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Abstract: 
The growing interest in computational thinking and its use in problem solving had led teachers and 
educators, as well as other researchers, to ponder over what it means and how best to introduce 
such a notion to students in schools. Many ideas on “teaching computational thinking” have also 
been suggested, and in many countries, courses on coding or computer programming have been 
made very popular as more people begin to believe that the ability to write code is an important 
skill in this increasingly digital world. In this paper, we focus on the habits of mind that are related 
to computational thinking and that can be developed from learning to code.  Some of these habits 
include looking at trends in data and analyzing them, examining a process and simulating it, and 
systematically constructing a solution to a problem. More specifically, we shall discuss how these 
habits of mind can enhance and support one’s skills and competencies in the context of 
mathematical modelling, using three examples.  Individually, each example illustrates some aspects 
of computational thinking applied to the modelling tasks.  Collectively, through these examples, we 
attempt to demonstrate that the related habits of mind of computational thinking, developed 
through computer programming exercises, could strengthen one’s ability and expand one’s 
capability of tackling modelling tasks in a significant, albeit sometimes subtle way. 

Introduction 
In recent years, the notion of computational thinking and its impact and implications in education 
have been the subject of much discussion and debate among researchers.  This is in part, brought 
about by the viewpoint piece on computational thinking presented by Wing [14] and in part a 
natural consequence of the increasingly digital world that we live in.  Much of the academic 
discussions surrounding this topic had focused on the concept or definition of computational 
thinking, which Wing unfortunately, or perhaps, intentionally did not provide, how it is related to 
problem solving and how it can be taught. 

Nonetheless, most would agree on the different aspects of computational thinking, which 
would include constructs and notions like abstraction, creating algorithms, decomposition, pattern 
recognition and so on.  In recent years, many educators and researchers have published articles and 
papers on the topic, explaining what these constructs mean, and how they appear in problem 
solving [8, 11, 13, 15].  Many have also recommended ways of “teaching” computational thinking, 
while still others have advocated that it should be included in different subjects and be made a 
significant part of the school curriculum [6, 12]. 
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 Wing argued that is it important that every student is taught “how a computer scientist 
thinks”.  To some, this may be interpreted as to mean it is important to teach computer science to 
every student.  Nardelli, however, suggested that it is more critical to stress the “educational value 
of informatics, that is, computer science, for all students”, and proposed that we discuss what to 
teach and how to evaluate competences regarding informatics rather than teaching and evaluating 
computational thinking [9]. 

In the context of mathematics learning and teaching, an educator would have to grapple 
with the notion of computational thinking and its practice while balancing with the concept and 
thrust of mathematical thinking that has been the objective of teaching and learning mathematics.  
It is sometimes argued that computational thinking is very similar to mathematical thinking [5], and 
to a large extent, it is not unreasonable to see computational thinking as mathematical thinking with 
a powerful calculating tool. 

Against the backdrop of these different perceptions of what computational thinking means, 
and the various suggestions and recommendations for including its teaching and practice in the 
school curriculum, as well as its relationship with mathematical thinking, a typical mathematics 
teacher is faced with many challenges.  Yet, perhaps it is no longer useful or relevant to ask what 
exactly constitutes computational thinking, or imagine what can be done.  Rather, it may be more 
important to think about what can be derived from learning and practicing computer programming 
or coding, and how that can be useful and relevant in problem solving, particularly in mathematics. 

Specifically, it has been suggested that the practice of programming helps one develop some 
very useful habits of mind that will eventually support the practice of mathematical modelling [2].  
The focus of this paper, therefore, is to explicate and illustrate this idea. 
 

Habits of mind 
What exactly do we mean by habits of mind?  As a very general view, the term refers to a set of 
dispositions that enables us to behave in an intelligent manner when faced with problems.   
Behavioral scientists have studied this aspect of human development for some time now, and some 
researchers have narrowed these dispositions down to “16 habits of mind” [3], with a disclaimer 
that the list is not complete.  Across the world, many institutions have adopted these frameworks 
and designed programmes within school curricula to help school children develop these habits and 
apply them in problem solving. 

