
Computational thinking as habits of mind for
mathematical modelling

Keng-Cheng Ang
kengcheng.ang@nie.edu.sg

National Institute of Education
Nanyang Technological University

Singapore

Abstract:
The growing interest in computational thinking and its use in problem solving had led teachers and
educators, as well as other researchers, to ponder over what it means and how best to introduce
such a notion to students in schools. Many ideas on “teaching computational thinking” have also
been suggested, and in many countries, courses on coding or computer programming have been
made very popular as more people begin to believe that the ability to write code is an important
skill in this increasingly digital world. In this paper, we focus on the habits of mind that are related
to computational thinking and that can be developed from learning to code. Some of these habits
include looking at trends in data and analyzing them, examining a process and simulating it, and
systematically constructing a solution to a problem. More specifically, we shall discuss how these
habits of mind can enhance and support one’s skills and competencies in the context of
mathematical modelling, using three examples. Individually, each example illustrates some aspects
of computational thinking applied to the modelling tasks. Collectively, through these examples, we
attempt to demonstrate that the related habits of mind of computational thinking, developed
through computer programming exercises, could strengthen one’s ability and expand one’s
capability of tackling modelling tasks in a significant, albeit sometimes subtle way.

Introduction
In recent years, the notion of computational thinking and its impact and implications in education
have been the subject of much discussion and debate among researchers. This is in part, brought
about by the viewpoint piece on computational thinking presented by Wing [14] and in part a
natural consequence of the increasingly digital world that we live in. Much of the academic
discussions surrounding this topic had focused on the concept or definition of computational
thinking, which Wing unfortunately, or perhaps, intentionally did not provide, how it is related to
problem solving and how it can be taught.

Nonetheless, most would agree on the different aspects of computational thinking, which
would include constructs and notions like abstraction, creating algorithms, decomposition, pattern
recognition and so on. In recent years, many educators and researchers have published articles and
papers on the topic, explaining what these constructs mean, and how they appear in problem
solving [8, 11, 13, 15]. Many have also recommended ways of “teaching” computational thinking,
while still others have advocated that it should be included in different subjects and be made a
significant part of the school curriculum [6, 12].

Proceedings of the 25th Asian Technology Conference in Mathematics

126

 Wing argued that is it important that every student is taught “how a computer scientist
thinks”. To some, this may be interpreted as to mean it is important to teach computer science to
every student. Nardelli, however, suggested that it is more critical to stress the “educational value
of informatics, that is, computer science, for all students”, and proposed that we discuss what to
teach and how to evaluate competences regarding informatics rather than teaching and evaluating
computational thinking [9].

In the context of mathematics learning and teaching, an educator would have to grapple
with the notion of computational thinking and its practice while balancing with the concept and
thrust of mathematical thinking that has been the objective of teaching and learning mathematics.
It is sometimes argued that computational thinking is very similar to mathematical thinking [5], and
to a large extent, it is not unreasonable to see computational thinking as mathematical thinking with
a powerful calculating tool.

Against the backdrop of these different perceptions of what computational thinking means,
and the various suggestions and recommendations for including its teaching and practice in the
school curriculum, as well as its relationship with mathematical thinking, a typical mathematics
teacher is faced with many challenges. Yet, perhaps it is no longer useful or relevant to ask what
exactly constitutes computational thinking, or imagine what can be done. Rather, it may be more
important to think about what can be derived from learning and practicing computer programming
or coding, and how that can be useful and relevant in problem solving, particularly in mathematics.

Specifically, it has been suggested that the practice of programming helps one develop some
very useful habits of mind that will eventually support the practice of mathematical modelling [2].
The focus of this paper, therefore, is to explicate and illustrate this idea.

Habits of mind
What exactly do we mean by habits of mind? As a very general view, the term refers to a set of
dispositions that enables us to behave in an intelligent manner when faced with problems.
Behavioral scientists have studied this aspect of human development for some time now, and some
researchers have narrowed these dispositions down to “16 habits of mind” [3], with a disclaimer
that the list is not complete. Across the world, many institutions have adopted these frameworks
and designed programmes within school curricula to help school children develop these habits and
apply them in problem solving.

