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Abstract

We illustrate the possibility of developing, using the automated reasoning tools im-
plemented in the dynamic geometry program GeoGebra Discovery, a certain parallelism
with Michael de Villiers reflection on the ’discovery function’ of proof, as described in his
2012 paper concerning the formulation by one student of a certain geometric conjecture
(Clough’s conjecture).

1 Motivation and goals

Michael de Villiers is a well know emeritus professor from the University of KwaZulu-Natal and
an honorary professor at the University of Stellenbosch, both in South Africa, with worldwide
leading research contributions along the past 30 years on Dynamic Geometry and on the role
of proof and reasoning in mathematics education. Visit, for example, his web page http:

//dynamicmathematicslearning.com/homepage4.html for a relation of his publications with
links to some of them.

In 2004 he conducted workshops at two different conferences (AMESA1, South Africa, and
NTCM2, USA), dealing, in particular, with what he labeled as “Clough’s Conjecture”[6]. Later
on, based on a presentation by himself at the 12th International Congress on Mathematics
Education (ICME, July 2012, Seoul, Korea), de Villiers published an article [7], mentioning his
contributions to the above Conferences and describing its content as follows ([7], p.3; Figure 1
below is reproduced from there):

The main purpose of this article is to contribute further to the theoretical aspects
of the role of proof by providing a heuristic description of some of my personal
experiences of the explanatory and discovery functions of proof with a geometric
conjecture made by a Grade 11 student.

[. . . ]

110th Association for Mathematics Education of South Africa (AMESA) Conference, 30 June-4 July 2004,
Potchefstroom, South Africa, http://www.amesa.org.za/AMESA2004/

2National Council of Teachers of Mathematics (NCTM) Annual Meeting, April 2004, Philadelphia, USA

http://dynamicmathematicslearning.com/homepage4.html
http://dynamicmathematicslearning.com/homepage4.html
http://www.amesa.org.za/AMESA2004/


During 2003, a Grade 11 student from a high school in Cape Town was explor-
ing Vivianis theorem using dynamic geometry. The theorem says that the sum
of distances of a point to the sides of an equilateral triangle is constant (i.e. in
Figure [below] PPa + PPb + PPc is constant, irrespective of the position of point
P inside triangle ABC). The students further exploration led him to measure the
distances APc, BPa and CPb, and then add them. To his surprise, he noticed that
APc +BPa +CPb also remained constant no matter how much he dragged P inside
the triangle. However, he could not prove it.

His teacher eventually wrote to me to ask whether I could perhaps produce a simple
geometric proof, as he himself could only prove it algebraically by means of co-
ordinate geometry. Below is the geometric proof I first produced, followed by further
proofs, explorations and different generalisations of what has become known as
Clough’s conjecture ([6]).

[. . . ]

The underlying heuristic reasoning is carefully described in order to provide an
exemplar for designing learning trajectories to engage students with these functions
of proof.

In summary: in [7] de Villiers describes a Grade 11 student (Clough) experiment with
Dynamic Geometry, initially aiming to prove Viviani’s theorem, but at some point deriving
towards the formulation of a different statement, conjectured by the student. And de Villiers
develops the different steps (proving, discovering, conjecturing, generalizing, proving again . . . )
involved in this experience, as a useful example for the analysis and design of learning paths
concerning the role of proof in mathematics.

It is our goal here to follow, in some sense, the same storyline, but replacing Clough’s
protagonist role by the performance of our dearest “personal geometry assistant”, the program
GeoGebra Discovery3, whose main characteristics and features have been already described in

3See https://github.com/kovzol/geogebra-discovery, and http://autgeo.online/

geogebra-discovery/. GeoGebra Discovery is available in two options: GeoGebra Classic 5, for Win-

https://github.com/kovzol/geogebra-discovery
http://autgeo.online/geogebra-discovery/
http://autgeo.online/geogebra-discovery/


[2], [16] or in the Asian Technology Conference in Mathematics (ATCM) 2020 invited lecture,
entitled “GeoGebra Reasoning Tools for Humans and for Automatons” [11]. See the next
section for a short collection of basic examples illustrating the different tools and possibilities
of GeoGebra Discovery.

On the other hand, as a more challenging instance of the performance of this program,
Figure 1 shows the answer of GeoGebra Discovery to Clough’s conjecture, namely, when asked
for the relation between

• the sum of segments l = EC, m = FB, and n = GA, where E,F,G are the feet of the
perpendiculars to the sides of the equilateral triangle from an arbitrary point D,

• and 3p/2, where p is the length of side AB, i.e. 3p/2 is half the perimeter 3p of the
equilateral triangle ABC.

