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Abstract:  In this paper we will see the richness of both algebraic and dynamic approaches of a problem related to the 
three zeroes of a third-degree complex polynomial and the two zeroes of its derivative. Visualization with DGS in the 
Argand plane of these five points with the help of CAS will facilitate the exploration leading to the discovery of a very 
special ellipse (the Steiner ellipse).We will first prove (via a geometric proof) the existence and the uniqueness of such 
an ellipse (tangent to the triangle defined by the zeroes of the third degree polynomial at the midpoints of these zeroes) 
and then prove (complex proof) that the foci of this ellipse are the zeroes of the derivative polynomial (Marden’s theorem). 
Connecting easily DGS and CAS within the TI-Nspire environment is a crucial tool of this work as well as the use of 
sliders to summarize the different stages of the investigations, the conjectures and their corroboration (experimental) or 
their validation (proof).  This paper aims to show ideas of challenging mathematics to everybody at all levels. It aims 
also to show rich techniques of investigation within DGS and CAS environments. A final problem in relation to Marden’s 
theorem will be investigated within DGS, leading to a very nice conjecture which is proved with a blend of DGS and 
CAS. An original way to prove that the Steiner ellipse is the ellipse of maximum area inscribed in a triangle will be shown 
in an important part of this paper : the way this very last work was conducted could be an important resource for 
techniques of investigation or proofs to know in order to use DGS and CAS relevantly. 

1. Introduction
1.1.    Investigations leading to the Steiner ellipse 
All the beginning of this paper is focused on polynomials of third degree of the complex variable z 
with coefficients which are also complex. We will represent in the Argand plane the three points 
associated to the three zeroes of this polynomial (M, N and P) and the two points F and F’ associated 
with the two zeroes of its derivative. This work is performed within the TI-Nspire environment where 
we can use the power of dynamic geometry and computer algebra system. It allows us to investigate 
dynamically such a figure in which the zeroes can be modified with the use of sliders. The 
investigations conducted will lead us to highlight a very special ellipse connected to triangle MNP 
and to points F and F’. 
Consider the polynomial p(z) = (z - z1).(z - z2).(z - z3) where z1 = a+i.b, z2 = c+i.d and z3 = e+i.f. Let 
us call g+i.h and k+i.l the two zeroes of the derivative p’(z). In a Graphs page of TI-Nspire, let us 
create six sliders (for a, b, c, d, e and f) allowing us to change the values of the real part and the 
imaginary part of z1, z2 and z3 and by the way changing the position of the vertices of triangle MNP 
constructed such as M(a,b), N(c,d) and P(e,f). Let us call F and F’ the points defined by F(k,l) and 
F’(g,h). Figure 1 displays triangle MNP and points F and F’. The first investigation suggested by 
this figure is to construct all the possible ellipses admitting F and F’ as foci (Figure 1on the left). 
Changing the size of such an ellipse leads us to the first conjecture: « it seems that one of these 
ellipses is tangent to the sides of MNP at the midpoints of its sides ». More than that, it seems that 
the center of such an ellipse seems to be the centroid of MNP (the intersection point of the three 
medians). Another way to state this conjecture is: 
Conjecture 1: given a triangle, there is an ellipse inscribed in this triangle passing through the 
midpoints of its sides where it is tangent to these sides. 
Conjecture 2: if such an ellipse exists, its two foci are the zeroes of the derivative of the third degree 
polynomial admitting the vertices of the triangle for zeroes. 



A visual corroboration of these conjectures could be the following one: construct the ellipse with foci 
F and F’ passing through the midpoint of [MP] and state that this ellipse seems to be tangent to [MP], 
to pass through the midpoints of the two other sides and tangent to these sides (Figure 1 on the 
right). We can state it even if we change the values of the coordinates of points M, N or P with the 
sliders which will change the positions of M, N or P. It is a G1 Informatique validation (praxeology 
pointed in [7]).  
 