In the present discussion, it is more perhaps useful to adopt a perspective proposed by
Goldenberg [4], who had said that habits of mind are “ways of thinking that one acquires so well,
makes so natural, and incorporates so fully into one’s repertoire, that they become mental habits –
not only can one draw upon them easily, one is likely to do so”. In other words, habits of mind are
not just dispositions that make one behave intelligently but are a set of internalized practices of
critical thinking that the one could, and often would, employ in a problem situation.
 Therefore, if computational thinking is about habits of mind, then it is necessary to first
recognize and identify the dispositions associated with it. As Wing explained, to think
computationally is to think like a computer scientist, and “thinking like a computer scientist means
more than being able to program a computer”. While learning Scratch or Python may be important,
it is not the end goal; more important than these are the mental habits of the people who make use
of computers, computing tools, computing constructs, computational methods and computational
models to solve problems.

Proceedings of the 25th Asian Technology Conference in Mathematics

127

 Nevertheless, just as calculation is the machinery of mathematics, computer programming is
the machinery of computational thinking. Just as learning to calculate (or to solve mathematical
problems) is a means to developing a mathematical mind, similarly, learning to code (or to write a
program to build a computational model) is a means to developing habits of mind in computational
thinking. More specifically, these habits and ways of thinking are particularly useful, and even
essential in some cases, in solving mathematical modelling problems.
 For instance, many modelling tasks or situations involve data, either given or collected,
which can be used in some ways to construct a mathematical model. One needs to look for trends,
or fit curves and functions, or find suitable parameter values. These often involve numerical or
computational methods and looking for and recognizing some patterns in the data before devising
appropriate strategies to use the data. Working with data is one aspect that many programmers
have had to learn to do when learning to program.
 Another example is in the development of simulation models. In order to successfully run a
simulation of a situation or process, the programmer will need to understand the process very well.
Sometimes, some form of abstraction needs to be done, and some assumptions made to keep the
problem tractable. Often, an algorithm is written to flesh out the step by step procedure before the
code is written. These are all good habits of mind that helps one be systematic and organized, and
to clarify the process of constructing a simulation model.
 Coding or programming exercises provide the platform for these habits to be developed.
These exercises often require understanding of the methods and schemes used, such as in
computational methods of solving a mathematical problem or in implementing complex algorithms.
In order to apply these methods using the machinery of computer science, that is, programming,
one needs to unpack the process of these methods and schemes, look for efficient or sometimes
simpler approaches, recognize patterns and develop strategies for suitable solutions. The more
often one engages in such exercises, the more ingrained are these habits of mind.

Examples
In this section, we discuss three examples of modelling tasks. In each case, the solution process is
described, and the link to the “good habits” that one could possibly have developed from computer
programming or computing exercises is made.

Example 1: Dealing with data (Tension-Strain relationship)
In an experiment to study the elastic properties of arteries carried out under laboratory conditions, a
human external iliac artery subject to some force (tension, 𝑇𝑇) and the response in terms of the
stretch (strain, 𝑎𝑎 𝑎𝑎0⁄ , where 𝑎𝑎 is the extended length and 𝑎𝑎0 is the original length of the artery) was
measured [10]. The results are shown in the Table 1 below.

Table 1. Tension and strain in a human iliac artery

𝑇𝑇 (g/cm) 4 8 13 20 22 28 33 40 44 60 71 83 95 109 132

𝑎𝑎 𝑎𝑎0⁄ 1.22 1.35 1.45 1.50 1.55 1.57 1.60 1.64 1.67 1.71 1.74 1.77 1.80 1.83 1.86

Proceedings of the 25th Asian Technology Conference in Mathematics

128

Suppose it is required to obtain a function to represent the relationship between the two
quantities (tension, or stress, and strain) using these experimental data points. The reason could be
that a closed-form function is necessary in order to model blood flow through an artery, for
instance. Now, someone with the habit of looking for patterns in problem solving, might want to
first plot a graph of the points. The graph of T against a/a0 is as shown in Figure 1 below.

