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Abstract: Quick Response (QR) codes are two-dimensional bar codes that have become a common medium for easily

accessing information such as URLs, phone numbers, and small amounts of text. The creation of QR codes requires

placing data in a prescribed format so that it can be displayed on a surface and then detected by common QR code

scanner software. Like other physical means of storing data, QR codes are prone to errors when their data is interpreted

in a digital format. Reed-Solomon codes provide a mechanism for ensuring that QR code scanners can reliably process

information when errors occur. This involves sending information in the form of polynomial coefficients using finite field

arithmetic. Utilizing Reed-Solomon codes allows logos and emblems to be embedded within QR codes to advertise their

purpose. In this paper we will present how QR codes are constructed, and how Reed-Solomon codes are incorporated

into them to provide error correction. To assist in demonstrating this, technology involving Maplets will be used.

1 Introduction

Since their 1994 invention by the DENSO Corporation in Japan, QR codes have provided a widely

used method for quickly accessing information. Originally, QR codes were used for parts manufac-

turing inventory tracking, but they can now be found on advertisements, web pages, business cards,

any many other mediums. QR codes are notable for their long-term stability and higher capacity for

storage than other bar codes. However, like other physical means of storing data, QR codes are prone

to errors. Reed-Solomon codes provide a mechanism for ensuring that QR code scanners can reliably

process information when errors occur.

In this paper we will give an overview of how QR codes are created, and how data is integrated

into their construction. As part of this, we will describe the basics of how Reed-Solomon codes work,

and how Reed-Solomon codes are incorporated into QR codes to increase the likelihood that they

are able to transmit data reliably. This information provides a means for demonstrating a hands-on

method for the use of mathematics in a practical real-life application.
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2 Data Representation and Finite Fields

QR codes encode text represented as binary numbers. The QR code standard allows for text strings to

be created using four encoding modes: numeric, alphanumeric, byte, and kanji. In this paper we will

describe the byte mode. Descriptions of the other three modes can be found in [5].

The byte mode of encoding text for QR codes utilizes the ASCII character set. A list of the

ASCII character set and the correspondences between characters and decimal numbers in ASCII for

the printable characters on a modern keyboard is shown in Table 1.

Char Num Char Num Char Num Char Num Char Num

(space) 32 3 51 F 70 Y 89 l 108

! 33 4 52 G 71 Z 90 m 109

" 34 5 53 H 72 [ 91 n 110

# 35 6 54 I 73 \ 92 o 111

$ 36 7 55 J 74 ] 93 p 112

% 37 8 56 K 75 ^ 94 q 113

& 38 9 57 L 76 _ 95 r 114

’ 39 : 58 M 77 ‘ 96 s 115

( 40 ; 59 N 78 a 97 t 116

) 41 < 60 O 79 b 98 u 117

* 42 = 61 P 80 c 99 v 118

+ 43 > 62 Q 81 d 100 w 119

, 44 ? 63 R 82 e 101 x 120

- 45 @ 64 S 83 f 102 y 121

. 46 A 65 T 84 g 103 z 122

/ 47 B 66 U 85 h 104 { 123

0 48 C 67 V 86 i 105 | 124

1 49 D 68 W 87 j 106 } 125

2 50 E 69 X 88 k 107 ~ 126

Table 1: Correspondences between characters and decimal numbers in ASCII.

Each character in ASCII corresponds to a decimal number, which can then be expressed as a string

of eight binary digits, or a byte. For example, the character M corresponds to the decimal number 77,

which can be expressed in binary as 1001101, or the byte 01001101. This byte can then be represented

as a polynomial, by using these digits in reverse order as coefficients on powers of the variable a, with

terms of increasing degree. For example, the byte 01001101 can be represented as the polynomial

1+0a+1a2 +1a3 +0a4 +0a5 +1a6 +0a7 = 1+a2 +a3 +a6. Similarly, every character in ASCII

can be expressed as a byte, and as a polynomial in a of maximum degree 7. Since all characters can

be expressed as binary numbers, all computations that follow will be done using modulo 2 arithmetic.