In the present discussion, it is more perhaps useful to adopt a perspective proposed by 
Goldenberg [4], who had said that habits of mind are “ways of thinking that one acquires so well, 
makes so natural, and incorporates so fully into one’s repertoire, that they become mental habits – 
not only can one draw upon them easily, one is likely to do so”.  In other words, habits of mind are 
not just dispositions that make one behave intelligently but are a set of internalized practices of 
critical thinking that the one could, and often would, employ in a problem situation. 
 Therefore, if computational thinking is about habits of mind, then it is necessary to first 
recognize and identify the dispositions associated with it.  As Wing explained, to think 
computationally is to think like a computer scientist, and “thinking like a computer scientist means 
more than being able to program a computer”.  While learning Scratch or Python may be important, 
it is not the end goal; more important than these are the mental habits of the people who make use 
of computers, computing tools, computing constructs, computational methods and computational 
models to solve problems. 
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 Nevertheless, just as calculation is the machinery of mathematics, computer programming is 
the machinery of computational thinking.  Just as learning to calculate (or to solve mathematical 
problems) is a means to developing a mathematical mind, similarly, learning to code (or to write a 
program to build a computational model) is a means to developing habits of mind in computational 
thinking.  More specifically, these habits and ways of thinking are particularly useful, and even 
essential in some cases, in solving mathematical modelling problems. 
 For instance, many modelling tasks or situations involve data, either given or collected, 
which can be used in some ways to construct a mathematical model.  One needs to look for trends, 
or fit curves and functions, or find suitable parameter values.  These often involve numerical or 
computational methods and looking for and recognizing some patterns in the data before devising 
appropriate strategies to use the data.  Working with data is one aspect that many programmers 
have had to learn to do when learning to program. 
 Another example is in the development of simulation models.  In order to successfully run a 
simulation of a situation or process, the programmer will need to understand the process very well.  
Sometimes, some form of abstraction needs to be done, and some assumptions made to keep the 
problem tractable.  Often, an algorithm is written to flesh out the step by step procedure before the 
code is written.  These are all good habits of mind that helps one be systematic and organized, and 
to clarify the process of constructing a simulation model. 
 Coding or programming exercises provide the platform for these habits to be developed.  
These exercises often require understanding of the methods and schemes used, such as in 
computational methods of solving a mathematical problem or in implementing complex algorithms. 
In order to apply these methods using the machinery of computer science, that is, programming, 
one needs to unpack the process of these methods and schemes, look for efficient or sometimes 
simpler approaches, recognize patterns and develop strategies for suitable solutions.  The more 
often one engages in such exercises, the more ingrained are these habits of mind. 
 

Examples 
In this section, we discuss three examples of modelling tasks.  In each case, the solution process is 
described, and the link to the “good habits” that one could possibly have developed from computer 
programming or computing exercises is made. 
 
Example 1: Dealing with data (Tension-Strain relationship) 
In an experiment to study the elastic properties of arteries carried out under laboratory conditions, a 
human external iliac artery subject to some force (tension, 𝑇𝑇) and the response in terms of the 
stretch (strain, 𝑎𝑎 𝑎𝑎0⁄ , where 𝑎𝑎 is the extended length and 𝑎𝑎0 is the original length of the artery)  was 
measured [10].  The results are shown in the Table 1 below. 
 

Table 1.  Tension and strain in a human iliac artery 

𝑇𝑇 (g/cm) 4 8 13 20 22 28 33 40 44 60 71 83 95 109 132 

𝑎𝑎 𝑎𝑎0⁄  1.22 1.35 1.45 1.50 1.55 1.57 1.60 1.64 1.67 1.71 1.74 1.77 1.80 1.83 1.86 
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Suppose it is required to obtain a function to represent the relationship between the two 
quantities (tension, or stress, and strain) using these experimental data points.  The reason could be 
that a closed-form function is necessary in order to model blood flow through an artery, for 
instance.  Now, someone with the habit of looking for patterns in problem solving, might want to 
first plot a graph of the points.  The graph of T against a/a0 is as shown in Figure 1 below. 

 

 

Figure 1.  Plot of experimental data points showing stress-strain relationship of an iliac artery 
 

From the plot of the points, it would be natural to identify possible types or classes of 
functions that may be suitable to represent this set of points.  In one such modelling case, the 
suggested function takes the form,  

𝑇𝑇 = 𝐴𝐴(𝑒𝑒𝑘𝑘𝑘𝑘 − 𝑒𝑒𝑘𝑘) 
where 𝐴𝐴 and 𝑘𝑘 are parameters to be found using the data set [7].  One way to find these parameters 
would be the least squares method, or some regression techniques, and would involve minimizing 
some form of errors in fitting the curve to the data set.   