Figure 1. Plot of experimental data points showing stress-strain relationship of an iliac artery

From the plot of the points, it would be natural to identify possible types or classes of
functions that may be suitable to represent this set of points. In one such modelling case, the
suggested function takes the form,

𝑇𝑇 = 𝐴𝐴(𝑒𝑒𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑘𝑘)
where 𝐴𝐴 and 𝑘𝑘 are parameters to be found using the data set [7]. One way to find these parameters
would be the least squares method, or some regression techniques, and would involve minimizing
some form of errors in fitting the curve to the data set.

Because there are two parameters involved and they are related in a non-linear fashion, a
more complicated technique involving iterating and improving subsequently found values of 𝐴𝐴 and
𝑘𝑘 has been suggested in the aforementioned paper. At each iteration, as described in the paper, the
sum of residual squares (SRS), defined as the sum of the squares of the difference between the each
data value and model value, is minimized for parameters 𝐴𝐴 and 𝑘𝑘 found at that stage.

The idea of minimizing errors in curve-fitting is so common that it has become a habit
among researchers using numerical techniques. In this particular case, the problem of finding these
two parameters that best fit the curve to the data can be solved using, for instance, the Solver tool in
Microsoft Excel, described diagrammatically in Figure 2 below.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

1.00 1.20 1.40 1.60 1.80 2.00

Stress-Strain Relationship for iliac artery

Proceedings of the 25th Asian Technology Conference in Mathematics

129

Figure 2. Using the Solver Tool in Excel to find best parameter values

In this case, the Solver tool produces the values of 𝐴𝐴 ≈ 0.0074 and 𝑘𝑘 ≈ 5.26 , which are
also the values obtained in [7].

Example 2: Simulating a process (Broken spaghetti problem).
If a stick of spaghetti is slowly bent and broken at two points, the outcome is three shorter sticks.
Suppose these two points are randomly chosen, what is the probability that the resulting three
shorter parts will form a triangle?
 Intuitively, we can figure out that not every three segments of the spaghetti will form a
triangle. This is illustrated in the examples shown in Figure 3.

Figure 3. Examples of broken spaghetti segments forming and not forming a triangle

 A B C D
1 A = 1
2 k = 1
3

Strain Tension Squared
Error 4 Data Model

5 1.22 4 0.6689 11.0962
6 1.35 8 1.1391 47.0713
7 1.45 13 1.5448 131.2209
8 1.50 20 1.7634 332.5733
9 1.55 22 1.9932 400.2725
10 1.57 28 2.0884 671.4128
11 1.60 33 2.2348 946.5006
12 1.64 40 2.4369 1410.9874
13 1.67 44 2.5939 1714.4663
14 1.71 60 2.8107 3270.6184
15 1.74 71 2.9791 4626.8481
16 1.77 83 3.1526 6375.6118
17 1.80 95 3.3314 8403.1385
18 1.83 109 3.5156 11126.9576
19 1.86 132 3.7055 16459.4903
20 55928.2659

Cell C1: define as “A”

Cell C2: define as “k”

Key in values with given data

Cell C5: type the formula,
=A*(exp(k*A5)-exp(k))
and copy and fill down to Cell C19

Cell D5: type the formula,
=(C5-A5)^2
and copy and fill down to Cell D19

Cell 20: type the formula,
=sum(D5:D19)

Use the Solver Tool to find values
of A and k the minimize D20

 no yes yes no

Proceedings of the 25th Asian Technology Conference in Mathematics

130

 In general, suppose we have three segments with measuring 𝑎𝑎 , 𝑏𝑏 and 𝑐𝑐 in length, and
without loss of generality, assume 𝑐𝑐 is the longest segment. It is clear that in order for these three
segments to form a triangle, then 𝑎𝑎 + 𝑏𝑏 > 𝑐𝑐. Further analysis along this line can be carried out to
find the theoretical probability of forming a triangle from a broken spaghetti [1, pp 84–85].

