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Abstract: The aim of this paper is to show the crucial role of knowledge to tackle some geometric problems. We have 

chosen to show in detail how to tackle the problem of construction of Steiner chains, that is to say, closed chains of 

tangent circles also tangent to two given nested circles (to simplify the presentation and get understandable figures). 

Accordingly, a great part of the paper is a reminder of the necessary knowledge used for the techniques of construction 

of such chains: notion of harmonic division, notion of bundle of circles, notion of polar of a point with respect to a circle 

and above all the notion of inversion and the link between this transformation and the previous notions. The paper shows 

how these techniques can be used with some dynamic geometry software such as the New Cabri (containing the tool 

“macro” but not the tool “inversion”), Cabri 3D (containing the tool “inversion” with respect to spheres) or TI-NSpire 

(less efficient for complex figures because the tools “macro” and “inversion” are not available). Finally, we will perform 

very precise figures mostly with the New Cabri where Steiner chains associated to two given nested circles are generated 

and can be animated when their conditions of existence are satisfied. 
 

1. Link between bundle of circles at base points and bundle of circles at Poncelet 

points ([4]) 
 

1.1. Definitions (figure 1 left): 

1.1.1. The bundle of circles at base points A and A’ with A ≠A’, is the set of circles centered on the 

perpendicular bisector of [AA’] and passing through A and A’. 

1.1.2. The bundle of circles at Poncelet points A and A’ with A ≠ A’ is the set of circles centered on 

(AA’) cutting this line in two points C and D , these points cutting the segment [AA’] under the same 

ratio or such that (A, A’, C, D) is an harmonic division (see §2) or such that D is the image of C with 

the inversion (see §4) of circle the circle with diameter [AA’]  

 

1.2. Orthogonality of such bundles (Figure 1 left) 

Let us prove the following theorem 

Theorem: Each circle of the bundle of circles at base points A and A’ is orthogonal to every 

circle of the bundle at Poncelet points A and A’. 
 

 

             
 

Figure 1: Orthogonality of bundles and construction of a polar 
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Let us give A and A’ two points symmetric with respect to point O on the horizontal blue line. (G) is 

one of the circles of the bundle at base points A and A’, centered at B on the red line (perpendicular 

bisector of [AA’]). In the system of axes supported by the blue and the red lines, A(a,0), A’(-a,0) and 

B(0,𝛽). Let us find all the circles centered on (AA’) (center called I), orthogonal to (G) and passing 

through a point T of (G). Let us consider one of these circles (P). The radius of (G) is equal to BA’ 

or BT or BA: we know that BA2 = 𝑎2 + 𝛽2. Let us evaluate BI2 in two different ways: 

BI2 = BT2 + TI2 = BT2 + CI2 = BA2 + CI2 =  𝑎2 + 𝛽2 + CI2 and also BI2 = BO2 + OI2 = 𝛽2 + OI2. 

From these we get  𝑎2 = OI2 - CI2 which is the power of O for (P) ([9]) that can also be written 

OC.OD. So, D is the image of C by the inversion centered at O which circle is the blue circle (center 

O and radius OA = a). Another consequence is that (A’, A, C, D) is an harmonic division and circle 

(P) is one of the circles of the bundle at Poncelet points A and A’. 

When T is moving on (G), we get all the centers I on the blue line and therefore all the circles of the 

Poncelet bundle. That completes the proof. 

 

2. Harmonic division  
 

Definition: if A, B, C and D are four points belonging to the same line, (A, B, C, D) is an harmonic 

division if C and D cut segment [AB] under the same ratio. In particular: 
𝑪𝑨̅̅ ̅̅

𝑪𝑩̅̅ ̅̅ = −
𝑫𝑨̅̅ ̅̅

𝑫𝑩̅̅̅̅̅ 

Property 1: If a, b, c and d are the abscissa of A, B, C and D with respect to an axis supported by 

(AB) and where the origin is located at the midpoint of [AB], the previous condition can be written: 

𝑐. 𝑑 = 𝑎2 or 𝑶𝑪̅̅ ̅̅ . 𝑶𝑫̅̅̅̅ ̅ = 𝑶𝑨𝟐 = 𝒂𝟐 where D (respectively C) is the image of C (respectively D) by 

the inversion centered at O which ratio is a2. 

Property 2: If the origin of the axis is located at A, this relation becomes: 
𝟐

𝒃
=

𝟏

𝒄
+

𝟏

𝒅
  or  

𝟐

𝑶𝑩̅̅̅̅̅ =
𝟏

𝑶𝑪̅̅ ̅̅ +
𝟏

𝑶𝑫̅̅̅̅̅ 

 

3. Polar of a point for a circle (Figure 1 right) ([2]) 
 

3.1. Définition: The polar of point M for a circle (C) (center I and radius r), is the set of points S such 

that the circle of diameter [MS] is orthogonal to (C). 

