct of the rival hypotheses, including the following: (a) a 
small p-value means a treatment effect has large magnitude, (b) a statistically significant finding 
is practically important and (c) that a p-value is a numerical index of the magnitude of the effect. 

(11) One of the most common criticisms of the point null hypothesis statistical testing is that it “does 
not tell us what we really want to know…What we want to know is whether the null hypothesis 
is true given the data” (Orlitzky [81] pp. 200-201). Within the current paradigm, in the classic 
normal model based on a point null hypothesis, the answer to this criticism is simple: the null 
hypothesis is almost never true. This researchers’ objective could be ultimately achieved via 
Bayesian analysis with the negligible null model and priors freed from the unrealistic point 
masses; 

(12) Frequentist tests have been criticized to achieve significance too easily. With the proposed 
model, it is more difficult to attain a significant result. This can, in turn, increase the prospects 
of reproducibility of research findings as a cornerstone of scientific progress and circumvent 
“reproducibility crisis” (like recently in cancer research and psychology). It is essential here to 
reiterate one of the most important, but almost forgotten, principles of the experimental design, 
following Fisher ([28] pp. 13-14). 

“We thereby admit that no isolated experiment, however significant in itself, can 
suffice for the experimental demonstration of any natural phenomenon… In relation 
to the test of significance, we may say that a phenomenon is experimentally 
demonstrable when we know how to conduct an experiment which will rarely fail to 
give us a statistically significant result.”; 

It is clear that Fisher insisted on repetitions of an experiment. Therefore, the assertion expressed 
by Hubbard et al. ([52] p. 173) that “Fisher claimed that his significance tests were applicable 
to single experiments” is not persuasive;  

(13) Perhaps the most crucial advantage of the negligible null model is that it implicitly requires 
raising standards for the research. As a result, the credibility of published results will increase. 
Moreover, we recommend that researchers, whenever possible, should verify internal 
consistencies of their results using p values, posterior probabilities of H0, Bayes factors, 
confidence intervals, and HPD intervals. 

Finally, more studies should be done in the future with the intention to extend notion of the General 
Zero Probability theorem to the problems of two and more samples. 
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