On the other hand, it is also possible to approach this problem through a simulation model,
which is in fact a form of a computational model. One could simulate the process of randomly
choosing two points on a stick of spaghetti of unit length, say, and then record the lengths of the
three resulting segments. If the length of the longest segment exceeds half the length of the original
spaghetti stick, then a triangle cannot be formed. This is because the sum of the lengths of the other
two shorter segments will be less than that of the longest segment and obviously a triangle cannot
be formed. Otherwise, we increase the count of the number of triangles formed. This is done
iteratively until we have sufficient number of runs to establish the experimental probability
required. Such a simulation model could be implemented through the algorithm depicted as a
flowchart in Figure 4. Using the flowchart, it would not be difficult to write the code, or use a
spreadsheet like Microsoft Excel, to run the simulation to obtain the experimental probability of the
three broken spaghetti segments forming a triangle.

Figure 4. Flowchart showing algorithm to simulate the process in the broken spaghetti problem

START

Initialisation
Set value of n (large)
Set 𝑖𝑖 = 1
Set count = 0

count = count + 1

No

END
Yes

Is 𝑀𝑀 > 1
2
 ? 𝑖𝑖 = 𝑛𝑛 ?

Generate random
numbers 𝑝𝑝 and 𝑞𝑞 from
uniform distribution of
(0, 1)

Set 𝑋𝑋 = smaller (𝑝𝑝, 𝑞𝑞)
Set 𝑌𝑌 = larger (𝑝𝑝,𝑞𝑞)

Set 𝑎𝑎 = 𝑋𝑋
Set 𝑏𝑏 = 𝑌𝑌 − 𝑋𝑋
Set 𝑐𝑐 = 1 − 𝑌𝑌
Set 𝑀𝑀 = max (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)

𝑖𝑖 = 𝑖𝑖 + 1

Yes

No

Proceedings of the 25th Asian Technology Conference in Mathematics

131

Figure 5 shows how a simple Excel spreadsheet is set up, using form controls such as
buttons and scroll bars to control events in the sheet. The scroll bar controls and sets the number of
spaghetti sticks in this simulation, and this essentially means the number of trials used in one run of
the simulation. On the right is the code written in Visual Basic for Applications (VBA) in Excel.
The function “Sub Run()” is linked to the button labelled as “Run Simulations” on the Excel sheet.
The program starts by assigning a variable (“n”) to the value in Cell B2 and initializing the count
value to zero. Random numbers are generated to simulate the breaking at two random points of a
stick of unit length, and then assigning the values of lengths a, b and c of the resulting segments.
The maximum is then found using a worksheet function, and used to determined if a triangle can be
formed. Results of the experimental probability is copied to Cell B4.

Figure 5. Set up of spreadsheet in Excel and VBA code to simulate the broken spaghetti problem

Two key features in this simulation model is the use of the law of large numbers and the

concept of iteration. The law of large numbers basically says that if an experiment is performed a
large number of times, the results obtained should be close to the expected value and the higher the
number of trials, the closer will these results be to the expected value. This law is often used in
simulations and very often, the “experiments” are computational experiments carried out via a
computer program. In addition, in programming terms, to repeatedly carry out an experiment
simply means to iterate a process a certain number of times. The idea of iteration, or repetition of
events, therefore goes hand in hand with simulation models. The use of the law of large numbers
and concept of iteration are often a second nature or an ingrained habit to a computer programmer
tasked with implementing a simulation model.

