1

1

FLOWGORITHM: A possible passage from
algorithmic reasoning to creatively founded
mathematical reasoning

Weng Kin Ho*! Chee Kit Looi* Wendy Huang*
wengkin.ho@nie.edu.sg cheekit.looi@nie.edu.sg wendy.huang@nie.edu.sg

Peter Seow* Shiau Wei Chan* Longkar Wu*
peter.seow@nie.edu.sg shiauweib634@gmail.com longkai.wu@nie.edu.sg
National Institute of Education
Nanyang Technological University
Singapore

September 12, 2021

Abstract

This paper argues that algorithm design in the sense of computational thinking (CT)
does not involve only routinized procedural applications void of deep conceptual understand-
ing of mathematics. By using the programming language FLOWGROITHM, we demonstrate
how classroom tasks centred around algorithm design may be used to activate creatively
founded mathematical reasoning (CMR) in mathematics students.

Introduction

.1 Mathematical competencies and abilities

The mathematics teacher’s primary role is to help students develop their mathematics com-
petencies, i.e., abilities to “understand, judge, do, and use mathematics in a variety of intra-
and extra-mathematical contexts and situations in which mathematics plays or could play a
role” [12] pp. 6-7]. In particular, [10] expanded mathematics competencies into six abilities: (1)
problem solving ability, (2) reasoning ability, (3) applying procedures ability, (4) representation
ability, (5) connection ability and (6) communication ability.

*This work is supported by funding OER 10/18 LCK for the project “How to bring Computational Thinking

(CT) into Mathematics classrooms: Designing for disciplinary-specific CT”.

fCorresponding author

Worldwide, classroom tasks are thus designed to develop these six abilities. This paper
proposes the use of algorithm as nexus connecting the abilities of problem-solving (how to solve
tasks without knowing a solution method in advance), reasoning (the ability to justify choices
and conclusions) and applying procedures (the ability to execute known procedures that are
learnt by heart).

Applying procedures is familiar to mathematics teachers. In mathematics and mathematics
education, such procedures are called algorithms. An algorithm is a set of rules to be followed
in calculations or other problem-solving operations, be it by a machine or a human being. In
mathematics education, this definition is broadened below:

Definition 1 (Algorithm) An algorithm is a set of finite sequences of executable instructions
enabling one to solve a given set of tasks ([3]).

Common algorithms encountered by Singapore secondary school students (aged from 13 to
16 E[) in the Singapore Mathematics syllabuses ([11]) include, but are not limited to, multiplica-
tion and long division (involving integers and/or polynomials), prime factorisation, obtaining
highest common factors and least common multiples of natural numbers, quadratic formula,
mensuration formulae, Pythagoras Theorem, plotting graphs, using formulae in coordinate
geometry (e.g., gradient of line segment, length of a line segment, area of a triangle the ver-
tices of which have given coordinates), partial fractions decomposition, finding derivatives and
antiderivatives of special functions, etc. In short, the ability of applying algorithms in math-
ematics is tied on to routinized procedures. Imagine a continuum where a mathematical task
is placed based on the availability of known mathematical procedures to the student engaged
in that task. Then a task which merely requires the student to invoke a known algorithm (i.e.,
to mimic the teacher’s demonstration of the same algorithm) will be placed on one end of this
spectrum.

Thus, problem-solving tasks are placed on the other end of this spectrum. By a problem,
we mean a task in which a student who is engaged in solving it does not have a readily
available method or procedure to solve it. According to [8, p. 50], successful problem solving
involves coordinating previous experiences, knowledge, familiar representations and patterns
of inference, and intuition in an effort to generate new representations and related patterns of
inference that resolve some tension or ambiguity (i.e., lack of meaningful representations and
supporting inferential moves) that prompted the original problem-solving activity. A problem
solver inevitably engages in the Pdlyan cycle of understanding the problem (UP), devising a
plan (DP), carrying out the plan (CP) and checking and/or extending the solution (CE) ([13]).