Here GeoGebra Discovery declares that such relation is “true on parts, false on parts”, an
answer that we will explain and comment in the last part of this paper and that illustrates
some of the issues we would like to address here.

Figure 1: Checking Clough’s conjecture yields ”’true on parts”

Of course, we are aware that the intended parallelism between de Villiers’ mentioned paper
[7] and our work here, has several limitations. Leaving aside the obvious differences of expertise
from the authors of both articles, it is clear that de Villiers’ aims to exemplify the educational
relevance of the heuristics involved in the production of traditional proofs. This interaction:
proof/heuristics, i.e. what he calls “. . . the ’looking back’ discovery function of proof. . . ” [7],
p. 7, could

dows, Mac and Linux systems; and GeoGebra Classic 6, made for starting it in a browser, mainly ready for use
on tablets and smartphones



. . . at least acquaint students with the idea that a deductive argument can provide
additional insight and some form of novel discovery . . . Problem posing and gener-
alisation through the utilisation of the ’discovery’ function of proof is as important
and creative as problem-solving itself, and ways of encouraging this kind of thinking
in students need to be further explored.

And then he emphasizes that this ’discovery’ function of proof is, in his own words, some-
thing to remark over the more traditional functions, such as ’verification’:

. . . Instead of defining proof in terms of its verification function (or any other func-
tion for that matter), it is suggested that proof should rather be defined simply as
a deductive or logical argument that shows how a particular result can be derived
from other proven or assumed results; nothing more, nothing less. It is not here
suggested that fidelity to the verification function of proof is sacrificed at all, but
that it should not be elevated to a defining characteristic of proof. Moreover, the
verification function ought to be supplemented with other important functions of
proof using genuine mathematical activities as described above.

On the contrary, as described in the ATCM 2020 proceedings [11], GeoGebra Discovery
facilitates

. . . the exploration, by humans, of geometric tasks by using GeoGebra as a kind
of “symbolic geometry calculator”: the user poses a concrete geometric task and
GeoGebra provides a mathematically sound answer.

That is, as a “symbolic geometry calculator”, GeoGebra Discovery main feature is, precisely,
the verification of geometric statements, without bringing any human readable argument for
their truth or falsity. Roughly speaking, as we will show in the next section, it provides just a
“yes/no” answer to a certain query posed by the user. Therefore, in some sense, the use of this
technological tool can not enhance the ’discovery function’ of proof, since there is no proof at
all!

Thus, bearing in mind this drastic affirmation, why do we regard in this paper the possibility
to follow with GeoGebra Discovery a parallel path to the one established in de Villiers’ cited
work?

Answer: in three different ways. First of all, trying to imitate de Villiers’ discourse on the
opportunities brought by the ’discovery function’ of proof, but now concerning the ’extended
discovery opportunity’ of geometric properties that comes when having an ’oracle’ at hand, just
as having a numerical calculator at our disposal can help us finding out numerical properties.
This has already been sufficiently argued in some recent works of ours, such as [13], [10], [18],
[12], [16], thus we will not address in more detail this issue here.

Second, replicating de Villiers’ route towards proving and generalizing Clough’s conjecture,
now through the analysis of the problems and difficulties shown by the algorithms involved in
the GeoGebra Discovery commands when dealing with different statements. We will exhibit
how these elements conform a sort of ’discovery function’ of automated proof, describing a
helpful learning path to discover algebro-geometric properties of the involved figures for more
advanced mathematics students, teachers, researchers. . . .

Third, as a way to describe, again, a learning path, this time not for the human user, but
for the “personal geometry assistant”, i.e. for the researchers and programmers involved in its
debugging and improvement.



2 GeoGebra Discovery: a short digest

We have described GeoGebra Discovery as a kind of ’oracle’. Indeed, the most obvious com-
mand in this context (see [13] for a sort of tutorial) is the one that answers to the quest to
Prove. . . a certain relation between two geometric objects in a figure. For example4 consider a
parallelogram ABCD and let E,F,G, I be the midpoints of the sides. Then we would like to
verify if the line j = EF and the line k = IG are parallel. The answer is displayed in Figure 2.

Figure 2: Left, input: Prove(AreParallell(j,k)). Center, output: True. Right, details: true in
the case of non-degeneracy (i.e. with non-coincident initial points, A 6= B).