3.2. How to characterize the polar of a point for a circle  

3.2.1 This polar is not an empty set because point N inverse of M by the inversion centered at I and 

which circle is (C) belongs to this polar. In fact, IM.IN = r2 means that the power ([9]) of I for this 

circle is equal the square of the radius of (C), which means also that the circle with diameter [MN] is 

orthogonal to circle (C). With respect to a system of axes with origin I, supported by (IA) and its 

perpendicular at I, if M(xM,0) then, N(
𝑟2

𝑥𝑀
 ,0). 

3.2.2. Let us find now the set of points S (𝑥𝑆, 𝑦𝑆) such that the circle of diameter [MS] is orthogonal 

to (C). If J is the midpoint of [SM], which means the center of such a circle, the necessary and 

sufficient condition for this property is IJ2 = JM2 + r2.  

With  J( 
𝑥𝑀+𝑥𝑆

2
,
𝑦𝑆

2
), IJ2 = (

𝑥𝑀+𝑥𝑆

2
)2+ (

𝑦𝑆

2
)2 and as JM2 = (

𝑥𝑀−𝑥𝑆

2
)2+ (

𝑦𝑆

2
)2, the necessary and sufficient 

condition can be written: 𝑥𝑀. 𝑥𝑆 = r2 or 𝑥𝑆 = 
𝑟2

𝑥𝑀
 which is the equation of the line passing through N 

(inverse of M with respect to (C)) and perpendicular to (IM). So: 
 

Theorem: The polar of a point M of a circle (C) centered at I is the perpendicular at N to (IN) where 

N is the image of M by the inversion of circle (C). 
 



Remark: if M’ is a point of the polar of M for (C) and if (MM’) cuts circle (C) at points U and V, it 

is equivalent to say that (M, M’, U, V) is an harmonic division (Figure 2 left). 

 

    
 

Figure 2: Property of polars, definition of inversion and construction of polar 

 

4. Inversion ([7], [8]) (Figure 2 right) 
  

4.1. Definition: If (C) is a circle centered at I with radius r, we call inversion with respect to this 

circle, the plane transformation mapping each point M different from I onto a point M’ belonging to 

the ray [IM) such as IM.IM’= r2 and letting I be invariant. 
 

As I is the midpoint of [AB], the equality of definition can be interpreted differently: 

(A, B, M, M’) is an harmonic division or M’ is the orthogonal projection of M on its polar for (C). 

  

4.2. Images of lines (Figure 3) 

Let us consider the inversion of circle (C) (center I, radius r) and a line (D).  

The image of a line passing (D) through I is globally invariant by such an inversion. 

The image by such an inversion of a line (D) which does not contain I is a circle containing I: 

We give a proof for the two possible cases. The first case is when the line cuts circle (C) and the 

second one is when it does not. In these two cases, we call m the orthogonal projection of I on (D) 

and m’ its image by the given inversion.  
   

First case “(D) cuts circle (C)” (Figure 3 left): point m’ belongs to the image of (D). For each other 

point n of (D) (different from m) with image n’, we have: Im.Im’ = In.In’ or  
𝐼𝑚

𝐼𝑛
=

𝐼𝑛′

𝐼𝑚′
  . Triangles 

Imn and In’m’ have a common angle; the previous equality establishes that these triangles are similar. 

Or Imn is a right-angle triangle at m, so In’m’ is a right-angle triangle at n’. therefore, n’ belongs to 

the circle of diameter [Im’]. Conducting the same reasoning would prove that each point of the circle 

is the image of a point of (D) by this inversion. 
 

Second case “(D) does not cut circle (C)” (Figure 3 right): same reasoning.  
 

Theorem: The image of a line (D) by an inversion (when (D) does not contain the center I of the 

inversion) is a circle of diameter [Im’] where m is the orthogonal projection of I on (D) and m’ is the 

image of m by this inversion. 
 

 



   
 

 

Figure 3: Images of lines by an inversion 

 

4.3. Images of circles 

First case “Image of a circle passing through the center of the inversion”: as an inversion is an 

involution, the image of a circle is a line (use the previous result). 

Second case “Image of a circle which does not contain the center of the inversion” (Figure 4): 

Let us consider here the inversion I centered at O and whose circle is (C). We try to find the image 

of circle (G) whose center is I and diameter [MN] and for which O, M and N are collinear. M’ and N’ 

are the images of M and N by the inversion I. Point P is a point generating circle (G) ; its image P’ 

generates the image (G’) of (G) by I. Q is the second intersection point between (OP) and circle (G): 

this point generates (G) exactly when P generates (G) and therefore Q’ its image by I generates (G’) 

exactly when P generates (G). 