1.2 Concerns about extensive use of algorithm

Several studies ([2, 4]) have revealed that the majority of the class-time had been spent on
learning and rehearsing algorithms which, when mastered, are intended to ensure students’
efficiency and accuracy in solving mathematics problems and tasks that they tackle at some
later stage. Algorithms form an essential body of knowledge for mathematics students because
they are meant to yield quick and reliable answers to those tasks that can be solved by fol-
lowing a ‘fixed’ solution path. Because situations where a certain algorithm can be employed
are completely deterministic and predictable, tasks that involve merely repeated usage of the

!Typically, Secondary One students are aged 13, Two 14, Three 15 and so on.

algorithm then provide students plenty opportunity to practise. In themselves, there is nothing
innately wrong about tasks that involve students’ practice on applying algorithms but it is
the extensive use of such tasks, that some studies, suggest may be counterproductive [4]. The
danger here occurs when a classroom situation is typified by (a) a teacher providing students a
set of mathematical tasks that have a common solution template, and (b) students repeatedly
applying the same algorithm in solving this set of tasks. Then the students would have no
opportunity to reflect on their use of the algorithm. It is this unreflective use of the algorithm
which detaches the meaning of the algorithm from its application ([3]).

In summary, if there is an unchecked and extensive use of algorithmic learning that does
not invoke the learner’s reflection about the meaning of the algorithm then there is concern
whether or not the learner’s mathematical reasoning abilities will hampered.

1.3 Proposed approach

The problem lies not with algorithmic learning but instead the way classroom tasks are de-
signed (and implemented). In this paper, we suggest various ways whereby algorithms can
in fact be exploited to create opportunities for deep conceptual learning of mathematics and
active engagement in problem solving. This approach gives a counter-argument against the
usual acceptance that algorithmic learning deprives student of creatively founded mathemati-
cal reasoning.

2 Algorithm design in Computational Thinking

2.1 Algorithmic and creatively mathematically founded reasonings

Two types of reasoning are specifically mentioned in [I0, O]: algorithmic reasoning (AR) and
creative mathematically founded reasoning (CMR). The notion of AR, first coined by [10], refers
to the state in which a problem solver employs repetitive numerical task-solving method — such
a method must make use of an algorithm that can be employed to solve the problem (and
one which is provided together with the task). As for CMR, [9] defines it to embody all of
the following attributes: (a) creativity — a reasoning sequence new to the reasoner is created,
or a forgotten one is re-created; (b) plausibility — arguments supporting both the strategy
choice and implementation must be there to provide plausible or correct reasons to reach the
conclusion(s); and (c¢) anchoring — placing arguments at the intrinsic mathematical properties
of the components that are involved in the reasoning required to solve the problem.

Regarding AR and CMR, two significant findings reported in a recent work ([7]) by B. Jons-
son and his team motivate our current approach: (1) AR leads to better students’ performance
during practice sessions when compared to CMR, as a function of the algorithmic support
that was provided in the task (i.e., solution method and/or template is available to the stu-
dents when given the task). (2) CMR outperforms AR whenever a task involves (i) conceptual
understanding, (ii) memory retrieval and/or (iii) (re)construction of solution methods.

From the above finding (1), we gather that AR leads to positive learning outcomes during the
initial stage of student’s familiarization with key definitions, methods, calculations, algorithms
and solution templates through practice. However, finding (2) informs us that the learner
must move on from this initial stage of drill-and-practice to engage with (cognitively) more

demanding tasks that require genuine conceptual understanding, retrieval of useful information
and/or (re)construction of solution methods.

2.2 Algorithm design

In an earlier work [6] presented at the 24th ACTM, the authors gave domain-specific inter-
pretation for the four components of Computational Thinking (CT), namely, Decomposition,
Pattern Recognition, Abstraction and Algorithm Design. Additionally, they argued for the use
of task design principles grounded in Computational Thinking (CT) to construct meaningful
tasks which exploit CT in mathematics learning.

The specific component of Computational Thinking we are focusing in this paper is Algo-
rithm Design, which according to that same paper,

“involves the planning and development of a set of precise and step-by-step instruc-
tions for solving the problem.”

Such a finite sequence of instructions is termed as a program which can either be carried out by a
computer or a human being in an ‘insightless’ manner. Notice here that running the algorithm
or program requires no insight and hence unlikely to result in meaningful learning. Indeed,
a proficient use of algorithms can at best reduce both the cognitive demands of complicated
calculations ([5]) and the cognitive load on the learner’s working memory ([15]). But planning
and development of such an algorithm requires not only insight but a lot of creativity and deep
conceptual understanding of the mathematics that learners are engaging with.

Clearly, it is the way tasks are designed to train learners in planning and developing al-
gorithms with the intention of activating students’ reasoning that really matters. In fact this
view is not new as already [9] reported that the reasoning that students activate as a result
of active planning and developing (in relation to specific tasks) is one key variable in learning
mathematics through task solving.