To the left of the Figure, in the input line, the command Prove(AreParallell(j,k)). The
output is presented in the central image, with the concise true reply. To the right, after
introducing the user the demand for details through the ProveDetails(AreParallell(j,k)) order,
GeoGebra Discovery points out that it is required –for the parallelism of j and k– that the
construction does not colapse, i.e. that points A and B, that are the starting points for
constructing the parallelogram (together with point C, displaying some segments f = AB, g =
AC and then some lines h, i parallel to f, g (respectively) passing through C and B, etc.), are
different.

Now, a key feature of GeoGebra Discovery is the Relation command, that allows the user to
ask the program to formulate possible relations holding between two elements of a figure. That
is, while the Prove command requires the user to “guess” a statement that will be confirmed or
denied by the program, the Relation automatically tests, numerically, a collection of potential
statements involving two selected elements and outputs, in a first step, some relations that seem
(apparently) to hold true. Then, after clicking on the More. . . button, GeoGebra Discovery
confirms or denies the rigorous truth of the automatically suggested statement. See Figure 3.

Next, an ample generalization of the Relation command is the Discover command, that does
not even require the user to point out two possible elements, but just one, for example, point
E in Figure 4. Then, Discover(E) launches a collection of Relation tests between E and other
elements in the geometric construction, yielding, and visually highlighting, a list of statements
that are true involving point E. See Figure 4.

Finally, let us mention (and exemplify with an elementary, yet surprising, result) the recent
extension of these GeoGebra Discovery tools to deal with statements involving inequalities [17].

4Following de Villiers’ inspiring paper, we will on purpose restrict in general to simple examples, of school
level, although GeoGebra Discovery is able to deal with quite complicated ones, arising for instance, in mathe-
matical contests, university entrance or professional selection exams, see [14], [15], [16].



Figure 3: Left, input question: is there any Relation(j,k)? Center, initial output: numerical
parallelism of the two lines. Right, symbolic verification: parallelism of j, k is a mathematically
sound statement.

Figure 4: Left: input, Discover(E). Right: output, a collection of true statements on parallel
or perpendicular lines or congruent segments, involving E.

Thus, in the next section we will describe an attempt to investigate the basic inequality number
1.4 (from E. Cesàro’s [4], p. 140) included in the classic book by Bottema et al. [3], p. 12. Let
us remark that the original proposal by Cesàro (see Figure 5) includes, as a footnote, the fact
that for equilateral triangles the inequality is an equality, while Bottema’s formulation of the
same inequality adds that this only holds in this equilateral case.

How can GeoGebra Discovery ’s very concise answers help developing ’learning paths’ associ-
ated to some kind of ’discovery’ function of proof in this context? We will attempt to exemplify
our point of view on this issue in the next section.

3 Cesàro’s inequality

Let us start by asking GeoGebra Discovery for the relation between the products (a + b) · (a +
c) · (b + c) and abc, where a, b, c are the lengths of the sides of a triangle. GeoGebra replies
almost immediately (over an old MacBookPro 2.5 GHz) presenting the –perhaps– unexpected
inequality (a + b) · (a + c) · (b + c) ≥ 8abc. See Figure 6.

Next, we try to provide some reasons that justify GeoGebra’s answer. Our first idea is to



Figure 5: Original formulation of E. Cesàro’s inequality.

consider (and verify with GeoGebra) a much simpler case, the well known triangle’s inequality:
every side is smaller than the sum of the other two. Thus, (a+ b) ≥ c, and, likewise, (b+ c) ≥ a
and (a+c) ≥ b. See Figure 7. But, using these inequalities, we would just obtain abc as a lower
bound for (a+b)·(a+c)·(b+c), not 8abc. We wonder, then, if it could be true in general over any
triangle that (a+ b) ≥ 2c, (b+ c) ≥ 2a and (a+ c) ≥ 2b. After a moment’s thought we discard
this hypothesis, thinking, for instance, of the right triangle with sides a = 3, b = 4, c = 5, where
a+ b � 2c. We do not even need to recall such Pythagorean triple; we could just ask GeoGebra
Discovery for the locus of, say, vertex C such that a + b = 2c. The answer ’seems’ to be an
ellipse, see Figure 7. Placing C inside the ellipse would yield a+ b ≤ 2c; and placing it outside
would imply a + b ≥ 2c.