If r is the radius of circle (C), thanks to the definition of the inversion, we obtain: 

OQ’ =  
𝑟2

𝑂𝑄
 and OM’ =  

𝑟2

𝑂𝑀
 . Let us evaluate now the ratio 

𝑂𝑄′

𝑂𝑃
 : 

 

𝑂𝑄′

𝑂𝑃
=

𝑟2

𝑂𝑄

𝑂𝑃
=

𝑟2

𝑂𝑃.𝑂𝑄
 or 𝑂𝑃. 𝑂𝑄 = 𝑂𝑀.𝑂𝑁 (power of point O for circle (G)).  

Therefore, 
𝑂𝑄′

𝑂𝑃
=

𝑟2

𝑂𝑀.𝑂𝑁
=

𝑟2

𝑂𝑀

𝑂𝑁
=

𝑂𝑀′

𝑂𝑁
 . 

The equality 
𝑂𝑄′

𝑂𝑃
=

𝑂𝑀′

𝑂𝑁
 reflects the fact that Q’ is the image of P by the dilation centered at O and 

whose scale is 
𝑂𝑀′

𝑂𝑁
 . So, (G’) is a circle of diameter [M’N’]. 

Remark: be careful! The center of (G’) is not the image of I by the inversion I. It is the image J of I 

by the previous dilation. We will show a simple way to construct this center in using the composition 

of two inversions (it will allow constructions of centers of a Steiner chain easyly: see 5.5.).  

Position of J: J is the midpoint of [M’N’], so, OJ = 
𝑂𝑀′+𝑂𝑁′

2
=

𝑟2

𝑂𝑀
+ 𝑟2

𝑂𝑁

2
=

𝑟2

2
. (

1

𝑂𝑀
+

1

𝑂𝑁
). 

If H is the harmonic conjugate of O with respect to M and N, we can write the known equality 

 
2

𝑂𝐻
=

1

𝑂𝑀
+

1

𝑂𝑁
 . Let us note that H can be considered as the image of O by the inversion of circle 

(G) or the orthogonal projection of I on the polar of O for this circle.  

Eventually: OJ = 
𝑟2

𝑂𝐻
 which means that J is the image of H by the inversion I.  

Remark: this proof can be generalized to all circles of the plane which do not contain O in replacing 

distances by algebraic distances (used in the definition of harmonic division in §2). 
 



 
 

Figure 4: Image of a circle by an inversion 
 

Theorem: The image of a circle (G) centered at I by an inversion I (when this circle does not contain 

the center O of the inversion) is another circle (G’) centered at J where J is the image by I of H, H 

being the image of O by the inversion of circle (G). 
 

4.4. Angular property of the tangent lines at a point of two intersecting curves  

4.4.1. An angular property of an inscribed quadrilateral (Figure 5 left) 

AA’B’B is a quadrilateral inscribed in a circle centered at O. Suppose that (AA’) and (BB’) intersect 

at M and (AB) and (A’B’) intersect at N. We know that ∠ MB’N is equal to ∠𝑀𝐴𝐵. If (MI) is the angle 

bisector of ∠𝐴𝑀𝐵 cutting (A’B’) at J, then ∠BMI = ∠IMA. 

Let us consider the two similar triangles MIA and MJB’. 

In triangle MJB’, ∠M + ∠ B’ = ∠ MJN (green); in triangle IMA,  ∠ M + ∠ A = ∠ NIJ (magenta). 

As triangles MIA and MJB’ are similar, these sums are equal and so: 

∠ IJN (green) = ∠ NIJ (magenta), which means that triangle NIJ is isosceles (base [IJ]), and also that 

lines (AB) and (A’B’) are symmetric with respect to the perpendicular bisector of [IJ]. Eventually: 
 

Theorem: If AA’B’B is a quadrilateral inscribed in a circle, if the angle bisector of ∠BMA cuts (AB) 

at I and (A’B’) at J, therefore (AB) and (A’B’) are symmetric with respect to the perpendicular bisector 

of [IJ]. 
 

          
 

Figure 5: Angular property of inversions 
 

4.4.2. A consequence about the angles of tangent lines to two secant curves and to their images 

(Figure 5 right)  

Let us give the inversion of circle (C) centered at O; (E’) is the image of the blue curve (E) by this 

inversion; A’ is the image on (E’) of point A belonging to (E) and M’ is the image on (E’) of another 

point M belonging to (E).  