This means that all numerical computations will result in a 0 or 1. Specifically, if a result gives a

number that is divisible by 2, it can be reduced to 0, and if it gives a number that is not divisible by

2, it can be reduced to 1. For example, the number 6 with modulo 2 arithmetic reduces to 0; that is,

6 mod 2 = 0 . The number 7 with modulo 2 arithmetic though reduces to 1; that is, 7 mod 2 = 1.

This can also work with coefficients of polynomials. For example, with modulo 2 arithmetic, the

polynomial 7a3 +4a2 −a+2 reduces to (7a3 +4a2 −a+2) mod 2 = 1a3 +0a2 +1a+0 = a3 +a.



A particular finite field provides the method with QR codes for performing operations on poly-

nomials that represent information. The finite field used with QR codes contains 28 = 256 elements,

and uses the polynomial p(x) = x8+x4+x3+x2+1 to generate the 255 of these field elements which

are nonzero. These 255 nonzero field elements can be expressed as all nonzero polynomials in the

variable a of maximum degree seven and with coefficients that are all either 0 or 1, which can be gen-

erated as follows. Let x = a be a root of p(x), called a primitive element in the field. To generate all of

the nonzero elements in the field, we can raise a to consecutive integer powers, from the first through

the 255th. That is, the 255 nonzero field elements are {a,a2, . . . ,a254,a255}, the last of which will

equal 1 (an explanation for which can be found in [3]). The finite field is then completed by including

0 with this set. To represent the 255 nonzero field elements as polynomials in a of maximum degree

seven and with coefficients that are all either 0 or 1, we can use the fact that a is a root of p(x). As

such, after the first seven nonzero field elements have been formed (which are simply a,a2, . . . ,a7)

and a8 is reached, since a is a root of p(x), then p(a) = a8+a4 +a3 +a2 +1 = 0. Solving for a8 and

reducing the coefficients with modulo 2 arithmetic gives a8 = −a4 −a3 −a2 −1 = a4 +a3 +a2 +1.

That is, a4 +a3 +a2 +1 is the polynomial of maximum degree seven that can be used to represent a8

in the field. Subsequent nonzero field elements can be generated similarly.

a9 = aa8 = a5 +a4 +a3 +a

a10 = aa9 = a6 +a5 +a4 +a2

a11 = aa10 = a7 +a6 +a5 +a3

a12 = aa11 = a8 +a7 +a6 +a4 = a4 +a3 +a2 +1+a7 +a6 +a4 = a7 +a6 +a3 +a2 +1
...

This process could be continued until the last nonzero element, a255 = 1, were reached. Since doing

this would generate all 255 nonzero polynomials in the variable a of maximum degree seven and with

coefficients that are all either 0 or 1, then p(x) is also characterized as a primitive polynomial.

We will now demonstrate a Maplet1 written by the authors that can be used to generate the el-

ements in this finite field, with the nonzero elements expressed as polynomials in a of maximum

degree seven and with coefficients that are all either 0 or 1. Specifically, Figure 1 shows how the

Maplet FiniteFieldGenerator can be used for this purpose.

Figure 1: Finite field elements for primitive polynomial p(x) = x8 + x4 + x3 + x2 +1.

1A Maplet is like an applet, but uses (and requires) the engine of the computer algebra system Maple, and is written

using Maple functions and syntax.



A QR code formats a message with specifications, and places the result on a two-dimensional

grid made up of pixels. QR codes can have grid sizes ranging from the smallest for version 1 at size

21×21, to the largest (as of this writing) for version 40 at size 177×177. Each new QR code version

after the first uses a grid size with 4 more rows and 4 more columns than the grid size used in the

previous version. The size of the grid for a particular message depends on the number of characters in

the message and the error correction level specified for the code. Error correction is included to help

ensure that messages can still be read correctly even if part of them are unreadable. Reed-Solomon

codes, as described in section 3, are used for this purpose.