But we would like to confirm this visual impression. Thus, we select some simple coordinates
for A = (0, 0), B = (1, 0), as the analysis of the investigated equality can be reduced, without
loss of generality, to this particular case, by homothecy. Now we can handle easily the displayed
output equation, which is, indeed, an ellipse with foci in A,B, center in the midpoint of AB,
axis of size 2 and

√
(3), respectively. And the ellipse includes the points C = (1/2,

√
(3)/2)

and C = (1/2,−
√

(3)/2), corresponding to an equilateral triangle.
Now, in the next Figure 9 we show how we have extended this computation and displayed

the locus of C for 2c = a + b, the red ellipse; the locus of C for 2a − b − c, the blue quartic;



Figure 6: Left: input, asking for the relation between (a+ b) · (a+ c) · (b+ c) and a · b · c. Right:
output, the inequality (a + b) · (a + c) · (b + c) ≥ 8abc .

Figure 7: Left: A side of a triangle is smaller than the sum of the other two. Right: Locus of
C for a + b = 2c.

and the locus of C for 2b − a − c, the black quartic. We have labeled as d, e, f the values of
2c− a− b, 2b− a− c, 2a− b− c, respectively. Notice that placing C inside the red ellipse
makes d positive (and negative outside of the ellipse), while placing this point inside the blue
or black quartics makes both e, f negative (positive, otherwise).

But finding in a geometrically precise way the intersection of the three curves seems chal-
lenging for GeoGebra (there is no command for finding the intersection of three curves). Yet,
in this case the intersection is easy to describe: indeed, the conjunction of {a + b − 2 ∗ c =
0, a + c − 2 ∗ b = 0, b + c − 2 ∗ a = 0} yields as solution a = b = c, which means
that C should be the third vertex of one of the two equilateral triangles with vertices at
A = (0, 0), B = (1, 0). Notice that, conversely, for any equilateral triangle it is true that
{a + b− 2 ∗ c = 0, a + c− 2 ∗ b = 0, b + c− 2 ∗ a = 0}, since a = b = c. In particular this
means that over such triangles (a + b) · (a + c) · (b + c) = 8abc, as remarked by Cesàro.

Obviously, this success also means that our initial conjecture about “. . . if it could be true in



Figure 8: Left: d = 2c− a− b. Right: Equation of the locus of C for a + b = 2c, showing it is
an ellipse.

general over any triangle that (a+b) ≥ 2c, (b+c) ≥ 2a and (a+c) ≥ 2b.” is false. Thus, we have
to look for a different approach towards proving Cesàro’s inequality (a+b)·(a+c)·(b+c) ≥ 8abc.
Since it involves the sum and the product of every two sides of the triangle, we might try to find
out if there is some simpler inequality holding between, say, a + b and ab. The initial problem
is that both expressions are not of the same degree and, thus, they can not be reduced to the
case A = (0, 0), B = (1, 0). Yet, we ask GeoGebra, through the Relation tool, for the relation
between a + b and ab, yielding that (a + b)2 ≥ 4ab, see Figure 10.

In order to have some explanation for this inequality (let us remark that GeoGebra’s
output is the result of some symbolic computation with real algebraic geometry tools, such
as quantifier elimination, so it is already mathematically sound) we observe that the in-
equality is equivalent to ((a + b)/2)2 ≥ ab. Thus, in Figure 10, right, following https://

en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means, we have con-
structed a circle with diameter AB and radius i = (a + b)/2. We place now a point C on
this circle in such a way that the foot of its height is the point where the segments a, b meet,
yielding the triangle ABC and apply the altitude (or geometric mean) theorem h2 = ab (see
https://en.wikipedia.org/wiki/Geometric_mean_theorem, and [8] for a proof with GeoGe-
bra and a generalization), yielding that i ≥ h, and thus i2 ≥ h2, i.e. that ((a + b)/2)2 ≥ ab.

Now, this inequality implies that (a + b) ≥ 2
√

(ab) and, likewise, (a + c) ≥ 2
√

(ac) and

(b+c) ≥ 2
√

(bc). It is now clear that multiplying all these expressions we will arrive to Ces̀aro’s
inequality, Q.E.D.