Because there are two parameters involved and they are related in a non-linear fashion, a 
more complicated technique involving iterating and improving subsequently found values of 𝐴𝐴 and 
𝑘𝑘 has been suggested in the aforementioned paper.  At each iteration, as described in the paper, the 
sum of residual squares (SRS), defined as the sum of the squares of the difference between the each 
data value and model value, is minimized for parameters 𝐴𝐴 and 𝑘𝑘 found at that stage. 

The idea of minimizing errors in curve-fitting is so common that it has become a habit 
among researchers using numerical techniques.  In this particular case, the problem of finding these 
two parameters that best fit the curve to the data can be solved using, for instance, the Solver tool in 
Microsoft Excel, described diagrammatically in Figure 2 below. 
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Figure 2. Using the Solver Tool in Excel to find best parameter values 

In this case, the Solver tool produces the values of 𝐴𝐴 ≈ 0.0074 and 𝑘𝑘 ≈ 5.26 , which are 
also the values obtained in [7]. 

 
Example 2: Simulating a process (Broken spaghetti problem). 
If a stick of spaghetti is slowly bent and broken at two points, the outcome is three shorter sticks.  
Suppose these two points are randomly chosen, what is the probability that the resulting three 
shorter parts will form a triangle? 
 Intuitively, we can figure out that not every three segments of the spaghetti will form a 
triangle.  This is illustrated in the examples shown in Figure 3. 

 
Figure 3. Examples of broken spaghetti segments forming and not forming a triangle 

 A B C D 
1  A = 1  
2  k = 1  
3 

Strain Tension Squared 
Error 4 Data Model 

5 1.22 4 0.6689 11.0962 
6 1.35 8 1.1391 47.0713 
7 1.45 13 1.5448 131.2209 
8 1.50 20 1.7634 332.5733 
9 1.55 22 1.9932 400.2725 
10 1.57 28 2.0884 671.4128 
11 1.60 33 2.2348 946.5006 
12 1.64 40 2.4369 1410.9874 
13 1.67 44 2.5939 1714.4663 
14 1.71 60 2.8107 3270.6184 
15 1.74 71 2.9791 4626.8481 
16 1.77 83 3.1526 6375.6118 
17 1.80 95 3.3314 8403.1385 
18 1.83 109 3.5156 11126.9576 
19 1.86 132 3.7055 16459.4903 
20    55928.2659 

 

Cell C1: define as “A” 

Cell C2: define as “k” 

Key in values with given data 

Cell C5: type the formula, 
=A*(exp(k*A5)-exp(k)) 
and copy and fill down to Cell C19 

Cell D5: type the formula, 
=(C5-A5)^2 
and copy and fill down to Cell D19 

Cell 20: type the formula, 
=sum(D5:D19) 

Use the Solver Tool to find values 
of A and k the minimize D20 

 no  yes  yes  no 
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 In general, suppose we have three segments with measuring 𝑎𝑎 , 𝑏𝑏  and 𝑐𝑐  in length, and 
without loss of generality, assume 𝑐𝑐 is the longest segment.  It is clear that in order for these three 
segments to form a triangle, then 𝑎𝑎 + 𝑏𝑏 > 𝑐𝑐.  Further analysis along this line can be carried out to 
find the theoretical probability of forming a triangle from a broken spaghetti [1, pp 84–85]. 

On the other hand, it is also possible to approach this problem through a simulation model, 
which is in fact a form of a computational model.  One could simulate the process of randomly 
choosing two points on a stick of spaghetti of unit length, say, and then record the lengths of the 
three resulting segments.  If the length of the longest segment exceeds half the length of the original 
spaghetti stick, then a triangle cannot be formed.  This is because the sum of the lengths of the other 
two shorter segments will be less than that of the longest segment and obviously a triangle cannot 
be formed.  Otherwise, we increase the count of the number of triangles formed.  This is done 
iteratively until we have sufficient number of runs to establish the experimental probability 
required.  Such a simulation model could be implemented through the algorithm depicted as a 
flowchart in Figure 4.  Using the flowchart, it would not be difficult to write the code, or use a 
spreadsheet like Microsoft Excel, to run the simulation to obtain the experimental probability of the 
three broken spaghetti segments forming a triangle. 