To demonstrate how the characters in a message can be formatted for a QR code, consider a QR

code that when scanned, portrays the message https://atcm.mathandtech.org/. To begin, an

error correction level is selected. There are four possible error correction levels with QR codes: L,

which allows the information to be accessible if up to 7% is unreadable; M, which provides up to

15% error correction; Q, which provides up to 25% error correction; and H, which provides up to

30% error correction. For our example, we will use error correction level H.

The next step is to determine the smallest possible grid size that can be used to encode the message

with the specified error correction level. Table 2 shows the character capacities for each QR code

version in byte mode and with error correction level H. A table showing the character capacities for

each QR code version in all modes and with all error correction levels can be found in [5].

Version Char Cap Version Char Cap Version Char Cap Version Char Cap

1 7 11 137 21 403 31 790

2 14 12 155 22 439 32 842

3 24 13 177 23 461 33 898

4 34 14 194 24 511 34 958

5 44 15 220 25 535 35 983

6 58 16 250 26 593 36 1051

7 64 17 280 27 625 37 1093

8 84 18 310 28 658 38 1139

9 98 19 338 29 698 39 1219

10 118 20 382 30 742 40 1273

Table 2: QR code character capacities in byte mode and with error correction level H.

Since https://atcm.mathandtech.org/ contains 29 characters, the lowest QR code version that

could use to encode it in byte mode and with error correction level H is version 4, with a 33×33 grid.

Next, information that will be encoded into the grid is represented by a string of binary digits.

The first four digits are the mode indicator, which for byte mode are 0100. The four mode indicator

digits for all mode types can be found in [5]. A character count indicator is then included, which

gives the number of characters in the message. Since https://atcm.mathandtech.org/ contains

29 characters, and the decimal number 29 is 11101 in binary, these digits are included next, although

padded with three 0s at the start to have full length 8, as is required for the character count indicator

for all QR code versions 1–9. That is, the character count indicator for our message would actu-

ally be included as 00011101. QR code versions 10–40 also require character count indicators of a

specified length, although this required length is 16 bits rather than 8. Next, the characters in the ac-

tual message are converted into their ASCII code decimal representations, which are then converted

into binary and themselves each padded with 0s at the start to have full length 8. These bytes are



then included in order after the character count indicator. Using Table 1, we see the characters in

https://atcm.mathandtech.org/ correspond to the following ASCII decimal representations.

104 116 116 112 115 58 47 47 97 116 99 109 46 109 97

116 104 97 110 100 116 101 99 104 46 111 114 103 47

These decimal representations can then be converted to binary and padded to give the following bytes.

01101000 01110100 01110100 01110000 01110011 00111010 00101111

00101111 01100001 01110100 01100011 01101101 00101110 01101101

01100001 01110100 01101000 01100001 01101110 01100100 01110100

01100101 01100011 01101000 00101110 01101111 01110010 01100111

00101111

For each version and error correction level, QR codes require that binary strings completely fill

the total capacity of the code. For codes of version 4 and with error correction level H, the total

capacity is 288 bits. As such, after obtaining the bits for a mode indicator, character count indicator,

and message, it is almost always necessary to add bits, in particular, some 0s and some padding bytes.

First, a terminator would be included at the end of the binary string. If the string were four or more

bits shorter than the total capacity, then the terminator would consist of exactly four 0s. If the bit

string were fewer than four bits shorter than the total capacity, then the terminator would consist of

only the number of 0s needed to reach the total capacity. Since in our example, the mode indicator,

character count indicator, and message give a total of 244 bits, the terminator 0000 would be included,

raising the total length of the binary string to 248 bits.

If the length of a string with the terminator is not a multiple of 8, then additional 0s would be

included to bring the length up to a multiple of 8. In our example, since 248 is a multiple of 8,

additional 0s are not required. Since 248 is short of the 288-bit total capacity of a code of version 4 and

with error correction level H though, the string must still be padded to reach 288 bits. For this, bytes

alternating between 11101100 and 00010001, representing 236 and 17 in decimal, respectively, are

included until the total capacity is reached. For our example, since we need 40 additional bits to extend

our 248-bit string to the required 288 bits, we include 11101100 00010001 11101100 00010001

11101100 to complete the data. A final list of the 288 bits for our example is shown in Table 3.