4 Cesàro’s Equality locus

Finally, we wonder about when the equality (a + b) · (a + c) · (b + c) = 8abc holds, beyond
the already analyzed equilateral case. In Figure 11 we show how computing the locus of C
verifying this equality yields an empty graph, associated to a complicated equation: eq4 :=
{252 ∗ x10 + 1264 ∗ x8 ∗ y2 + 2536 ∗ x6 ∗ y4 + 2544 ∗ x4 ∗ y6 + 1276 ∗ x2 ∗ y8 + 256 ∗ y10− 1260 ∗
x9 − 5056 ∗ x7 ∗ y2 − 7608 ∗ x5 ∗ y4 − 5088 ∗ x3 ∗ y6 − 1276 ∗ x ∗ y8 + 2151 ∗ x8 + 6596 ∗ x6 ∗ y2 +
6866 ∗ x4 ∗ y4 + 2548 ∗ x2 ∗ y6 + 127 ∗ y8 − 1044 ∗ x7 − 2092 ∗ x5 ∗ y2 − 1052 ∗ x3 ∗ y4 − 4 ∗ x ∗

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Geometric_mean_theorem


Figure 9: Intersection of the three curves corresponding to the loci of C for 2c − a − b = 0,
2a− b− c = 0, and 2b− a− c = 0, respectively.

Figure 10: Left: (a+b)2 ≥ 4ab. Right: Explaining this inequality through the altitude theorem.

y6 − 198 ∗ x6 − 682 ∗ x4 ∗ y2 − 738 ∗ x2 ∗ y4 − 254 ∗ y6 − 1044 ∗ x5 − 1048 ∗ x3 ∗ y2 − 4 ∗ x ∗ y4 +
2151 ∗ x4 + 2294 ∗ x2 ∗ y2 + 127 ∗ y4 − 1260 ∗ x3 − 1276 ∗ x ∗ y2 + 252 ∗ x2 + 256 ∗ y2 = 0}

This “missing real points” problem (empty or not complete graphic output in GeoGebra,
of the equation of a curve) happens in many other cases. For example, if we input Implic-
itCurve(x2 + y2), we get just the empty set. Or, if we input ImplicitCurve(x2 + y2−x3), we get
a branch of the curve, but not the origin –a point that obviously belongs to the curve. Thus
we need to find specific ways to deal with this issue in this case.

To begin with, we know that this equality locus eq4 should contain the points C =
(1/2,

√
(3)/2) and C = (1/2,−

√
(3)/2), and this can be easily verified using the Substitute

command in GeoGebra CAS view, over the above equation eq4. It is also easy to imagine
(and to check) that the curve contains the degenerate instances C = A,C = B. Any other



Figure 11: Computing the locus of C for (a + b) · (a + c) · (b + c) = 8abc

points? To answer this question we proceed as follows, using some tools from the CAS Maple5,
such as sturm, that computes the number of real roots of univariate polynomial on an interval
(eventually, the interval (−infinity,+infinity)), or realroot, that computes isolating intervals
for each real root:

• We collect eq4 as a polynomial in the variable y with coefficients in x

• We compute the discriminant of this polynomial in y, getting a univariate polynomial in
x.

• We compute the different real roots of this discriminant (11 in total), including 0, 1/2 and
1.

• We compute the real roots of the curve over each of these roots of the discriminant, finding
only the already known ones: y = 0 over x = 0, y =

√
(3)/2 and y = −

√
(3)/2 over

x = 1/2, y = 0 over x = 1.

• For each interval conformed by a pair of consecutive roots of the discriminant (or between
minus infinity and the smallest root, and between the largest root and plus infinity)
assign a test number in the interval. For example, we know that the smallest root is
1/2−

√
(63618 + 7446 ·

√
(73))/4, thus we can choose −90 as a smaller, test number. As

a more automatic alternative, use realroot for handling intervals enclosing the roots of
the discriminant.

5https://www.maplesoft.com



• Over each assigned real number between the real roots of the discriminant, compute the
number of real roots in the curve (using, again, the sturm command). For example,
substitute x = −90 in eq4, yielding a polynomial in y, that has no real roots.

• As there are no real roots over each one of these test points, we conclude that the only
points in the curve are {(0, 0), (1/2,

√
(3)/2), (1/2,−

√
(3)/2), (1, 0)}. In fact let us recall

that the number of real roots of eq4(x, y) does not vary as x moves on an interval between
consecutive roots of the discriminant. So, since in the test points of the intervals we have
selected there are no roots, it follows the same happens all over the interval. So the only
roots are the ones we have already previously found.

Of course, the obtained computation confirms Bottema’s assertion that Cesàro’s inequality
holds as an equality only in the equilateral case, leaving aside the degenerate instances when
C coincides with A or B.