2.3 The role of algorithm design

This is where the element of Algorithm Design lend itself to transit the learner smoothly
from the initial stage of applying the algorithm or solution template to the more cognitively
demanding engagement with the higher-order thinking processes. To operationalize this transi-
tion, there are two distinctive task labels associated to the task we design around the element of
Algorithm Design. (1) Implementing a procedure: Present the key algorithm/solution template
in a standard format that can be communicated by the teacher, and can be understood by the
student. (2) Problem solving: Construct (or co-construct) a novel algorithm which is used to
solve a problem embedded in the mathematical task.

In order that a standard format be established to allow communication between the teacher
and the student, we have chosen a free programming language called FLOWGORITHM. This
software requires little overhead in programming knowledge. It allows its user to construct a
program in the form of a flowchart and — the best part — to run the program.

Typically, in an ‘implementing a procedure’ task the teacher will display a flowchart program
(that implements some mathematical procedures) for students to read. This is in line with the
pedagogical approach called PRIMM ([14]), that is, (P) Predict: look at a short program and

try to guess what it will do; (R) Run: run the codes of the program, observe the outcome and
check whether the prediction made earlier is correct; (I) Investigate: carry out investigations
about the different part of the codes, e.g., tracing the program flow, making annotations,
etc.; (M) Modify: changing the code to effect desired changes; (M) Make: make a brand new
program by making use bits of the codes from the original program to solve a new problem.
We shall explain the details of how the transition takes place from ‘implementing a procedure’
to ‘problem solving’ in the next section.

3 FLOWGORITHM as passage from AR to CMR

3.1 Flowchart and FLOWGORITHM

When a student first learns a text-based programming language, it is not uncommon that he or
she be required to enter several lines of syntax (i.e., commands) before something simple can be
achieved, e.g., to print “Hello, world!”. One advantage of the using flowchart is to take away the
cognitive load of familiarizing with the nuances of the text-based programming language, and let
the learner focus on the visual flow of information, and thereby acquire a quick understanding
of the underlying programming concepts. To print out “Hello, world!”, the important point
here is appreciate that “Hello, world” is a string (i.e., literally a string of characters that can
be input through the keyboard) to be output. Figure (1| depicts the FLOWGORITHM program
(on the left) to print in the chat bubble “Hello, world!” (on the right).

= g £ Console - O X
File Edit Program Tools Help -
. — _ _ lea@Ed®me p R &
S | > M v S @ QB [)

| Main)

Output "Hello, world!"

End)

X
Hello, world!
v
<:£J

The file was saved at 6:18 PM.

H P Type here to search i A —])] @& 31°C %) P NG 7521;;:21 I
Figure 1: FLOWGORITHM program helloworld.fprg

On the official website http://www.flowgorithm.org/download/index.htm, one can find

http://www.flowgorithm.org/download/index.htm

the installation instructions for FLOWGORITHM, together with an introduction to how FLoOw-
GORITHM programs are written.

3.2 Looking for the right topics

To illustrate how the aforementioned transit can be made from AR to CMR in an authentic
classroom situation, we invoke a running example through this section. The first point to be
made here is that it is important to identify the topics in which algorithms already reside.

The running example we have chosen sits in the topic of quadratic equations and expressions,
which in the mathematics syllabus usually taught to Secondary Three (Express) students. We
give some background of this topic below.

When students first encounter quadratic equations in Secondary Two, they will be taught
how to recognize one, i.e., the students would check that a quadratic equation has only one
variable, say z, and is of the form ax? + bz + ¢ = 0, where a, b and ¢ are constants and crucially
a # 0. Usually these coefficients are given as integers, though not necessarily so.

Students are expected to be able to apply their prior knowledge in algebraic manipulation
to reduce equations to a quadratic one, e.g., to be able to prove that the equation 12:—0 — m1_£2 = %
can be reduced to z? + 2z — 200 = 0.

At Secondary Two, students would be taught how to factorize a quadratic expression into
its linear factors (over the polynomial ring Z[z]) using trial-and-error. The method is known as
the ‘cross-method’. For instance, to factorize 222 4+ x — 3 into its linear factors, a student tries
all possible integer factorization of the constant term “—3” (e.g., 3 x —1 and —3 x 1). Figure
shows a typical working carried out by a student when employing the “cross-method”. Notice
that cross-multiplying x-terms with the factors yield 432z and —2z in the add-column on the
right, where the sum of +3x and —2x is checked to be +x, as desired.