 

 
Figure 4. Flowchart showing algorithm to simulate the process in the broken spaghetti problem 

 

START 

Initialisation 
Set value of n (large)  
Set 𝑖𝑖 = 1 
Set count = 0 

 

count = count + 1 

No 

END 
Yes 

Is 𝑀𝑀 >  1
2
  ? 𝑖𝑖 = 𝑛𝑛 ? 

Generate random 
numbers 𝑝𝑝 and 𝑞𝑞 from 
uniform distribution of 
(0, 1) 

Set 𝑋𝑋 = smaller (𝑝𝑝, 𝑞𝑞) 
Set 𝑌𝑌 = larger (𝑝𝑝,𝑞𝑞) 

Set 𝑎𝑎 = 𝑋𝑋 
Set 𝑏𝑏 = 𝑌𝑌 − 𝑋𝑋 
Set 𝑐𝑐 = 1 − 𝑌𝑌 
Set 𝑀𝑀 = max (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 

𝑖𝑖 = 𝑖𝑖 + 1 

Yes 

No 
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Figure 5 shows how a simple Excel spreadsheet is set up, using form controls such as 
buttons and scroll bars to control events in the sheet.  The scroll bar controls and sets the number of 
spaghetti sticks in this simulation, and this essentially means the number of trials used in one run of 
the simulation.  On the right is the code written in Visual Basic for Applications (VBA) in Excel.  
The function “Sub Run()” is linked to the button labelled as “Run Simulations” on the Excel sheet.  
The program starts by assigning a variable (“n”) to the value in Cell B2 and initializing the count 
value to zero.  Random numbers are generated to simulate the breaking at two random points of a 
stick of unit length, and then assigning the values of lengths a, b and c of the resulting segments.  
The maximum is then found using a worksheet function, and used to determined if a triangle can be 
formed.  Results of the experimental probability is copied to Cell B4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Set up of spreadsheet in Excel and VBA code to simulate the broken spaghetti problem 
 
Two key features in this simulation model is the use of the law of large numbers and the 

concept of iteration.  The law of large numbers basically says that if an experiment is performed a 
large number of times, the results obtained should be close to the expected value and the higher the 
number of trials, the closer will these results be to the expected value.  This law is often used in 
simulations and very often, the “experiments” are computational experiments carried out via a 
computer program.  In addition, in programming terms, to repeatedly carry out an experiment 
simply means to iterate a process a certain number of times.  The idea of iteration, or repetition of 
events, therefore goes hand in hand with simulation models.  The use of the law of large numbers 
and concept of iteration are often a second nature or an ingrained habit to a computer programmer 
tasked with implementing a simulation model. 

No. of spaghetti sticks = 10000

Probability of forming triangle = 0.2539

Broken Spaghetti problem

Run 
Simulation

Option Explicit 
 
Sub Run() 
Dim n, i, count As Integer 
Dim p, q, a, b, c, M As Double 
 
n = Cells(2, 2) 
count = 0 
Randomize 
 
For i = 1 To n 
    p = Rnd() 
    q = Rnd() 
    If p < q Then 
        a = p 
        b = q - p 
        c = 1 - q 
        Else 
        a = q 
        b = p - q 
        c = 1 - p 
     End If 
     M = WorksheetFunction.Max(a, b, c)    
     If M < 0.5 Then 
        count = count + 1 
     End If 
Next i 
Cells(4, 2) = count / n 
End Sub 
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Example 3: Making a decision (Resource allocation problem) 
In many organizations, such as an academic department of a university, funds are allocated to their 
members on an annual basis for professional development.  Very often, there are rules associated to 
the utilization of such funds.  Suppose an academic department is allocated a fixed annual budget 
based on the number of faculty members for professional development purposes, given the rules 
and constraints, as well as the differing demands of the faculty members, how does one utilize the 
funds optimally while ensuring a fair distribution to members? 