By definition of the inversion, OA.OA’ = OM.OM’ and therefore points A, A’, M’ and M belong to 

the same circle C(M). Thanks to the previous result, triangle KIJ is isosceles (base [IJ]) and then lines 

(AM) and (A’M’) are symmetric with respect to the perpendicular bisector (D) of [IJ]. 

If M approaches A along (E), the limit of (AM) is the tangent (T) to (C) at A and then, as M’ approaches 

A’ along (E’), the limit of (A’M’) is the tangent (T’) to (C’) at A’. In those conditions as I approaches 

A and J approaches A’, the tangent lines (T) and (T’) are symmetric with respect to the perpendicular 

bisector of [AA’] (limit of (D) when M approaches A). 
 

Theorem: If the curve (E) has (E’) for image by an inversion, if A is a point of (E) and A’ its image 

by this inversion, therefore, the tangent lines at A and A’ respectively to (E) and (E’) are symmetric 

with respect to the perpendicular bisector of [AA’].   
 

So, we can deduce from this theorem 
 

Corollary: If two curves intersect at A and if 𝛼 is the angle of the tangent lines to these curves at this 

point, the angle between the tangent lines to the curves images of the previous ones by an inversion, 

at A’ image of A by this inversion, is equal to -𝛼. 
 

Remark: if the tangent lines to the given intersecting curves are perpendicular, the tangent lines to 

the curves images of these curves are also perpendicular 
 

4.5. Metric properties 

Before the second part of this paper, let us recall how distances and radii of circles are modified by 

an inversion. 

Let us give I the inversion of circle (C) (center I, radius r): 

If [A’B’] is the image of [AB] by I: A’B’ =  
𝒓𝟐.𝑨𝑩

𝑰𝑨.𝑰𝑩
 (a proof uses the fact that triangle IAB is similar to 

triangle IB’A’) 

If a circle C1 of radius r1 has for image a circle C’1 of radius r’1, r’1 = 
𝒓𝟐.𝒓𝟏

𝑰𝒎.𝑰𝒎′
 where m and m’ are the 

intersection points between the circle C1 and the line joining I to the center of C1 (with the notations 

of Figure 3 right).  

Eventually, in a “certain way”, if two circles are transformed onto two other circles by an inversion, 

the ratio between the radii of the image circles is “independent” of the scale of the inversion.  

 

5. Images of bundles of circles by an inversion 
 

5.1. Image of a bundle at base points  

Figure 6 left: let us consider a bundle of circles at base points A’ and A. D is the perpendicular bisector 

of [AA’] passing through the midpoint o1 of this segment. Every circle Cn of this bundle is centered 

on D at on (in Figure 6 left, we have displayed C1 centered at o1, C2 centered at o2 and C3 centered at 

o3). Let us consider now an inversion I centered at A and which circle C passes through a point v of 

(AA’).  

Remark: all the circles of the bundle pass through the center of the inversion. 

As a consequence, the images of the circles of this bundle are lines. And, as every circle of the bundle 

passes through a common point A’, all these lines pass through the image of A’ by I. In Figure 6 (left 

and right), we can see that the images D1, D2 and D3 of C1, C2 and C3 pass really through a common 

point. This point belongs to the polar of A’ with respect to C (circle of the inversion). The direction 

of each of these lines is respectively the direction of the perpendicular to the line joining A to each 

center of the given circles of the bundle. 
 



        
 

Figure 6: Image of a bundle of circles at base points 
 

Let us consider now the bundle of Poncelet points A’ and A whose circles are En (in Figure 6 right, 

only two circles are displayed: E1 and E2). We know that these circles are orthogonal to all circles of 

the previous bundle based at A’ and A. As the inversion keeps the orthogonality of tangent lines, the 

images E’n by I of the circles En are orthogonal to all the images of the circles Cn which means, to all 

lines Dn. Eventually, as all lines Dn pass through a common point e, E’n is a circle centered at e. 
 

Theorem: If F is a bundle at Poncelet points A’ and A, the image of this bundle by any inversion 

centered at A is a bundle of concentric circles centered at e image of A’ by this inversion. 

 

5.2. Steiner chains of two concentric circles (existence conditions) 

From now, our aim is to construct chains of tangent circles but also tangent to two given nested 

circles. We start by the case when the two given circles are concentric and necessarily the circles of 

the chain have the same radius. 

In Figure 7, (I) and (E) are two concentric circles centered at O with radius respectively r and k.r 

where k > 1. T1 is a point on (E) and (C1) is the circle tangent to (I) and (E) respectively at t1 and T1, 

centered at O1.   

 
 

Figure 7: Chain included between two concentric circles 

 

The radius of (C1) is equal to (𝑘 − 1).
𝑟

2
. U and V are the two contact points of the two tangent lines 

to (C1) constructed from O. 