Multiply Add
2x 3 3x
X 1 -2x
X -3 %

Figure 2: “Cross-method” for factorization

At Secondary Two level, students would realize that not all quadratic expressions can be
factorized into linear factors with integer coefficients by solely applying the “cross-method”.
They are not expected to know the necessary and sufficient conditions for a quadratic equation
with integer coefficients to be factorized into two linear factors with integer coefficients. At
that level, the nature of roots, i.e., real or complex roots, is also not in the syllabus. According
to the Secondary Mathematics Syllabus ([11]), students at Secondary Three are expected to

apply the quadratic formula

—b+ Vb2 —4dac
T = o (1)

to obtain the roots of the quadratic equation az? + bx + ¢ = 0, assuming the real roots ex-
ist. Though the formula is available in the formula booklet, it is often advised that students
memorized the formula and apply it at will. In a typical lesson based on the AR approach, the

teacher will demonstrate the solution of a quadratic equation using a solution template typified
in Figure [3]

~ a

In the equation 22 + 22 — 200 = 0, the coefficients are a = 1, b = 2, ¢ = —200.
Applying the quadratic formula,

—b =+ Vb2 — dac
- 2a

—2 % /22 — 4(1)(—200)
- 2(1)
= —11.06 and 9.06,

Z

correcting the answers to two decimal places.

Figure 3: Solution template for using the quadratic formula

3.3 Starting with flowchart

The teacher can set a few AR-tasks for the student to drill-and-practice and familiarize with the
above solution template. With the goal of transiting to the use of CMR approach in teaching
and learning, we do not stop here. We suggest that the teacher introduces what an algorithm
is in the sense of Definition [I} This can be done by inviting students to examine the structure
of the solution template in Figure [3, using the following prompt:

Teacher: In the solution template that we have been using to solve those quadratic
equations,

1. identify those key input data you must use to calculate the roots of the given
equation az? + bz + ¢ = 0;

2. write down a step-by-step set of instructions using those data to output the required
roots.

In the ensuing conversation between the teacher and the students, the discussion will likely
culminate with the following points:

e Input(s): The key input data identified are the values of a, b and ¢ — but not z.

e Process(es): Although the mathematical syntax employs a single variable z to denote the
two possible roots, the roots are actually calculated using the input data and two separate

formulae:
—b—Vb? — 4dac d —b+Vb? — 4dac
an)
2a 2a

e Output(s): The first root can be stored as x, and the second as 5.

The students’ realization that there are in fact two outputs z; and x5 deepens his or her
understanding of the quadratic formula, where, in particular, the sign ‘4’ really denotes two
different operations (plus and minus) performed separately. Apart from this realization, one of
the end-goals of the above task is to heighten the student’s awareness to the ‘Input-Process-
Output’ sequence in an algorithm, i.e., given some inputs (declared by the programmer, and
later supplied by the user), some processes are then invoked to act on the supplied inputs,
and these will finally yield some outputs. This observation then lends itself naturally into a
flowchart — the paradigm of information-flow from the input source, through the processes (i.e.,
computations), to the output target.

At this point of the discussion, a flowchart that enacts the algorithm of calculating the two
roots of a quadratic equation is displayed (see Figure |4)).

D =br-dta'c
X1 = (-b-Sqr(D))/(2°a)

!

X2= (b + Sqr(D))/(2"a)

Output "The two roots of the
quadratic equation are " & x1 &
Wand"& K2 &""

.

End

Figure 4: Flowchart for calculating the roots x; and s

The follow-up activity that makes use of the flowchart in Figure [4f would involve the students
to predict what the flowchart does (given that they do not know some of the syntax in the
flowchart) and communicate the intention of the key inputs, processes and outputs appearing
in the flow of information from Main (input) to End (output). This activity is identified with
the ‘Predict’ phase of the PRIMM framework.

The purpose of this segment is for the teacher to use the diagrammatic nature of the
flowchart to explain what the flowchart does, and simultaneously introduce the fundamental
computing concepts of variables as placeholders for storing values, e.g., a b and ¢ have been
set as variables taking on integer values, for example; and x1 and x2 are variables taking on

real number values. Additionally and concurrently, the programming concept of data and date
types can be introduced to the students within the disciplinarity of mathematics.