No. of spaghetti sticks = 10000

Probability of forming triangle = 0.2539

Broken Spaghetti problem

Run
Simulation

Option Explicit

Sub Run()
Dim n, i, count As Integer
Dim p, q, a, b, c, M As Double

n = Cells(2, 2)
count = 0
Randomize

For i = 1 To n
 p = Rnd()
 q = Rnd()
 If p < q Then
 a = p
 b = q - p
 c = 1 - q
 Else
 a = q
 b = p - q
 c = 1 - p
 End If
 M = WorksheetFunction.Max(a, b, c)
 If M < 0.5 Then
 count = count + 1
 End If
Next i
Cells(4, 2) = count / n
End Sub

Proceedings of the 25th Asian Technology Conference in Mathematics

132

Example 3: Making a decision (Resource allocation problem)
In many organizations, such as an academic department of a university, funds are allocated to their
members on an annual basis for professional development. Very often, there are rules associated to
the utilization of such funds. Suppose an academic department is allocated a fixed annual budget
based on the number of faculty members for professional development purposes, given the rules
and constraints, as well as the differing demands of the faculty members, how does one utilize the
funds optimally while ensuring a fair distribution to members?

 As an example, suppose at the start of the year, the department is given a certain budget, 𝑃𝑃 ,
to be used for professional development of its staff. Members of the department may submit
requests for funding (to attend courses, conferences, workshops, and so on), typically of differing
amounts, and we assume that there are 𝑛𝑛 members and each member may only make one request
per year. If the total amount requested exceeds the 𝑃𝑃, then not every member will be able to obtain
their requested funding amount. At the same time, optimal use of the budget would also require
that the total utilization of the funds be as close to 𝑃𝑃 as possible. In other words, there should be as
little unutilized funds as possible. Mathematically, we could represent the situation as follows.

 Suppose member 𝑖𝑖 makes a request of 𝑀𝑀𝑖𝑖 amount of funds, and the approved amount is a
actually 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖 where 𝑘𝑘𝑖𝑖 ∈ (0, 1) , then the objective would be that we need to minimize the
quantity,

𝑅𝑅 = 𝑃𝑃 − ∑ 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ,

subject to the condition, ∑ 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ≤ 𝑃𝑃. This means that essentially, we need to find the set of

values of 𝑘𝑘𝑖𝑖 ∈ (0, 1) so that 𝑅𝑅, which should be positive, is as small as possible.

 The process or model may be simplified by setting a baseline for the approved amount. For
instance, every member should be given at least a certain fixed fraction, 𝑘𝑘 of the requested amount.
In addition, depending on other factors, a member could be given an integer multiple, called a
weight, of a certain “step” ∆𝑘𝑘 of the requested amount. Hence, we have

𝑘𝑘𝑖𝑖 = 𝑘𝑘 + 𝛼𝛼𝑖𝑖 ∆𝑘𝑘 .
While 𝑘𝑘 may be set to ensure condition of not exceeding the given budget is met, each

individual member 𝑖𝑖 will need to have its weight 𝛼𝛼𝑖𝑖 determined in some manner. How these are
assigned could depend on various factors, such as whether the member has been given larger
amounts in previous years, or whether the member is a more junior staff member more deserving of
professional development, and so on. Assuming that 𝑘𝑘 is suitably set, and 𝛼𝛼𝑖𝑖 are appropriately
assigned, then the problem reduces to finding the value of ∆𝑘𝑘 that minimizes 𝑅𝑅.
 Consider the following hypothetical case with ten members as shown in Table 2. Each of
the ten (fictitious) individuals’ requested amount and corresponding weight assigned are given in
columns 3 and 4. The total amount of requests is $27,560. Note that the weights assigned here are
hypothetical. In this case, for instance, it is assumed that two members, Ali and Goh, deserve a
heavier weight (value of 5) for some reason, which could be related to their positions in the
department, their previous funding requests, or other contributing factors. On the other hand, three
other members deserve only the smallest weight value of 1, again for some supporting reasons.