The angle ∠VOU is the angle of the rotation centered at O which allows by iteration of the images of 

(C1), a chain of circles (Cn) isometric to (C1), respecting our initial constraints. 



Let’s see now under what conditions for k and the number n of circles of the chain, this chain is 

closed, which means that the circle (Cn) touches for the first time (C1) and is tangent to this circle at 

V.   

If 𝛼 = ∠UOV which is the double of ∠UOO1, we have: 

sin(
𝛼

2
) = 

𝑈𝑂1

𝑂𝑂1
=  

(𝑘−1).
𝑟

2

𝑟+(𝑘−1).
𝑟

2

=
𝑘−1

𝑘+1
  and then: 𝛼 = 2. 𝑠𝑖𝑛−1(

𝑘−1

𝑘+1
). 

So, the condition expressing that n circles exactly can be inscribed in one turn is: 

𝑛. 𝛼 = 2. 𝜋 or: 𝒏. 𝒔𝒊𝒏−𝟏 (
𝒌−𝟏

𝒌+𝟏
) =  𝝅  (Eq1) 

Similarly, the condition expressing that n circles exactly can be inscribed in m turns is: 

𝑛. 𝛼 = 2.𝑚. 𝜋 or: 𝒏. 𝒔𝒊𝒏−𝟏 (
𝒌−𝟏

𝒌+𝟏
) =  𝒎.𝝅.  (Eq2) 

Particular cases: 

Chain of 2 circles in 1 turn: n = 2 in Eq1 returns k =1, which means that the two given circles are the 

same circle. This case is excluded. 

Chain of 3 circles in 1 turn: n = 3 in Eq1 returns 𝑘 = 7 + 4. √3  (Checked in Figure 8 left) 

Chain of 4 circles in 1 turn: n = 4 in Eq1 returns 𝑘 = 3 + 2. √2  (Checked in Figure 8 center) 

Chain of 5 circles in 1 turn: n = 5 in Eq1 returns 𝑘 =
4+2.√2.(5−√5)

4−2.√2.(5−√5)

  (Checked in Figure 8 right). 

 

   
 

Figure 8: Closed chains in concentric circles 
 

Chain of 6 circles in 1 turn: n = 6 in Eq1 returns 𝑘 = 3  (Figure 9 left) 
 

General case for n circles in m turns: 𝑘 =
1+sin (

𝑚𝜋

𝑛
)

1−sin (
𝑚𝜋

𝑛
)
 (particular case n = 7 and m = 2: Figure 9 right) 

 

  
 

Figure 9: Other closed chains in concentric circles 

 



5.3. Steiner chains:  an approach of the general case 

We start now from two concentric circles INT and EXT (same center e) which radii are respectively 

r and k.r where k can be chosen as we want (Figure 10 left). I is an inversion centered at A and of 

circle C. We know (see 4.2.) that the images of these two circles by this inversion are two circles int 

and ext belonging to the bundle at Poncelet points A and A’ where A’ is the image of e by the inversion 

I (Figure 10 right).   

 

          

Figure 10: For our first chains in nested circles 
 

From a point T1 of EXT, let us construct (Figure 11 left), a chain of black circles (a sequence of 

tangent circles) tangent to EXT and INT (we can see three of these circles in Figure 11 left). The 

images of these circles by inversion I centered at A, is a chain of circles tangent to the two circles ext 

and int (here ext is inside of int: due to properties of inversions in this case of figure). If point T1 is 

dragged along EXT turning clockwise or anticlockwise inside the concentric circles, we obtain other 

chains between EXT and INT and by the way chains between int and ext. 

Remark: if the value of k is correctly chosen, we can obtain closed chains of circles between the 

concentric circles and by the way also between their images ext and int. That is displayed un Figure 

11 right where we have constructed such a chain of six circles called Steiner chain of circles between 

ext and int. 
 

         
 

Figure 11: Construction of a Steiner chain 
 

5.4. Steiner chains: general case 
 

5.4.1. Two nested circles belong to the same Poncelet bundle 

As shown in Figure 12 left, we consider two nested circles C1 and C2 centered respectively at i1 and 

i2. We show now how to construct the radical axis of these two circles (line containing all the points 



having the same power for C1 and C2). As this radical axis is perpendicular to (i1i2), we need only to 

find and construct the point I on (i1i2) having the same power for the two circles, which means the 

point I verifying Im.Im’= In.In’ or which is equivalent: 
𝐼𝑛

𝐼𝑚
=

𝐼𝑚′

𝐼𝑛′
 . This equality means that I is the center of the dilation transforming m onto n and n’ onto 

m’ and finally the segment [mn’] onto the segment [nm’]. That justifies the elementary construction 

of I proposed in Figure 12 left. 
 