3.4 Using FLOWGORITHM to build flowcharts

The next teaching move would be to show how FLOWGORITHM can be employed to build
the flowchart shown in Figure [d] This demonstration will in addition introduce the following
essential concepts: (1) String data type, e.g., the words appearing within the double inverted
commas, and the concatenation operator “&”. (2) Assign a value to a variable, e.g., defining
D, x1 and x2 using formulae. (3) Re-use codes or variables in the program to avoid redundant
repeated computations, e.g., calling up the variable D and using it later in x1 and x2.

Each of these teaching points will involve different actions (e.g., Input, Declare, Assign,
Output) which are distinguished by the different shapes. The directed arrows reinforce the
concept of information-flow.

3.5 Running the flowchart in FLOWGORITHM

The role of the machine enters the scene when the teacher demonstrates that the constructed
flowchart in Figure[]is in fact ezecutable, i.e., it can in fact be operated as a computing machine!
Pressing the play button sets the program running, i.e., (i) the program interacts with the user
by asking for inputs to a, b and ¢, and (ii) the program returns with the output embedded in
the sentence “The roots of the quadratic equations are ... (first root x1) and ... (second root
x2)”. Figure 5| (the console on the right) shows an instance of running the flowchart in Figure
with the inputs a = 1, b = 2 and ¢ = —100 as in the quadratic formula.

£ quadform1 - Flowgorithm - [m} X }=3

File Edit Program Tools Help
- QQ[E EE e > & @
= > M L S QQAD 0B = °

Mai

L

Output "Input in turn the
ceficients a, b and ¢ of the
quadratic equation.”

o mm————

Integer a, b, ¢

-

y
! | Input n tum the coefficients a, b and ¢ of the quacratic equation

J
| The two roots of the quadratic equation are -11.0498756211208 and 9.0498756211208. ‘

Program has finished running

A x z £17PM
' o A 7) P G I8
ﬂ P Type here to search i = < @ g S Tpep021

Figure 5: Running the flowgorithm program quadforml.fprg

The teacher may now invite the students to use their flowchart as a quadratic formula
calculator to check that the answers obtained in the AR-tasks completed a priori are indeed
correct. The end-goal of writing a FLOWGORITHM program in this lesson is to culminate with

a useful product, i.e., a calculator that can calculate the roots of a quadratic equation. Thus,
this task is aligned with Papert’s original conception of what Computational Thinking should
achieve, i.e., the learner acquires knowledge by constructing a useful product (see [16, [6]).

We classify the above task as an “Implementing a procedure”-task because the main ob-
jective of this type of task is to get the students to appreciate that the solution template
associated with solving a quadratic equation can in fact be implemented as an algorithm (in
this case using FLOWGORITHM as the programming language). Additionally as the teacher
walks the students through the flowchart (in Figure , the students are given another chance
to internalize the quadratic formula on top of the drill-and-practice tasks completed prior to
this flowchart activity. Also, a pleasant side-effect of this approach is that students acquire
the necessary programming concepts through the use of FLOWGORITHM in the context of solv-
ing quadratic equations without being burdened by the syntax of a text-based programming
language.

3.6 Moving on to problem solving

We recall from our earlier discussion in Section that Secondary Three students “are not
expected to know the necessary and sufficient conditions for a quadratic equation with integer
coefficients to be factorized into two linear factors with integer coefficients.” This now can be
turned into an opportunity for the students to engage in authentic problem solving.

Moving forward, the teacher can craft the problem-solving task as follows:

Problem. Given a quadratic equation az? + bx + ¢ = 0, with integer coefficients, i.e., a,
b and c are all integers, devise a test involving a, b and ¢ that would help us determine
whether this equation can be solved by using the ‘cross-method’ (i.e., guess-and-check in
the sense illustrated in Figure |2|) involving integer coefficients for the linear factors.

Although the problem stated is not unfamiliar to students at this level, they do not have
a ready solution to it. The teacher can guide the students through the flowchart and ask
them to identify which part of the program is instrumental in calculating the roots of the
equation. In other words, we are engaging the students in the ‘Investigate’ phase in the PRIMM
framework. Suitable scaffolding can be designed to lead the students to examine the different
sub-expressions or terms appearing in the quadratic formula.

The students can employ the FLOWGORITHM program (i.e., quadforml.fprg) shown in
Figure [5| on several sets of integral values of a, b and ¢ to explore the outcomes. A closer
examination then reveals that the discriminant D := +/b% — 4ac must be a perfect square in
order that v/D = v/b? — 4ac is an integer so that the final expression %@ is rational.

For the ‘Modify’ or ‘Make’ phase, the teacher can continue to challenge the students to devise
a FLOWGORITHM program to determine whether a given quadratic equation has rational roots.