 As an example, suppose at the start of the year, the department is given a certain budget, 𝑃𝑃 ,  
to be used for professional development of its staff.  Members of the department may submit 
requests for funding (to attend courses, conferences, workshops, and so on), typically of differing 
amounts, and we assume that there are 𝑛𝑛 members and each member may only make one request 
per year.  If the total amount requested exceeds the 𝑃𝑃, then not every member will be able to obtain 
their requested funding amount.  At the same time, optimal use of the budget would also require 
that the total utilization of the funds be as close to 𝑃𝑃 as possible.  In other words, there should be as 
little unutilized funds as possible.  Mathematically, we could represent the situation as follows. 

 Suppose member 𝑖𝑖 makes a request of 𝑀𝑀𝑖𝑖 amount of funds, and the approved amount is a 
actually 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖  where 𝑘𝑘𝑖𝑖  ∈  (0, 1) , then the objective would be that we need to minimize the 
quantity, 

𝑅𝑅 = 𝑃𝑃 −  ∑ 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖
𝑛𝑛
𝑖𝑖=1  , 

subject to the condition, ∑ 𝑘𝑘𝑖𝑖𝑀𝑀𝑖𝑖
𝑛𝑛
𝑖𝑖=1  ≤ 𝑃𝑃.  This means that essentially, we need to find the set of 

values of 𝑘𝑘𝑖𝑖  ∈  (0, 1) so that 𝑅𝑅, which should be positive, is as small as possible. 

 The process or model may be simplified by setting a baseline for the approved amount.  For 
instance, every member should be given at least a certain fixed fraction, 𝑘𝑘 of the requested amount.  
In addition, depending on other factors, a member could be given an integer multiple, called a 
weight, of a certain “step” ∆𝑘𝑘 of the requested amount.  Hence, we have 

𝑘𝑘𝑖𝑖 = 𝑘𝑘 +  𝛼𝛼𝑖𝑖  ∆𝑘𝑘 . 
While 𝑘𝑘 may be set to ensure condition of not exceeding the given budget is met, each 

individual member 𝑖𝑖 will need to have its weight 𝛼𝛼𝑖𝑖 determined in some manner.  How these are 
assigned could depend on various factors, such as whether the member has been given larger 
amounts in previous years, or whether the member is a more junior staff member more deserving of 
professional development, and so on.  Assuming that 𝑘𝑘 is suitably set, and 𝛼𝛼𝑖𝑖  are appropriately 
assigned, then the problem reduces to finding the value of ∆𝑘𝑘 that minimizes 𝑅𝑅. 
 Consider the following hypothetical case with ten members as shown in Table 2.  Each of 
the ten (fictitious) individuals’ requested amount and corresponding weight assigned are given in 
columns 3 and 4.   The total amount of requests is $27,560.  Note that the weights assigned here are 
hypothetical. In this case, for instance, it is assumed that two members, Ali and Goh, deserve a 
heavier weight (value of 5) for some reason, which could be related to their positions in the 
department, their previous funding requests, or other contributing factors.  On the other hand, three 
other members deserve only the smallest weight value of 1, again for some supporting reasons. 
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Table 2. Amount of funding requested, and amount eventually allocated 
 

No. Name 
Requested 

Amount in $ 
(𝑀𝑀𝑖𝑖) 

Weights 
(𝑤𝑤𝑖𝑖) 

𝑘𝑘𝑖𝑖 
Allocated Amount  

in $ 
( 𝑘𝑘𝑖𝑖 ×  𝑀𝑀𝑖𝑖 ) 

1 Ali 2,600 5 0.79 2,058.68 
2 Bai 3,210 1 0.56 1,792.34 
3 Chandu 4,160 2 0.62 2,565.55 
4 Darren 1,890 1 0.56 1,055.30 
5 Esther 3,610 1 0.56 2,015.68 
6 Faridah 2,520 5 0.79 1,995.33 
7 Goh  1,540 3 0.68 1,039.62 
8 Han 1,980 2 0.62 1,221.10 
9 Ismail 2,950 4 0.73 2,163.65 
10 Jan 3,100 3 0.68 2,092.75 
 Total 27,560  Total 18,000.00 

  

Suppose the budget is $18,000 (that is, 𝑃𝑃 = 18000), and assume that each member should 
at least be given 50% of what they have requested (that is, 𝑘𝑘 = 0.5).  Given this scenario and the 
set of values, we can again make use of Excel’s Solver Tool and find the value of ∆𝑘𝑘  that 
minimizes 𝑅𝑅.  It turns out that in this case, when ∆𝑘𝑘 = 0.0584, the 𝑅𝑅 ≈ 0.  With this value of ∆𝑘𝑘, 
all the 𝑘𝑘𝑖𝑖 may be computed, and the corresponding allocated amount are found.  These are shown in 
the last two columns in the table. 