  
 

Figure 12: Poncelet bundle including two given nested circles 
 

Figure 12 right shows precisely the construction of point A of the ray [Im) verifying IA2 = Im.Im’ 

(this construction is based on a known property of right-angle triangles). As I is a point of the radical 

axis of C1 and C2, IA2 = In.In’ where n and n’ are the intersection points between C1 and line (i1i2). If 

A’ is the symmetric of A with respect to I, the previous relations means that (A’, A, m, m’) and (A’, 

A, n, n’) are harmonic divisions or better that circles C1 et C2 belong to the bundle at Poncelet points 

A’ and A. We already know that the images of these two circles by any inversion centered at A or A’ 

are two concentric circles (j is the midpoint of [Im’] in the construction of Figure 12 right). 
 

5.4.2. How to construct a chain of circles tangent to two nested circles  

Starting from C1 and C2, we construct as we did before point A’ and A such that C1 and C2 belong to 

the bundle of points of Poncelet A’ and A. We chose an inversion centered at A, for example. We 

transform these two circles by this inversion to get two concentric circles and their center. Then we 

construct a chain of tangent circles between the two concentric circles. The image of this chain by 

the inversion provides a chain of tangent circles between the circles we started from. 

Now, the question is: what is the inversion that will generate a value of k compatible with the 

construction of a closed chain? 

5.4.2.1. Complexity of the choice of the parameters of our problem 

For such circles C1 and C2 whose radii are respectively r1 and r2 and centers i1 and i2 (where r1 < r2), 

let us evaluate the ratio of the radii of the circles images by an inversion I centered at A where A is 

one of the two points of the Poncelet bundle containing C1 and C2.  Recall that this ratio is 

“independent” of the circle defining the inversion. All the following calculations are conducted in 

the axis system supported by the line (i1i2) oriented from i1 to i2 and which origin is i2. In this system, 

point i1 is given by its abscissa 𝛼1, with -r2 < 𝛼1 < r2. 

∎ We evaluate first the abscissa xI of point I having the same power with respect to C1 and C2, which 

means, verifying 𝐼𝑚⃗⃗⃗⃗  ⃗. 𝐼𝑚′⃗⃗⃗⃗ ⃗⃗ =  𝐼𝑛⃗⃗  ⃗. 𝐼𝑛′⃗⃗⃗⃗  ⃗ or (-r2 - xI)(r2 - xI) = (𝛼1-r1-xI). (𝛼1+r1-xI) that can be written as a 

quadratic relation: 2 xI
2+2 𝛼1.xI + r1

2
 - r2

2 - 𝛼1
2 (where r1

2
 - r2

2 - 𝛼1
2 < 0 ) 

 

If ∆ =  𝛼1
2 -2.( r1

2
 - r2

2 - 𝛼1
2)=3 𝛼1

2 -2r1
2
 + 2r2

2, we know that  ∆ is positive, so our quadratic equation 

has two solutions with opposite signs. If we add the constraint 𝛼1 < 0, then: 



xI = 
−𝛼1−√∆

𝟐
 

∎ The abscissa of A, xA is evaluated thanks to the condition IA2 = 𝐼𝑚⃗⃗⃗⃗  ⃗. 𝐼𝑚′⃗⃗⃗⃗ ⃗⃗  which is the power ℘ of I 

with respect to circle C2. We know that this power is also equal to Ii2
2 – r2

2 or xI
2 - r2

2. After 

computation, we get: 

IA2 = 
1

4
 (4 𝛼1

2 - 2r1
2

 - 2r2
2 + 2𝛼1√∆ ) and as IA2 = (xA - xI)2, we obtain the abscissa of A and A’:  

xA = xI +√℘ and xA’ = xI -√℘. 

∎ Finally, if r’1 and r’2 are the respective radii of circles C’1 and C’2 images of C1 and C2 by I, we 

have (r is the radius of the circle of the inversion): 
𝒓′𝟏

𝒓′𝟐
 = 

𝒓𝟐 .𝒓𝟏

𝐴𝑚⃗⃗⃗⃗⃗⃗  ⃗.𝐴𝑚′⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
∶  

𝒓𝟐.𝒓𝟐

𝐴𝑛⃗⃗ ⃗⃗  ⃗.𝐴𝑛′⃗⃗ ⃗⃗ ⃗⃗  ⃗
 = 

𝒓𝟏

𝒓𝟐
.