4 Task design schema

In the preceding Section (i.e., , the sample tasks sequence is built around a selected
mathematics topic, and algorithm design is embedded into the different tasks that help students
transit from Algorithmic Reasoning (AR) to Creatively Mathematically Founded Reasoning

(CMR). We now abstract the details of this tasks sequence in the form of a task schema. Recall
that schemas are categories of information stored in long-term memory ([I]). In other words,
a schema contains groups of linked memories, concepts or words. The purpose of having a
task design schema, in our case, is to create a cognitive shortcut for the task designer so that
the specific task design we recommend here can be stored and retrieved from one’s long-term
memory much more quickly and efficiently. Because the classroom task is designed for teaching
and learning of Mathematics via Computational Thinking, we employ the four task design
principles proposed in [6]. For the reader’s convenience, we briefly recall what these four design
principles are, and then apply them as we describe the task schema proposed herein.

4.1 Four task design principles

The original intention of bringing in this set of task design principle is to address teacher’s
concern about instructional design centred around crafting Mathematics lesson that activate
Computational Thinking. Because Computational Thinking comprises four key components,
i.e., decomposition, pattern recognition, abstraction and algorithm design, the four design prin-
ciples have bee targeted to address each of these components in the form of questions to which
the task designer must answer. Below, we quote these questions verbatim from [6, pp. 5-6].

Complexity Principle. “Does the mathematical concept give rise to sufficiently complex
problem?” The problem should involve the use of the identified concept, and be complex enough
so that decomposition of this main problem into sub-problems is a needful step. If the problem
or task is routine or too simple, e.g., there exists a ready-made solution or method, then
decomposition is uncalled for.

Data Principle. “Can the mathematical concept occur in various forms so that it is possible
to collect data for its occurrence?” The topic should involves observable and quantifiable data
that can be collected, created, analyzed, and shared.

Mathematics Principle. “Can the problem associated to the mathematical concept be
mathematized?” Mathematization is the formulation of the problem using mathematical terms.
It turns a problem in real world context in an abstract and precise manner to a mathematics
problem. We do not restrict mathematics to mean only numbers, algebra, geometry, and so on.
Rather, mathematics can have a more inclusive meaning of encompassing abstract concepts and
structures which are definable, representable, and can be reasoned about within some logical
framework.

Computability Principle. “Does there exists an effectively calculable solution to the math-
ematized problem?” By ‘effective calculable’ we use it in the sense of Recursion (or Computabil-
ity) Theory, that is, there exists a a computer program that can calculate a solution to the
problem through a finite procedure via a physical agent (e.g., machine, human being).

It is however to be noted that there is no need for the above principles to be applied in any
prescribed order.

4.2 Task schema proposed and validated

From the preceding section, we see that there are four key stages involved, and these are
presented in the form of a schema shown in Figure [6]

Looking Starting Building and Moving

for the with a running onto
right o flowcharts in Problem
topics Elowgorithm Solving

Figure 6: Task design schema for transiting from AR to CMR

Looking for the right topics. Since we are advocating the situating of algorithms as the
connecting piece between AR and CMR, the task designer should naturally browse through
the potential topic and look out for all the existing procedures, solution templates to standard
questions, standard calculations involved, etc.

We now apply the Computability Principle at this juncture to check if those identified proce-
dures or solution templates can be implemented as an algorithm. Even when these procedures
are programmable; there is the question of whether the programming concepts or techniques
are too difficult for the students at that level. In the present proposal, we recommend the use
of FLOWGORITHM as a simple programming language with a low overhead of programming
syntax. The question here is whether the algorithm when implemented in this language is
simple enough for students of that level to understand.

Starting with a flowchart. At this stage, the student would be engaged in understanding
what a flowchart involves, e.g., the key variables and their associated data types. In other
words, the student becomes cognizant of the different components of the problem or algorithm
at hand. This step of starting with a flowchart helps the student stay focused on the different
inputs, the various decision-making and the calculations together with all the variables. As the
student moves on from AR to CMR, he or she would be expected to be more independent in
deciding which are the variables to be defined, and what data types they belong. All these are
possible if the task designer factors in the process of Decomposition, i.e., breaking down the
complex task into smaller sub-tasks which are more tractable. Thus, the Complezity Principle
validates this part of the task schema in that this task engages the students in identifying the
various parts of the flowchart — the students are moved towards appreciating this part-whole
relationship between the individual parts of the algorithm (e.g., variables, sub-processes) and
the whole algorithm itself. In addition, Data Principle can be applied here to ask for evidence
of students’ working out which input data are used and how these are transformed by the
subsequent information-flow directed by the flowchart.