Mode Char Count Message Terminator Pad Bytes

01101000 01110100 01110100

01110000 01110011 00111010

00101111 00101111 01100001

01110100 01100011 01101101 11101100 00010001

0100 00011101 00101110 01101101 01100001 0000 11101100 00010001

01110100 01101000 01100001 11101100

01101110 01100100 01110100

01100101 01100011 01101000

00101110 01101111 01110010

01100111 00101111

Table 3: QR code example for the message https://atcm.mathandtech.org/.



Regrouping these 288 bits into blocks of 8 bits each gives the following full data binary string for our

example.

01000001 11010110 10000111 01000111 01000111 00000111 00110011

10100010 11110010 11110110 00010111 01000110 00110110 11010010

11100110 11010110 00010111 01000110 10000110 00010110 11100110

01000111 01000110 01010110 00110110 10000010 11100110 11110111

00100110 01110010 11110000 11101100 00010001 11101100 00010001

11101100

To work with this sequence of bytes mathematically, we convert each byte into its representation

as a polynomial and then as a power of a in the finite field used with QR codes. For example, the byte

11010110 has polynomial representation a7 +a6 +a4 +a2 +a, which turns out to be a85.

We will now demonstrate a Maplet written by the authors that can be used to convert bytes into

their corresponding powers of a in the finite field used with QR codes. Specifically, Figure 2 shows

how the Maplet FFConversion can be used for this purpose.

Figure 2: Primitive element power representation of data.

Summarizing this result, the full data binary string for our example can represented as the following

string of powers of a.

a191 a85 a13 a253 a253 a198 a125 a209 a213 a173 a129 a48 a249

a59 a160 a85 a129 a48 a99 a239 a160 a253 a48 a219 a249 a192

a160 a232 a15 a155 a79 a122 a100 a122 a100 a122

(1)

Next we will consider error correction in QR codes.

3 Reed-Solomon Codes

Since their description in a 1960 paper by Irving Reed and Gustave Solomon, Reed-Solomon codes

have been widely used to ensure reliable transmission of data. In addition to their utility in QR codes,



Reed-Solomon codes have been used extensively to correct data transmission errors in mobile phones,

compact discs, satellites, space probes, and numerous other examples.

The objects in which Reed-Solomon codes can actually correct errors are finite field elements,

in a field containing 2m elements for some positive integer m, generated by a primitive polynomial

p(x) of degree m, with primitive element we will again denote by a. To create a Reed-Solomon

code, the desired maximum number of position (i.e., polynomial coefficient) errors guaranteed to be

correctable upon the arrival of information at its destination must first be chosen, and specified. Let

t be this desired maximum number of position errors guaranteed to be correctable, which can be any

positive integer t with 2t < n, where n = 2m −1 is the number of nonzero elements in the field.

With any error correcting code, transmitted messages are called codewords. Reed-Solomon code-

words are polynomials consisting of a prefix and a suffix.2 The prefix of a codeword is constructed

starting with a polynomial of the form

m(x) = bk−1xk−1 + · · ·+b1x+b0,

whose coefficients are understood to contain the information actually needing to be sent. As such, we

will call m(x) the message polynomial. To form the prefix, we use the polynomial

g(x) = (x−1)(x−a) · · ·(x−au−1),

where u = 2t or u = 2t +1. The polynomial g(x) is called the generating polynomial. We then form

the prefix by computing xum(x).
The suffix polynomial s(x) is the remainder when the prefix polynomial is divided by g(x). That

is, if

xum(x) = q(x)g(x)+ s(x) (2)

with degs(x)< degg(x) or s(x) = 0, then the suffix is s(x).
For the various QR code versions and error correction levels, different numbers of prefix poly-

nomials of given degrees along with generating polynomials of specified degrees are used to create

codewords. Table 4 summarizes these numbers for versions 1–10 with error correction level H.