𝐴𝑛⃗⃗ ⃗⃗  ⃗.𝐴𝑛′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐴𝑚⃗⃗⃗⃗⃗⃗  ⃗.𝐴𝑚′⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
 or 

𝒓𝟏

𝒓𝟐
 
𝑨𝒊𝟏

𝟐−𝒓𝟏
𝟐

𝑨𝒊𝟐
𝟐−𝒓𝟐

𝟐
 .   

We already know that to construct a Steiner chain with a given number of circles between two nested 

circles, the previous ratio must be equal to a specific number k (shown in 5.2.). 
 

∎ It is easy to imagine the complexity of the evaluation of one parameter with respect of the two 

other two parameters to obtain a particular value of k. If C2, is given, the parameters we can modify 

are 𝛼1 and r1. For example, from the previous equation 
𝒓𝟏

𝒓𝟐
 
𝑨𝒊𝟏

𝟐−𝒓𝟏
𝟐

𝑨𝒊𝟐
𝟐−𝒓𝟐

𝟐
 = k, we would have to find a 

formula giving 𝛼1with respect to r1, r2 and k, which was unsurmountable at an elementary level. If it 

had been possible, we would have been able to locate the center of C1 with respect to the center of 

C2 (if the radii of the two circles are fixed to obtain one circle inside the other compatible with the 

construction of a Steiner chain associated with k). For this reason, we will conclude with a technique 

of dichotomic approximation of the value of r1 allowing the best approximation of the given k 

compatible with the construction of the associated Steiner chain. 

5.4.2.2. Solution by successive approximations (figure 13) 

On a given line, locate i2 center of circle C2, then i1 center of circle C1 with radius r1 which is a 

displayed number that can be modified. The number k is also a displayed number, evaluated by the 

software: it is the number which is the ratio of the radii of the concentric circles allowing the 

construction of a chain of n circles tangent to these concentric circles and by the way the construction 

of a Steiner chain of n tangent circles to the given circles C1 and C2. 

We construct, as done before, point A (and point A’) which is the center of the inversion transforming 

C1 and C2 onto two concentric circles (the circle of this inversion is commanded with a point of the 

initial line). 

We construct the images C’1 and C’2 of the circles C1 and C2 by the inversion and their common 

center e (which is the image of A’ by the inversion of circle C), which allows us to evaluate (with the 

software we use: the New Cabri) their respective radii as well as the ratio of these radii. Considering 

the case of our figure, we evaluate r’1/r’2 which is displayed. 

We construct a point t2 of C2 and its image t’2 on C’2 by the inversion. Thanks to the ray [et’2), we 

construct the first circle tangent to C’1 et C’2 (tangent to C’2 at t’2) visible in grey in Figure 13 left. 

Then we construct the image of this circle by the inversion to obtain the first circle tangent to C1 and 

C2 (tangent to C2 at t2) visible in the same figure in black. 

We construct now a chain of n grey circles tangent to C’1 and C’2 starting from the previous grey 

circle which images by the inversion provide a chain of black circles tangent to C1 and C2 starting 

from the previous black circle (Figure 13 right). 

In Figure 13, we have chosen n = 6. But we can state that since r’1/r’2 is not equal to 3 which is the 

value of k associated with a closed chain of 6 circles, our chain of 6 grey circles is not closed between 

C’1 and C’2 and so, the black chain we have constructed by inversion is not a Steiner chain of 6 black 

circles. 



The final technique consists in modifying the value of r1 in a dichotomic way until the displayed 

value of r’1/r’2 is as close as possible to number 3 when using the maximum of digits allowed by the 

software. If necessary, we can also change the position of i1. 

 

  
 

Figure 13: Starting constructions of a Steiner chain in two nested circles 
 

After such an operation we reach a situation visible in Figure 14 left where the Steiner chain of 6 

circles is constructed between C1 et C2. The animation of point t2 along C2, allows us to visualize all 

the Steiner chains of 6 circles between C1 et C2. On the same figure, we can state that, if we modify 

r1 until the value underlined in green, we have succeeded to reach for the displayed value of r’1/r’2, 

3.000,000,0. In Figure 14 right, we can appreciate the final result after hiding the constructions. 

 

  
 

Figure 14: Final construction of a Steiner chain between two nested circles 
 

In Figure 15 left, we show the construction of a Steiner chain of 11 circles closed after one turn (now 

in red). The value of k that r’1/r’2 must reach after an adequate modification of r1 is equal to 
1+sin (

𝜋

11
)

1−sin (
𝜋

11
)
 

which value given by the software with its best approximation is 1.7844781. We have reached 

1.7844785 that justifies the accuracy of our construction. We can appreciate the result when the 

constructions are hidden in Figure 15 right.  
 