          
 

Figure 1: Investigations leading to the discovery of the Steiner ellipse 
 
1.2.    Other dynamic investigations for other conjectures  
In a research activity like the previous one, the researcher always adopts an attitude of a very curious 
person. Before trying to prove what he was happy to conjecture, because the nature of a researcher 
is to be greedy, he tries to investigate some other relationships in this figure related to known 
configurations. It is what I did twice.  
1.2.1. Investigations around the Euler’s line (unsuccessful) 
If (OH) is the Euler’s line of triangle MNP, I have evaluated the ratio between the area of polygon 
FHF’O and the area of triangle MNP (Figure 2 on the left). But when we modify the polynomial in 
changing the positions of M, N or P with the sliders, this ratio changes. Eventually, nothing interesting 
was deduced from this investigation. 
1.2.2. Investigations around a relationship between areas (successful) 
Now we evaluate the ratio between the area of the previous ellipse and triangle MNP (Figure 2 in 
the middle). When changing the positions of points M, N or P this ratio seems to be constant. An 
approximate value of this constant could be 0.6046 to four places of decimals. 
 

   
 

Figure 2: Investigations for other conjectures 
   
At the end of this introduction, I have two directions to follow:  
One concerns the Steiner ellipse, in order to prove that such an ellipse exists with the constraints 
about the midpoints of the initial triangle and the sides of this triangle as the tangents to this ellipse 
at these midpoints. In addition we will prove the invariance of the previous ratio. 



A second direction concerns the fact that points F and F’ are the foci of the Steiner ellipse (Marden’s 
Theorem). 
 
2. The Steiner ellipse 
  

2.1. Reminder 
Any triangle can be considered as the image of an equilateral triangle with an affinity. As we know 
that the ratio between areas is kept with an affinity, that the midpoints are kept, that properties of 
tangency are kept, this will simplify the proof of our first conjecture. 
2.2. Corroboration of the previous conjecture  
If the ratio of 1.1.2. is constant, we can evaluate it for an equilateral triangle: let us consider an 
equilateral triangle and let us evaluate the ratio between the area of the Steiner ellipse which is in this 
case the inscribed circle and the area of the triangle. A very simple reasoning (Figure 2 on the right) 
leads to a ratio equal to 

!
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 an approximate value for which is given by 0.604599788078 
corroborating the previous invariant. 
2.3. Existence of the Steiner ellipse 
Let us consider a triangle : it is the image of an equilateral triangle with an affinity A. The image of 
the inscribed circle of the equilateral triangle with A  is an ellipse passing through the midpoints of 
the given triangle, the sides of which are tangent to this ellipse. The ratio between the area of the 
ellipse and the area of the triangle is necessarily equal to the equivalent ratio in the equilateral 
triangle: 

!
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 . This ellipse is called the Steiner ellipse. 
 
3. The Marden’s Theorem 
  

3.1. Bifocal definition of an ellipse and construction with a director circle 
Consider a circle of radius 2a centered on F1 and a second point F2 inside this circle. Let us consider 
the ellipse defined by the relationship MF1 + MF2 = 2a. A construction of this ellipse is summarized 
in Figure 3 on the left. From each point V of the circle (called director circle associated to F1), we 
construct a point M of the ellipse as the intersection point of F1V and the perpendicular bisector of 
[F2V]. Therefore, the ellipse is the locus of M when V moves along the director circle. Dragging the 
point V along the circle allows those who don’t know this property to conjecture that the 
perpendicular bisector is tangent to the ellipse in M. Let us prove this result analytically. 
 

     
 

Figure 3 : Ellipse (bifocal definition) and its tangent lines 
 
Our technique is the following one : we consider the tangent line at a point M of the ellipse in the 
coordinate system shown in Figure 3 on the right, S the symmetric point of F2 with respect to this 



tangent ? We already know that F1M+MS = 2a, so we only have to prove the colinearity of points 
F1, M and S. 
An equation of the tangent line at M(xM,yM) is : 
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− 1 = 0 and here with the 
trigonometric coordinates of M(a.cos(u) , b.sin(u)) : b.cos(u).x + a.sin(u).y – ab = 0. 
As the parametric equations of line (N) (perpendicular to the tangent from F2) are: 
x = c +b.cos(u).t and y = a.sin(u).t , the parameter tH of point H, is obtained in substituing these 
coordinates to x and y in the equation of the tangent line: 
(c +b.cos(u).t). b.cos(u) + a.sin(u).t. a.sin(u) - ab = 0 or 
bc.cos(u)+b2.cos2(u).t+ a2.sin2(u).t – ab = 0 or 
t.( b2.cos2(u) + a2.sin2(u))=(ab – bc.cos(u)) or t.( b2.cos2(u) + a2- a2cos2(u)) = (ab – bc.cos(u)) 
And as b2 – a2 = -c2, therefore we obtain : t.(a2 – c2. cos2(u)) = b.(a – c.cos(u)). 
Eventually, the parameter of H is tH = 

*
&/0.123	(6)

 and then the parameter of S is tS = 2tH. 