Version Num Codewords Num m(x) Deg m(x) Deg g(x)
1 1 1 8 16

2 1 1 15 27

3 2 2 11 21

4 4 4 8 16

5 4 2; 2 10; 11 22

6 4 4 14 28

7 5 4; 1 12; 13 26

8 6 4; 2 13; 14 26

9 8 4; 4 11; 12 24

10 8 6; 2 14; 15 28

Table 4: Codeword formulations for QR code versions 1–10 with error correction level H.

2Other descriptions of Reed-Solomon codes specify codewords as single polynomials. Separating the prefix and suffix

is useful though, because it allows for the coefficients of the data to be visible in the prefix.



Codeword formulations for all of the various QR code versions and error correction levels can be

found in [5].

From Table 4, we can see that a QR code of version 3 with error correction level H requires

that information be formulated into two codewords, both with prefixes of degree 11, resulting in 12

polynomial coefficients containing data. The generating polynomial is then of degree 21, and has the

form g(x) = (x−1)(x−a) · · ·(x−a20). Since this code is guaranteed to correct t = 10 position errors,

each suffix corresponding to each prefix will have maximum degree 20, resulting in 21 polynomial

coefficients.

Also from Table 4, we can see that a QR code of version 8 with error correction level H requires

that information be formulated into six codewords, four having prefixes of degree 13, resulting in

14 polynomial coefficients containing data, and two having prefixes of degree 14, resulting in 15

polynomial coefficients containing data. The generating polynomial is then of degree 26, and has the

form g(x) = (x−1)(x−a) · · ·(x−a25). Since this code is guaranteed to correct t = 13 position errors,

each suffix corresponding to each prefix will have maximum degree 25, resulting in 26 polynomial

coefficients.

In Section 2, the data given by (1) for the message https://atcm.mathandtech.org/ was

represented for a QR code of version 4 with error correction level H. Table 4 indicates that this data

should be formulated into four codewords, all with prefixes of degree 8, resulting in 9 polynomial

coefficients containing data. The generating polynomial for the code is then of degree 16, and has the

form g(x) = (x−1)(x−a) · · ·(x−a15). Since this code is guaranteed to correct t = 8 position errors,

each suffix corresponding to each prefix will have maximum degree 15, resulting in 16 polynomial

coefficients. The data given by (1) shows the 288-bit full data string expressed as 36 primitive power

finite field elements. Since there are four prefixes, we must divide these 36 powers of a into four

equal parts, with each part representing the 9 coefficients of each of the prefix polynomials of degree

8. Once these prefixes are formed, we divide each by the generating polynomial g(x), and using (2),

find the four corresponding suffixes.

To demonstrate this process, for the 36 primitive power finite field elements given by (1), we take

the first 9 of these elements, which are

a191
,a85

,a13
,a253

,a253
,a198

,a125
,a209

,a213
,

and form the following message polynomial in descending degree order.

m(x) = a191x8 +a85x7 +a13x6 +a253x5 +a253x4 +a198x3 +a125x2 +a209x+a213 (3)

Since the degree of the generating polynomial is u = 16, we multiply m(x) by xu = x16 to form the

following prefix.

x16m(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

To form the suffix, we must divide this prefix by the generating polynomial g(x). To do this divi-

sion, we will use another Maplet written by the authors, ReedSolomonCodewordGeneratorATCM,

which has been designed to do this division and form the prefix/suffix codeword pair. Figure 3 shows

how this Maplet can be used for this purpose. The Maplet specifically allows a user to enter the

primitive polynomial, the degree of the generating polynomial, and the message polynomial, and

then by clicking the appropriate buttons, output the generating polynomial in expanded form and the

prefix/suffix codeword pair.



Figure 3: Prefix/suffix Reed-Solomon codeword generation.