  
 

Figure 15: A Steiner chain of 11 circles 
 

In order to construct all possible Steiner chains, we need such a figure in which we have constructed 

the number of circles corresponding to the expected chain, change the value of k corresponding to 

this expected chain by using the formula 

1 + sin (
𝑚𝜋
𝑛 )

1 − sin (
𝑚𝜋
𝑛 )

 

where, n is the number of the circles of the chain and m is the number of turns necessary for the first 

closure of the chain 
 

5.5. Steiner chains: some other properties ([6]) 

Only the use of Dynamic Geometry Software can help us to investigate the following properties. 

∎ The first one is about the centers of the circles of a Steiner chain and the contact points between 

them (Figure 16). In Figure 16 left, we have constructed the conic passing through five of the eleven 

centers of the corresponding Steiner chain: we can easyly conjecture that all the centers belong to 

this conic which is qualified as an ellipse (in red) by our software. In Figure 16 right, we have 

constructed the conic passing through five of the eleven contact points of the corresponding Steiner 

chain: we also can easyly conjecture that all these points belong to this conic which is qualified as a 

circle (in blue) by our software. These properties are known properties that can be investigated easyly 

in such figures with the appropriate software. 

 

                  
 

Figure 16: Some points of a chain on the same ellipse or the same circle 
 

∎ The second one, in the case of n = 6, is illustrated in Figure 17: here we can conjecture another 

known property stating that the three segments connecting the contact points of the Steiner chain 



with the exterior circle (Figure 17 left) pass through a common point belonging to the line of the 

centers of the two given circles. Same statement for the contact points of the interior circles (Figure 

17 right).  

 

                          
 

Figure 17: Segments passing through a common point on the line of the centers of the nested circles 

 

6. Addendum 
Here are some techological indications about the way we used the inversion of a point or the inversion 

of a circle under the New Cabri environment. This software is the one we used for all our figures 

even if most of them could have been realized with Cabri 3D (we did it but finally we have chosen 

the New Cabri for practical reasons). As we had to construct a great quantity of images of points or 

circles by an inversion, we have defined two macros for such a work: 

Macro 1 returning the image of a given point by a given inversion. 

Macro 2 returning the image of a given circle by a given inversion. 

Creation of Macro 1 (Figure 18 left): let us construct the circle (C) (centered at O) of an inversion, 

let us create a point M. Using the measurement tool, we display the radius r of (C) and the distance 

OM. We evaluate with the Calculator in Algebraic mode 
𝑟2

𝑂𝑀
 which is OM’. We construct ray [OM): 

point M’ is obtained with the tool Measurement Transfer in transferring 
𝑟2

𝑂𝑀
 on ray [OM) (click on 

the number, click on the ray and click on O). Then we create Macro 1: chose Initial Object(s) and 

click on circle (C) and on point M, chose Final Object(s) and click on point M’ and finally chose 

Define Macro. A square containing a wheel gear appears. It is possible to change this wheel gear 

onto another image: it is what I did in including number 1. This square represents Macro 1. It is 

possible now to use it as as tool (inversion of a point): to check it we create a point N, then we select 

Macro 1 in clicking on the square and the image of N is created after clicking on (C) first and on N. 

Creation of Macro 2 (Figure 18 right): we open another page of the same document, we copy Macro 

1 from the first page and paste it on page 2. We create circle (C) (circle of our inversion), a blue circle 

(C1) and a point M on (C1). Thanks to Macro 1 we create the image M’ of M (click on Macro 1, on 

circle (C) and on point M). Then ask the software to return the locus of M’ when M describes (C1): 

it is circle (C’1) image of (C1) by the inversion of circle (C). We have now to define Macro 2: same 

algorithm than for Macro 1: Circle (C) and circle (C1) are the initial objects, (C’1) is the final object 

and clicking on Define Macro generates the button (square with a wheel gear) which is Macro 2. 

We have inserted number 2 to replace the wheel gear. At last we can test Macro 2 in clicking on (C) 

and on a new blue circle (C2) to obtain its image by the inversion which is the orange circle (C’2).   

 



             
 

Figure 18: Creation of the two macros related to the tool “Inversion” 

 

7. Conclusion 
Thanks to dynamic geometry software allowing easy use of a tool for inversion, the paper has 

demonstrated how to solve the problem of the construction of Steiner chains as simply as possible. 

The paper provides to the reader with a wide range of the necessary knowledge to understand the 

techniques of construction and to show the power of these techniques in the figures created with the 

particular software used (here the New Cabri). As always in research of this kind, the work involved 

some questions which could not be solved with elementary tools (such as computations by hand or 

by CAS), and these are explored in the paper. It is hoped that this paper provides a clear view of the 

problems of construction of Steiner chains and will inspire teachers with some ideas for experimental 

investigations for their students even at a highschool level. 
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