We now obtain the coordinates of S (	&0/0
'.123 6 /8*'.123 6
&/0.09:(6)

 , 8&*:;<(6)
&/0.123	(6)

 ). 

When we evaluate the determinant of 𝐹1𝑀 and 𝑀𝑆 , we easily obtain a result of 0, which completes 
the proof. 
We also obtain this result with the CAS of TI-Nspire. 
 
3.2. A lemma : the Little Poncelet Theorem 
With the notations of Figure 4, we will prove geometrically the following results which can be used 
for the proof of the Marden’s Theorem: 
If (PT1) and (PT2) are the the tangent lines to a given ellipse (with foci F1 and F2) where P is a 
given point outside the ellipse and T1 and T2 the contact points, then ∠F1PT1 = ∠T2PF2 
Proof : let us use first the following notations 
Refl(D) for Symmetry with respect to line D and Rot(O,a) for rotation centered in O with an angle of 
a. We know that  
Refl(PT1)oRefl(PF1)=Rot(P,2.∠F1PT1) and Refl(PF2)oRefl(PT2)=Rot(P,2.∠T2PF2). 
As the image of point G2 by these two rotations is the same point F2, we can conclude that 
Rot(P,2.∠F1PT1) = Rot(P,2.∠T2PF2) and eventually 2∠F1PT1 = 2∠T2PF2 + k.2π which leads to  
∠F1PT1 = ∠T2PF2 + k.π. The conclusion is that the angles of lines (PF1,PT1) = (PT2,PF2) 
The justification visible in Figure 4 depends of the properties of the tangent lines ; they are detailed 
below (we use the equalities F1G1 = F1G2 and PG1 = PF2 = PG2): 
Refl(PF1) : G2 ⎯→ G1 and Refl(PT1) : G1 ⎯→ F2 and 
Refl(PT2) : G2 ⎯→ F2 and Refl(PF2) : F2 ⎯→ F2 
 

  
 

Figure 4 : The Little Poncelet Theorem and the Marden’s Theorem 
 



3.3. Marden’s Theorem and its proof 
Consider p(z) = (z - z1).(z - z2).(z - z3) is our third degree polynomial ; M1, M2 and M3 are the points 
of the Argand plane representing its three roots z1, z2 and z3. F1 and F2 are the points representing 
the zeroes of p’(z). We will prove the following theorem 
Theorem : given a triangle M1M2M3, with the previous notations, the ellipse with foci F1 and F2, 
passing through the midpoint of [M1M2] is tangent to the three sides of triangle M1M2M3 at the 
midpoints of its sides. 
As shown in Figure 4 on the right, we have constructed F’1 the symmetric point of F1 with respect 
to (M1M2) and T1 the intersection point of (M1M2) and (F’1F2). Then we have constructed the 
ellipse (E) set of points M verifying the condition MF1+MF2 = T1F1+T1F2. According to this 
definition, T1 belongs to this ellipse and (M1M2) is tangent to this ellipse at T1. Thanks to the little 
Poncelet Theorem, we can state that  (𝑀1𝑀2,𝑀1𝐹1) = (𝑀1𝐹2,𝑀1𝑇2) where (M1T2) is the second 
tangent to (E) from M1.  
The derivative p’(z) can be written 3.(z - f1).(z - f2) (where f1 and f2 are zeroes of p’)  
or (z - z1)(z - z2)+(z - z2)(z - z3)+(z - z3)(z - z1). 
Therefore p’(z1) can be evaluated with 3.(z1 -f1 ).(z1 -f2 ) or (z1 - z2)(z1 - z3) from which we get the 
equality : 
	C8DCE
FEDCE