From Figure 3, we can see that the prefix/suffix pair corresponding to the message polynomial (3)

is given by the following.

x16m(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

s(x) = a252x15 +a145x14 +a49x13 +a146x12 +a165x11 +a39x10 +a136x9 +a97x8 +a55x7

+a181x6 +a21x5 +a21x4 +a45x3 +a100x2 +a77x+a83

The following summarizes all four prefix/suffix codeword pairs, which can be found using the Maplet.

x16m1(x) = a191x24 +a85x23 +a13x22 +a253x21 +a253x20 +a198x19 +a125x18 +a209x17 +a213x16

s1(x) = a252x15 +a145x14 +a49x13 +a146x12 +a165x11 +a39x10 +a136x9 +a97x8 +a55x7

+a181x6 +a21x5 +a21x4 +a45x3 +a100x2 +a77x+a83

x16m2(x) = a173x24 +a129x23 +a48x22 +a249x21 +a59x20 +a160x19 +a85x18 +a129x17 +a48x16

s2(x) = a9x15 +a83x14 +a148x13 +a241x12 +a94x11 +a42x10 +a74x9 +a161x8 +a52x7 +a82x6

+a188x5 +a4x4 +a167x3 +a241x2 +a111x+a97

x16m3(x) = a99x24 +a239x23 +a160x22 +a253x21 +a48x20 +a219x19 +a249x18 +a192x17 +a160x16

s3(x) = a146x14 +a84x13 +a32x12 +a206x11 +a47x10 +a109x9 +a36x8 +a151x7 +a208x6

+a105x5 +a65x4 +a134x3 +a74x2 +a61x+a38

x16m4(x) = a232x24 +a15x23 +a155x22 +a79x21 +a122x20 +a100x19 +a122x18 +a100x17 +a122x16

s4(x) = a151x15 +a48x14 +a123x13 +a235x12 +a234x11 +a25x10 +a68x9 +a45x8 +a169x7

+a245x6 +a219x5 +a138x4 +a43x3 +a51x2 +a229x+a63

To check whether the prefix and/or suffix contain any errors after their transmission, (2) is solved

as q(x)g(x) = xum(x)− s(x). Since xum(x)− s(x) is a multiple of g(x), the roots of g(x) must also



be roots of xum(x)− s(x). As such, when xum(x)− s(x) is evaluated at the roots of g(x), which

are 1,a, . . . ,au−1, each result must be 0. These roots, 1,a, . . . ,au−1, are called the syndromes of

xum(x)− s(x).
As shown in the Maplet window in Figure 3, the syndromes for x16m1(x)− s1(x), as evaluated

for the roots 1,a, . . . ,a15 of the generating polynomial g(x) of degree 16, are all 0, indicating that

the prefix and suffix in that example are correct. When errors occur in either the prefix or suffix

coefficients, Reed-Solomon codes provide an error-correction process through which the location of

the errors can be found, and the errors corrected. We provide some details of this process in [2].

After the prefix/suffix codeword pairs are created, the data is then interleaved together. The pur-

pose of this interleaving is so that when the data is placed into the QR code, localized damage to the

QR code and an overwhelming of its capacity to correct errors can be prevented. This interleaving of

the data occurs as follows.

• The coefficients of each prefix are written consecutively in order across the rows of a matrix,

and then taken in order down the columns of this matrix, skipping over any blank entries that

may have resulted from prefixes of different lengths.

• The coefficients of each suffix are written consecutively in order across the rows of a matrix,

and then taken in order down the columns of this matrix.

• The interleaved prefixes and suffixes are then joined together to represent the data.

As an example of this, with the four prefix/suffix pairs we gave previously, we first write the

coefficients of the prefixes in order across the rows in a 4×9 array.

a191 a85 a13 a253 a253 a198 a125 a209 a213

a173 a129 a48 a249 a59 a160 a85 a129 a48

a99 a239 a160 a253 a48 a219 a249 a192 a160

a232 a15 a155 a79 a122 a100 a122 a100 a122

We then interleave these prefix coefficients by taking them in order down the columns of this array.