Proceedings of the 25th Asian Technology Conference in Mathematics

133

Table 2. Amount of funding requested, and amount eventually allocated

No. Name
Requested

Amount in $
(𝑀𝑀𝑖𝑖)

Weights
(𝑤𝑤𝑖𝑖)

𝑘𝑘𝑖𝑖
Allocated Amount

in $
(𝑘𝑘𝑖𝑖 × 𝑀𝑀𝑖𝑖)

1 Ali 2,600 5 0.79 2,058.68
2 Bai 3,210 1 0.56 1,792.34
3 Chandu 4,160 2 0.62 2,565.55
4 Darren 1,890 1 0.56 1,055.30
5 Esther 3,610 1 0.56 2,015.68
6 Faridah 2,520 5 0.79 1,995.33
7 Goh 1,540 3 0.68 1,039.62
8 Han 1,980 2 0.62 1,221.10
9 Ismail 2,950 4 0.73 2,163.65
10 Jan 3,100 3 0.68 2,092.75
 Total 27,560 Total 18,000.00

Suppose the budget is $18,000 (that is, 𝑃𝑃 = 18000), and assume that each member should
at least be given 50% of what they have requested (that is, 𝑘𝑘 = 0.5). Given this scenario and the
set of values, we can again make use of Excel’s Solver Tool and find the value of ∆𝑘𝑘 that
minimizes 𝑅𝑅. It turns out that in this case, when ∆𝑘𝑘 = 0.0584, the 𝑅𝑅 ≈ 0. With this value of ∆𝑘𝑘,
all the 𝑘𝑘𝑖𝑖 may be computed, and the corresponding allocated amount are found. These are shown in
the last two columns in the table.

The habits of mind invoked in this example are those concerned with decomposing a
problem, breaking it down into smaller, more manageable parts, and then systematically building a
model. For instance, given an open problem like in this example, as in programming, one first
needs to identify the variables involved and determine the relationships among these variables. In
this case, the overall budget, the individual members’ requested amounts, the weights that need to
be assigned, and the size of the additive “step”. This example also illustrates how to simplify a
problem, a process of reduction, and cut down the number of variables so that the problem can be
more easily dealt with.

Discussion
Any effort to develop thinking (such as mathematical thinking, creative thinking, critical thinking,
and so on) should naturally be associated with some skills and competence, and constant use and
practice of these skills over a sustained period of time. In the case of computational thinking, it has
been suggested that these skills have to do with computer programming. Here, computer
programming is more than just writing code – it refers to the process of designing and
implementing solutions to problems that can be carried out on or by a computer.
 Figure 6 shows a schematic of some of the key concepts and ideas in a typical introductory
course in computer science or computer programming. These include learning about keeping to the
rules and syntax of a programming language, process, flowcharts, control structures, recursion, data
structure, variables, sorting algorithms, subroutines, and so on.

Proceedings of the 25th Asian Technology Conference in Mathematics

134

Figure 6. Concepts and skills in computer programming leading to the
development of habits in computational thinking

 It is also typical of such courses to require students to complete programming exercises to
reinforce these concepts, achieve a deeper understanding, and be skillful in using them. Over time,
as the student does more of these exercises and uses these concepts more frequently, it is not
unreasonable to expect these skills to become internalized as habits that the student is likely to rely
on in problem situation.
 While it is difficult to say which skills or concepts develop what aspect of computational
thinking, it is not hard to see that these can lead to developing some of the habits in Figure 6. For
instance, constantly working with flowcharts, subroutines, functions and procedures in writing
programs and solving problems serves to train one’s mind to think systematically, visualize a big
picture, while taking care to analyze smaller units and blocks in the solution process. At the same
time, working with data and defining or creating variables and data structures are part and parcel of
computer programming.

These skills eventually build one’s familiarity with methods of looking at data and finding
ways to use them effectively in problem solving, as is also demonstrated in Example 1 in the
preceding section. Simulation models can be effectively designed and implemented if one has the
knowledge and habit of thinking algorithmically, as illustrated in Example 2. Finally, abstracting
information and describing them as variables in a computer program helps develop one’s mind to
think of factors in the real world as mathematical variables, as shown in Example 3. It is evident
that these are the type of thinking and habits of mind that have eventually led to successful designs
of solutions, implementable on a computing machine in the examples discussed.