The habits of mind invoked in this example are those concerned with decomposing a 
problem, breaking it down into smaller, more manageable parts, and then systematically building a 
model.  For instance, given an open problem like in this example, as in programming, one first 
needs to identify the variables involved and determine the relationships among these variables.  In 
this case, the overall budget, the individual members’ requested amounts, the weights that need to 
be assigned, and the size of the additive “step”.  This example also illustrates how to simplify a 
problem, a process of reduction, and cut down the number of variables so that the problem can be 
more easily dealt with. 
 

Discussion 
Any effort to develop thinking (such as mathematical thinking, creative thinking, critical thinking, 
and so on) should naturally be associated with some skills and competence, and constant use and 
practice of these skills over a sustained period of time.  In the case of computational thinking, it has 
been suggested that these skills have to do with computer programming.  Here, computer 
programming is more than just writing code – it refers to the process of designing and 
implementing solutions to problems that can be carried out on or by a computer. 
 Figure 6 shows a schematic of some of the key concepts and ideas in a typical introductory 
course in computer science or computer programming.  These include learning about keeping to the 
rules and syntax of a programming language, process, flowcharts, control structures, recursion, data 
structure, variables, sorting algorithms, subroutines, and so on.   
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Figure 6. Concepts and skills in computer programming leading to the 
development of habits in computational thinking 

 It is also typical of such courses to require students to complete programming exercises to 
reinforce these concepts, achieve a deeper understanding, and be skillful in using them.  Over time, 
as the student does more of these exercises and uses these concepts more frequently, it is not 
unreasonable to expect these skills to become internalized as habits that the student is likely to rely 
on in problem situation.   
 While it is difficult to say which skills or concepts develop what aspect of computational 
thinking, it is not hard to see that these can lead to developing some of the habits in Figure 6.  For 
instance, constantly working with flowcharts, subroutines, functions and procedures in writing 
programs and solving problems serves to train one’s mind to think systematically, visualize a big 
picture, while taking care to analyze smaller units and blocks in the solution process.  At the same 
time, working with data and defining or creating variables and data structures are part and parcel of 
computer programming.   

These skills eventually build one’s familiarity with methods of looking at data and finding 
ways to use them effectively in problem solving, as is also demonstrated in Example 1 in the 
preceding section.  Simulation models can be effectively designed and implemented if one has the 
knowledge and habit of thinking algorithmically, as illustrated in Example 2.  Finally, abstracting 
information and describing them as variables in a computer program helps develop one’s mind to 
think of factors in the real world as mathematical variables, as shown in Example 3.  It is evident 
that these are the type of thinking and habits of mind that have eventually led to successful designs 
of solutions, implementable on a computing machine in the examples discussed.   
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Concluding Remarks 
In this paper, we examine and explicate aspects of habits of mind related to computational thinking, 
so that we may see their relevance in mathematical modelling.  Using three examples, these habits 
or dispositions towards problem solving are teased out and linked to certain parts or phases in the 
solution process of the mathematical modelling tasks. 
 It is not the intent of this paper to advocate or even suggest that computational thinking is 
important for mathematics, nor is it its purpose to discuss related issues in mathematics education.  
It is acknowledged that in this respect, opinions do differ, and the diverse views on computational 
thinking and its relevance to mathematics education, coupled with the lack of research in this area, 
have meant that a common understanding does not seem to exist at the moment.  Nonetheless, what 
this paper attempts to do is to illustrate and elucidate the link between some habits developed 
consciously through purposeful computer programming exercises and certain skill sets useful to 
mathematical modelling. 
 These mental habits of computer programmers or scientists, however, are not something 
that can be acquired through a few hours of coding lessons or even one course on a programming 
language.  Rather, these are developed through many hours of computer programming exercises or 
projects, and frequent use of relevant programming skills and techniques in problem solving.  In 
terms of mathematical modelling, these habits will further strengthen one’s ability and competence 
in handling and solving modelling tasks. 
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