	=	3.	F8DCE
C"DCE

	.	The equality of the arguments gives		

(𝑀1𝐹1,𝑀1𝑀2) = (M1M3,M1F2) [2π] 
(𝑀1𝑀2,𝑀1𝐹1) = (𝑀1𝐹2,𝑀1𝑇2) [π]  (from the little Poncelet theorem).  
A simple deduction leads to : (𝑀1𝐹2,𝑀1𝑀3) = (𝑀1𝐹2,𝑀1𝑇2) [π] which interpretation is that 
(M1T2) and (M1M3) are superimposed. Eventually, (M1M3) is tangent to ellipse (E). 
A similar proof can be conducted to state that (M2M3) is tangent to this ellipse. 
We have at this stage proven the existence of an ellipse tangent to M1M2M3 tangent to (M1M2) at 
its midpoint. 
We have now to prove that T2 and T3 are respectively the midpoints of the other sides of triangle 
M1M2M3. Let us prove only that T2 is the midpoint J of [M1M3]. J is associated to the complex 
number jj =  

CE/C"
8

 . 

From the Little Poncelet theorem we know that (𝑀1𝐹1,𝑀1𝑀3) = (𝑀1𝑀2,𝑀1𝐹2) that can be 
interpreted in terms of arguments : 

arg(
C"DCE	
FEDCE

) = arg(F8DCE	
C8DCE

) that can be written arg(
JKLJM
' 	

FEDCE
) = arg(F8DCE	J'LJM

'
)  

Or 
C"DCE
8

 = jj-z1 and  
C8DCE
8

 = ii-z1 where ii=
CE/C8
8

. Therefore: 

arg(
NNDCE	
FEDCE

) = arg(F8DCE	
;;DCE

) which means (𝑀1𝐹1,𝑀1𝐽) = (𝑀1𝐼,𝑀1𝐹2) 

And finally thanks again to the little Poncelet theorem, J = T2. 
A similar proof can be conducted to prove than T3 (contact point of [M2M3] with the ellipse is the 
midpoint of the third side of M1M2M3. That completes the proof.  
 
4. A surprising problem in relation to the Steiner ellipse  
 

4.1. The problem and a dynamic investigation 
Given a triangle ABC and a point M inside this triangle. Let us construct from M the parallel lines to 
each of its sides like in Figure 5 on the left. We have defined three triangles (in yellow) and three 



parallelograms (in orange). The problem to solve is the following one : is it possible to find positions 
of point M such that the sum of the areas of the three triangles is equal to the sum of the areas 
of the three parallelograms ?  
Here is a possible investigation: we drag point M to find a position where the difference between 
these two sums is close to 0 as shown in Figure 5 in the middle where the displayed difference is :  
-0.097 which was the best we could do. Then, as it is possible in the TI-Nspire environment, we lock 
this number which means that point M can only be dragged on positions where this number does not 
change. Activating the geometric trace of M and dragging it everywhere we can drag it, we obtain 
what is displayed in Figure 5 in the middle. We can state that the trace we get seems to be the Steiner 
ellipse (G1 level, [7]). To corroborate this conjecture, we can construct the Steiner ellipse, redefine 
point M on it and state that the number -0.097 is changed instantaneously onto -2.E-12 for every 
position tested on this ellipse With the accuracy of the software and the pixellisation of the screen, it 
means that the solution points are the Steiner ellipse (G2 level of validation, [7]),that is shown in 
Figure 5 on the right.  
 

     
 

Figure 5 : a surprising problem connected to Marden’s Theorem 
 
4.2. Proof of the previous conjecture   
We will use the fact that any triangle can be considered as the image of an equilateral triangle with 
an affinity (or with a parrallel projection in 3D) and that the ratio between areas is kept with such a 
transformation. If our conjecture is true, as a consequence, in the case of an equilateral triangle the 
solution must be the inscribed circle of this triangle. We give below a formal proof supported by the 
CAS of TI-Nspire. 
We will prove that the solution of our problem in the case of an equilateral triangle is its inscribed 
triangle. It will be sufficient to obtain the result in the general case. In order to do that, we work in a 
coordinate system where the unit circle is the inscribed circle and we use the notations of Figure 6. 
So, let us express the constraint « sum of the areas of the three yellow triangles equal half of the 
area of the given triangle » to obtain the equation of the solution. 
In this coordinate system the coordinates of the vertices of the given triangle are : A(0,2), B(- 3,-1) 
and C( 3,-1). Let us call xM and yM the coordinates of a point M of the plane. We easily obtain the 
following equations of the sides of triangle ABC: 
(AB) : 3x - 3 y + 2 3 = 0 ; (AC) : 3x + 3 y - 2 3 = 0 and (BC) : y = -1 from which we can get the 
coordinates of the vertices of the three yellow triangles. 
e2 and g1 are obtained as the intersection points between line y = yM and the two lines (AB) and 