Building and running flowcharts in FLOWGORITHM. This is closely tied to the component
of Algorithm Design in Computational Thinking, and we are thus invoking the Computability
Principle again. At this stage, we check whether the task requires that the algorithm can be ef-
fectively implemented in the chosen language. In this part of the task schema, the students must

construct the given flowchart using FLOWGORITHM. Like any other programming language,
students at this stage are bound to make mistakes and hence we expect them to be debugging
their programs. While training them to pay attention to each of the constituent parts of the
entire algorithm, we are indirectly helping the engaged students to internalize the algorithm.
The authors are in the view that algorithmic learning implemented through this approach is
far more meaningful than a mere memorization of formulae or routinized procedures.

Moving on to problem solving. Remembering that Computational Thinking is evidence-
based because there are clear deliverables and observables tied to it — meaningful learning
yields useful products. At the end of the AR-focused segment of the lesson, a useful product is
obtained — the resulting FLOWGORITHM. Now the transit from AR to CMR crucially hinges on
how the task requires the student to make use of the program that he or she has just constructed.
In order that CMR be invoked, the activities at this stage must involve the learner to think
in a deeper manner through the mathematical concepts involved. In our running example, the
FLOWGORITHM program that implements the quadratic formula serves as an object of study
in itself: which part of the formula determines the rationality of the roots of the equation given
that all the coefficients are integers? The FLOWGORITHM program has the advantage that it
can be run on input data so as to create visible patterns for students to engage in Pattern
Recognition and hence to formulate relevant conjectures towards solving the problem at hand.
Hence we see that the task is centrally rooted in a mathematized problem — the Mathematical
Principle thus validates this last but critical part of the task schema. Indeed without this part,
the transition from AR to CMR can never take place. This is where the students’ mathematical
creativity emerges out of the situationally induced need to reasoning out for themselves what
was going on in the heart of the algorithm.

5 Discussion

Having presented the task design schema that is targeted to transit the learner from AR to
CMR, it is time to reflect on our proposed approach. Let us begin with some limitations.

5.1 Limitations

Flowcharts, even in the present form written in FLOWGORITHM, are hard to modify. Although
the flow structure appears easy to understand, a working program is often completed all at once
— one can hardly modularize by making the small parts work first. Of course, FLOWGORITHM
allows one to call up functions (which can be coded separately from the main program) but it
becomes intractable once the program involves too many function calls. Additionally, debugging
can be challenging because one just cannot take apart the flowchart and reassemble the parts
again. Our proposed approach relies heavily on the choice of the right topics. Even when there
are fixed procedures, e.g., finding shortest distance of a point from a line requires one to identify
the foot of perpendicular from the point to the line, sometimes there is such a great variety of
situations (in which the same procedure is to be applied) that it is simply not possible to code
the procedure as a computer program. This is especially the difficulty encountered when one
is dealing with geometry problems.

5.2 Implications

Although the task design schema looks largely plausible to apply, it is far from being clear
how the mathematics teacher can use it to generate specific lesson tasks on specifically selected
topics. For example, can one incorporate this proposed approach systematically into a profes-
sional development program for mathematics teachers? At the moment of writing this paper,
the first author is in the process of introducing the proposed approach of using algorithms to
mathematics teachers at an in-service training program that is intended to equip them with
basic programming skills. In this course, one special feature of FLOWGORITHM is frequently
emphasized and exploited, i.e., all programs written in FLOWGORITHM can be exploited as
programs written in a variety of different programming languages (e.g., C++, Fortran, Python,
Javascript, etc.). From a practitioner’s point of view, what one needs is a rich collection of
exemplars, be they flowcharts of all the commonly encountered algorithms that are associated
to implementing a procedure or those used to encourage problem solving or making conjec-
tures. The first author, together with some beginning teachers, is building up a library of
FLOWGORITHM (as well as others) programs for the purpose of teaching mathematics at the
secondary level.