This results in the following.

a191 a173 a99 a232 a85 a129 a239 a15 a13 a48 a160 a155

a253 a249 a253 a79 a253 a59 a48 a122 a198 a160 a219 a100

a125 a85 a249 a122 a209 a129 a192 a100 a213 a48 a160 a122

We next write the coefficients of the suffixes in order across the rows in a 4×16 array.

a252 a145 a49 a146 a165 a39 a136 a97 a55 a181 a21 a21 a45 a100 a77 a83

a9 a83 a148 a241 a94 a42 a74 a161 a52 a82 a188 a4 a167 a241 a111 a97

0 a146 a84 a32 a206 a47 a109 a36 a151 a208 a105 a65 a134 a74 a61 a38

a151 a48 a123 a235 a234 a25 a68 a45 a169 a245 a219 a138 a43 a51 a229 a63

We then interleave these suffix coefficients by taking them in order down the columns of this array.

This results in the following.

a252 a9 0 a151 a145 a83 a146 a48 a49 a148 a84 a123 a146 a241 a32 a235

a165 a94 a206 a234 a39 a42 a47 a25 a136 a74 a109 a68 a97 a161 a36 a45

a55 a52 a151 a169 a181 a82 a208 a245 a21 a188 a105 a219 a21 a4 a65 a138

a45 a167 a134 a43 a100 a241 a74 a51 a77 a111 a61 a229 a83 a97 a38 a63



Combining the interleaved prefix and suffix coefficients gives the following full data for the QR code.

a191 a173 a99 a232 a85 a129 a239 a15 a13 a48 a160 a155 a253 a249 a253 a79 a253

a59 a48 a122 a198 a160 a219 a100 a125 a85 a249 a122 a209 a129 a192 a100 a213 a48

a160 a122 a252 a9 0 a151 a145 a83 a146 a48 a49 a148 a84 a123 a146 a241 a32

a235 a165 a94 a206 a234 a39 a42 a47 a25 a136 a74 a109 a68 a97 a161 a36 a45

a55 a52 a151 a169 a181 a82 a208 a245 a21 a188 a105 a219 a21 a4 a65 a138 a45

a167 a134 a43 a100 a241 a74 a51 a77 a111 a61 a229 a83 a97 a38 a63

(4)

This interleaved prefix and suffix data gives a total of 100 primitive element powers. Each power

can be converted into a byte, giving a total of 8 · 100 = 800 bits to represent the data in full for the

code. Some QR code versions also require a string of 0s to be included to completely fill out the data.

This number of additional 0s, which depends on the version, is given in [5]. QR codes of version 4

require seven additional 0s. Thus, for our example, the string 0000000 would be appended to the 800

bits representing the data, giving a total of 807 bits for the data section of the QR code. Next we will

describe how this data is placed into the QR code, and the code itself created.

4 Data Placement and QR Code Creation

QR codes include several components placed in precise locations in a two-dimensional array. Figure

4 gives a summary of the placement of components in a QR code of version 4.

Figure 4: Component summary for a QR code of version 4.

A QR code of version 4 is essentially a 33 × 33 matrix. In Figure 4, the message and error

correction data is located in the small dark blue and light brown squares. Each square in this data



placement represents a binary digit, for which normally a 1 is represented by a darker color (dark

blue, in this case), and a 0 by a lighter color (light brown, in this case). The data is placed in the

image starting in the lower right corner. The regions outlined in red in Figure 4 are reserved for the

format information, which is a string of bits giving, among other things, the error correction level (L,

M, Q, or H) for the code. The format information also gives the mask pattern, which we will describe

in more detail later. Error correction bits are also included as part of the format information in case

any of the information is lost. The function patterns consist of the finder patterns, alignment patterns,

and timing patterns, as well as a dark module, which is a single black square located directly above

the format information block near the lower left corner of the matrix. Separators shown as solid white

rectangular strips in Figure 4 detach each finder pattern from the rest of the QR code. The function

patterns are designed to be placed in specific areas of the QR code, and their purpose is to ensure

that QR code scanners can correctly identify and orient an image for decoding. More information

about how the function patterns are aligned in a QR code can be found in [5]. Finally, a quiet zone is

included, as indicated in yellow in Figure 4, as an area of lighter color designed to enclose the main

QR code matrix.