5 Conclusions

The last two sections show, in our opinion, a way to approach geometry learning that combines
empiric experimentation and formal reasoning, in which man-machine interaction is fundamen-
tal, not just auxiliary, following the declaration of Corless [5]: “Any tool should always be used
to expand the users capabilities, and not as a crutch to prop up weak skills”. See [8] for another
recent example in the same direction.

We could say that “computer mediated thinking” (again, a formulation from [5]) should
have a parallel status to the traditional “writing mediated thinking”: how could we think of
developing a sound geometry reasoning without using symbols and writing skills? How can we
nowadays think of developing geometry reasoning without using “personal geometry assistants”
such as GeoGebra Discovery? The evolution of our approach to the proof of Cesàro inequality
(and equality) shows well –at least in this particular example– the great advantages (and specific
difficulties) of having this tool at our disposal. It would have been very difficult to replicate our
way of proving these statements without the concourse of GeoGebra. Of course, it is possible
that there is an alternative way, but . . . will it be relevant in mathematics education in the
digital era?

We are aware that this is just one isolated example, and it is one addressed to persons
with some skills on higher mathematics. But it also intends to support the urgent need for
“Opening a discussion on teaching proof with automated theorem provers” [9], the title of a
very recent paper by Hanna –one of the world most reputed experts in the topic– and Yan. In
that paper there is a section specifically dealing with GeoGebra’s automated reasoning tools,
and the authors conclude that

It is perhaps too early for empirical studies of classroom experience using the en-
hancements to GeoGebra. In this respect the situation of GeoGebra is similar, but
not identical, to the proof technology in general. While it is reasonable to expect
proof technology to foster students proving abilities, and there is certainly support-
ing anecdotal evidence, its potential advantages have not yet been systematically
assessed.

[. . . ]



We know that automated proof assistants are designed to provide a guarantee
of correctness, and indeed they are very good at establishing the validity of a proof.
The question, then, is to what degree these tools can also be helpful in explaining
why it is that a theorem is true.

We agree about the need to seriously start investigating these issues about how the use
of GeoGebra Discovery can improve mathematics learning, not of the traditional curriculum,
but of one that already takes into account the existence of new possibilities associated to the
’discovery function’ of computer-enhanced proof processes.

It is also true that this research must go in parallel, involving, on the one side, to curriculum
decision makers, teachers, students [1] and, on the other, proof assistant developers. As stated
in [9]

Proof assistants . . . will never be developed in the absence of initiative on the
part of mathematics educators and a demonstrated demand fueled by increased use.
Secondly, success also requires new and effective teaching strategies. These two
efforts stand in a reciprocal relationship, so that the full benefit of proof assistants
will be seen only over time as new teaching strategies effect the demand for new
tool features and vice versa. The responsibility for both efforts rests squarely on
the shoulders of educators. The key is to make a start, beginning with exploratory
studies of the potential of these new tools at both the secondary and post-secondary
levels.

Indeed, our verification of Clough’s conjecture, see Figure 1, shows the need (and the in-
volved mathematical, algorithmic and user-interface difficulties) to improve proof assistants to
output some answer that could be clearly understood by most users. Here let us just succinctly
state that ‘true on parts, false on parts’ refers to the fact that the algebraic translation of the
construction involves different components (but, for a standard user, there is only one, the
one that is graphically and intuitively perceived), because the idea of ’length’ of a side is, in
the complex geometry algorithmic background for GeoGebra Discovery, some square root that
can take positive or negative values. And, of course, the involved conjecture is true for the
component where these roots are positive, and fails for the others.

The option to associate signs to the lengths of segments involves real algebraic geometry and
it is on-going work [17]; but it is much less efficient at this moment, so it would be more useful
to develop –with the cooperation of teachers, experimenting with students, etc.– some user-
interface modifications to avoid such confusing answers for the expected users of the program
in the educational world, perhaps implementing two kind of versions: for ’experts’ and for
’students’.
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[13] Kovács, Z., Recio, T. and Vélez, M.P., “Using Automated Reasoning Tools in GeoGebra in
the Teaching and Learning of Proving in Geometry”, International Journal of Technology
in Mathematics Education, 2018, 25(2), 33-50.
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[16] Kovács, Z.; Recio, T.; Vélez, M.P.: “Automated reasoning tools with GeoGebra: What are
they? What are they good for?” In: P. R. Richard, P.R.; Vélez, M.P.; Van Vaerenbergh,
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