Computer
Programming

Syntax
Flowchart
Testing

Debugging
Subroutines
Functions

Procedures
Cases

Recursion
Repeat loop
While loop
For loop

Control
structure

Branching
Switch

Data base
Data structure

Variables
Sorting

Building
Systems

Handling
Data Designing

Algorithms

Abstracting
Information

Analysing
Blocks

Habits of mind in
Computational Thinking

Proceedings of the 25th Asian Technology Conference in Mathematics

135

Concluding Remarks
In this paper, we examine and explicate aspects of habits of mind related to computational thinking,
so that we may see their relevance in mathematical modelling. Using three examples, these habits
or dispositions towards problem solving are teased out and linked to certain parts or phases in the
solution process of the mathematical modelling tasks.
 It is not the intent of this paper to advocate or even suggest that computational thinking is
important for mathematics, nor is it its purpose to discuss related issues in mathematics education.
It is acknowledged that in this respect, opinions do differ, and the diverse views on computational
thinking and its relevance to mathematics education, coupled with the lack of research in this area,
have meant that a common understanding does not seem to exist at the moment. Nonetheless, what
this paper attempts to do is to illustrate and elucidate the link between some habits developed
consciously through purposeful computer programming exercises and certain skill sets useful to
mathematical modelling.
 These mental habits of computer programmers or scientists, however, are not something
that can be acquired through a few hours of coding lessons or even one course on a programming
language. Rather, these are developed through many hours of computer programming exercises or
projects, and frequent use of relevant programming skills and techniques in problem solving. In
terms of mathematical modelling, these habits will further strengthen one’s ability and competence
in handling and solving modelling tasks.

References
[1] Ang, K.C. (2018). Mathematical Modelling for Teachers: Resources, Pedagogy and Practice.

London: Routledge.
[2] Ang, K.C. (2019). Exploring the nexus between computational thinking and mathematical

modelling, paper presented at The 19th International Conference on the Teaching of
Mathematical Modelling and Applications, Hong Kong.

[3] Costa, A. L. and Kallick, B. (2008). Learning and leading with habits of mind: 16 essential
characteristics for success. Alexandria: Association for Supervision and Curriculum
Development.

[4] Goldenberg, E. P. (1996). ‘Habits of Mind’ as an Organizer for the Curriculum. Journal of
Education, 178 (1), 13–34.

[5] Hu, C. (2011). Computational thinking – what it might mean and what we might do about it,
Proceedings of the 16th annual joint conference on innovation and technology in computer
science education, 223–227. Darmstadt, Germany.

[6] Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L. and Settle, A.
(2014). Computational thinking in K-9 Education, Proceedings of the 19th annual joint
conference on innovation and technology in computer science education, 1–28. Uppsala, Sweden.

[7] Mazumdar, J., Ang, K. C. and Soh, L. L. (1991). A mathematical study of non-Newtonian
blood flow through elastic arteries, Australasian Physical & Engineering Sciences in
Medicine, 14(2), 65–73.

Proceedings of the 25th Asian Technology Conference in Mathematics

136

[8] Mohaghegh, M. and McCauley, M. (2016). Computational thinking: the skill set of the 21st
century, International Journal of Computer Science and Information Technologies, 7(3),
1524–1530.

[9] Nardelli, E. (2019). Do we really need computational thinking? Communications of the ACM,
62(2), 32–35.

[10] Roach, M. R. and Burton, A. C. (1957). The reason for the shape of the distensibility curves of
arteries, Canadian Journal of Biochemistry and Physiology, 35, 681–690.

[11] Sanford, J. (2013). Core concepts of computational thinking, International Journal of Teaching
and Case Studies, 4(1), 1–12.

[12] Sanford, J. F. and Naidu, J. T. (2016). Computational thinking concepts for grade school,
Contemporary Issues in Educational Research, 9(1), 23–31.

[13] Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L. and Wilensky, U.
(2016). Defining computational thinking for mathematics and science classrooms, Journal of
Science Education and Technology, 25, 127–147.

[14] Wing, J. (2006). Computational Thinking, Communications of the ACM, 19(3), 33–35.
[15] Yasar, O. (2018). A new perspective on computational thinking, Communications of the

ACM, 61(7), 33–39.

Proceedings of the 25th Asian Technology Conference in Mathematics

137