QR codes of versions 7–40 require more alignment patterns and an additional 18-bit block placed

in two parts of the matrix containing information about the QR code version. More information can

be found about their generation and placement in [5].

For the message https://atcm.mathandtech.org/, Figure 5 shows how the data given by (4)

is placed in a QR code of version 4.

Figure 5: QR code data placement for the message https://atcm.mathandtech.org/.



Starting in the lower right corner of a QR code matrix, the data for each codeword prefix/suffix

is placed in blocks in an up-and-down pattern. Each primitive power element is color-coded to illus-

trate the codeword prefix/suffix with which it is associated, as well as how the interleaving spreads

each codeword prefix/suffix throughout the matrix. For each individual block, the eight binary digits

representing the primitive power element are placed in a zig-zag pattern. The region bit placement

summary section in Figure 4 indicates the order in which the binary digits are placed within similarly

shaped blocks, with the coefficients of each polynomial of degree 7 representing each primitive ele-

ment power placed in descending degree order. For example, the first primitive power element placed

in the lower right corner, a191, is represented by the polynomial a6 +1. The coefficients of this poly-

nomial are read in descending order, 01000001, and placed in the first rectangular block. The order

of the placement is indicated by the first rectangular block under the region bit placement summary

section in Figure 4.

After the data is placed into the QR code matrix, to make the data as readable as possible by a QR

code scanner, the process of masking is applied. When data in a QR code is masked, particular data

squares, depending on their location in the matrix, are flipped, with a dark square becoming light,

and vice versa. Only data squares are flipped though. Squares involving function patterns, version,

and format information are left intact. QR code specifications define eight mask patterns that can

be applied to a QR code. The mask pattern chosen is dependent on a calculated penalty score from

certain observed square occurrences in the QR code matrix. The different type of mask patterns and

how the penalty score is calculated for each are summarized in [5].

For the QR code of version 4 representing https://atcm.mathandtech.org/, mask pattern 2 is

chosen. Numbering the 33 columns of this matrix from 0,1, . . . ,32, mask pattern 2 flips all of the data

squares in all columns with (column number) mod 3 = 0. Figure 6 illustrates this QR code before

and after masking, with the column numbers labeled where the masking occurs.

Figure 6: QR code example before and after masking.

After masking, a QR code is ready to be output. For generating QR codes, we will use another

Maplet written by the authors, QRcode. This Maplet allows users to input a message to be included,



select an error correction level, and then generate the resulting QR code. The Maplet automatically

generates the QR code with a specific version based on how much and what type of data is entered

and the error correction level selected. Figure 7 shows the output for a QR code of version 4 and with

error correction level H that will scan to the message https://atcm.mathandtech.org/.

Figure 7: QR code Maplet generation example for the message https://atcm.mathandtech.org/.

With error correction included, images up to a certain size can be overlaid onto a QR code to

help identify its message contents. With error correction level H, even with 30% of the message data

squares covered by the image, the QR code would still scan correctly. The QRcode Maplet can select

a jpg file of a user’s choice and overlay it onto a generated QR code. Figure 8 shows the result with the

ATCM logo overlaid onto a QR code that would still scan to https://atcm.mathandtech.org/.



Figure 8: QR code with an overlaid image.

5 Conclusion

In this paper, we showed the basics of how data is formatted and placed into QR codes, with error cor-

rection included via Reed-Solomon codes. Maplets written by the authors were used to demonstrate

this. These Maplets are available for download at [4].

The QR code generated in this paper focused on specific data that was generated for a particular

version. Additional explanations for how other data can be formatted and placed into QR codes of

other versions can be found in [5].
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