6 Conclusion

In this paper, we have argued that Algorithm Design — one of the key components of Compu-
tational Thinking — is not the same as Algorithmic Reasoning. In particular, we proposed a
type of task schema that is crafted around the essential entity of algorithms and demonstrated
how such a task schema can be uniformly applied to give rise to a sequence of tasks that brings
the learner through the journey of Algorithmic Reasoning to advance to Creatively Founded
Mathematical Reasoning. Crucially, this proposed task schema has been rigorously checked
against the four CT+Math task design principles put forth in an earlier ATCM conference.
Our present work can be seen as a further application of this set of design principles, thus
demonstrating its versatility in the domain of task design that is specific to Computational
Thinking used in Mathematics teaching and learning. The constraint of space in this paper
has not allowed us the luxury of explaining how the activities described above can be carried
out in an authentic classroom situation, what methodology we employ and how the desired
positive results may be achieved with the students. Thus, one important future work would be
to actualize what has been proposed in this paper.

References

[1] Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cam-
bridge University Press.

[2] Boesen, J., Helenius, O., Lithner, J., Bergqvist, E., Bergqvist, T., and Palm, T. (2014). De-
veloping mathematical competence: From the intended to the enacted curriculum, Journal
of Mathematical Behavior, 33, pp. 72-87

[3] Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer, Dordrecht

[4]

Hiebert, J. (2003). What research says about the NCTM Standards. In J. Kilpatrick, G.
Martin, & D. Schifter (Eds.), A research companion to principles and standards for school
mathematics, National Council of Teachers of Mathematics, Reston, VA, pp. 5-26

Haavold, P. (2011). What characterises high achieving students’ mathematical reasoning?
In B. Sriraman, & K. Lee (Eds.), The elements of creativity and giftedness in mathematics
(Vol. 1) (pp. 193-215). SensePublishers.

Ho, W. K., Looi, C. K., Huang, W., Seow, P. and Wu, L. (2019). Realizing Computational
Thinking in Mathematics Classroom: Bridging the Theory-Practice Gap. In W.-C. Yang
& D. Meades (Eds.), Proceedings of the Twenty-fourth Asian Technology Conference in
Mathematics, Mathematics and Technology, LLC.

Jonsson, B., Norqvist, M., Liljekvist, Y. and Lithner, J. (2014). Learning mathematics
through algorithmic and creative reasoning. The Journal of Mathematical Behaviour, 36,
pp- 20-32.

Lester, F. K. and Kehle, P. (2003). From problem solving to modeling: The evolution of
thinking about research on complex mathematical activity. In R. Lesh and H. M. Doerr
(Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem
solving, learning, and teaching (pp. 501-517). Mahwah, NJ: Erlbaum.

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational
Studies in Mathematics, 67(3), 255-276.

Lithner, J., Bergqvist, E., Bergqvist, T., Boesen, J., Palm. T, and Palmberg, B. (2010).
Mathematical competencies: A research framework. In: Mathematics and mathematics
education: Cultural and social dimensions. Bergsten, Jablonka & Wedege (Eds), Linkoping,
Sweden: Svensk forening for matematikdidaktisk forskning, SMDF, pp. 157-167

Ministry of Education. (2019). Mathematics Syllabuses: Secondary One to Four. Express
Course, Normal (Academic) Course. Curriculum Planning and Development Division, Sin-
gapore.

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish
KOM Project. In A. Gagatsis & S. Papastavridis (Eds.), Proceedings of the Third Mediter-
ranean Conference on Mathematics Education (pp. 115-124). Athens, Hellenic Republic.

Pélya, G. (1957). How to Solve It. Garden City, NY: Doubleday. p. 253.
PRIMM website. Available at https://primmportal.com/.

Raghubar, K. P., Barnes, M. A., and Hecht, S. A. (2010). Working memory and mathemat-
ics: A review of developmental, individual difference, and cognitive approaches. Learning
and Individual Differences, 20(2), 110-122.

Papert, S. (1996). An Exploration in the Space of Mathematics Educations, International
Journal of Computers for Mathematical Learning, 1(1), 95 — 123.

 https://primmportal.com/

	Introduction
	Mathematical competencies and abilities
	Concerns about extensive use of algorithm
	Proposed approach

	Algorithm design in Computational Thinking
	Algorithmic and creatively mathematically founded reasonings
	Algorithm design
	The role of algorithm design

	Flowgorithm as passage from AR to CMR
	Flowchart and Flowgorithm
	Looking for the right topics
	Starting with flowchart
	Using Flowgorithm to build flowcharts
	Running the flowchart in Flowgorithm
	Moving on to problem solving

	Task design schema
	Four task design principles
	Task schema proposed and validated

	Discussion
	Limitations
	Implications

	Conclusion