(AC) : e2(
()%D8) "

"
 , yM) and  g1(

D()%D8) "
"

 , yM) 
f1 and g2 are obtained as the intersection points between (f1g2) (in reality the parallel line to (AB) 
passing through M) and lines (BC) and (AC) : 
From (f1g2) : 3x - 3 y + 3xM + yM 3 = 0, we get  



f1(
"#%D()%/E) "

"
 , -1) and g2(

"#%D()%D8) "
Q

 , 
)%/8D#% "

8
) 

e1 and f2 are obtained as the intersection points between (e1f2) (in reality the parallel line to (AC) 
passing through M) and lines (AB) and (BC): 
From (e1f2) : 3x + 3 y - 3xM - yM 3 = 0, we get 

e1(
"#%/()%D8) "

Q
 , #% "/)%/8

8
 ) and f2(

"#%/()%/E) "
Q

 , -1) 
We can evaluate now with the help of determinants the areas of the three yellow triangles and we 
obtain: 

Area(Me1e2) = = E
8
det	(𝑀𝑒1,𝑀𝑒2) = 

"#%' "DQ#%()%D8)/()%D8)' "
E8

 

Area(Mf1f2) = = E
8
det 𝑀𝑓1,𝑀𝑓2   = 

()%/E)' "
"

 

Area(Mg1g2) = = E
8
det	(𝑀𝑔1,𝑀𝑔2)  = 

"#%' "/Q#%()%D8)/()%D8)' "
E8

 

Adding these three areas, we obtain, the yellow area : yellow area =  
#%' "/()%'/8) "

8
 

We know the area of ABC : 3 3 .  
 
The constraint of our problem is : 
Area(ABC)-2.yellow area = 0 which is− 𝑥𝑀8 + 𝑦𝑀8 − 1 3 = 0 or 𝑥𝑀8 + 𝑦𝑀8 − 1 = 0. 
This last equation describes the inscribed circle. That completes the proof. 
 

 
 

Figure 6 : Analytic proof of the conjecture 
 
5. A property of the Steiner ellipse  
 

5.1. A property of maximum area 
This known property states that the Steiner ellipse of a triangle is the ellipse performing the maximum 
area among the ellipses inscribed in this triangle. The originality of this part is 

1. How the investigation is conducted starting from an ellipse and not from a triangle with DGS. 
2. How the formal proof can be deducted from the previous investigation with CAS. 

The two stages of this proof are as follows : 
1. For a given equilateral triangle, locate the positions of its inscribed ellipses of a given shape 

having a maximum area. 
2. For these positions, evaluate the shapes maximizing the area of the ellipse. 

The proof will be finished when the final ellipse will be the inscribed circle, because for a random 
triangle it means that the ellipse maximizing its area is the Steiner ellipse. 
 



5.2. An investigation for a very special problem 
The problem I propose to investigate with dynamic geometry is the following one : 
Given an ellipse, construct all the equilateral triangles admitting this ellipse as inscribed ellipse and 
find the one (equilateral triangle) with a minimum area. Solving this problem, at least experimentally, 
will give us an indication for the ellipse having the maximum area when inscribed in a given 
equilateral triangle. The proof will conclude such an investigation. During this work, we will have 
the opportunity to solve the following problem: 
For a given equilateral triangle, construct all the inscribed ellipses to this triangle admitting a 
given shape. 
Remark : to obtain all the possible shapes of an ellipse, we need a given circle centered on F1 and a 
second variable point F2 inside this circle. A shape is defined by the ellipse with foci F1 and F2 and 
the given circle as director circle associated with F1. All other ellipses of the plane are similar to one 
of the previous one (use a translation, a rotation and a dilation) 
5.2.1. Equilateral triangles admitting an inscribed given ellipse (Figure 8) 
The given ellipse is defined by its two foci F1 and F2 and the director circle associated with F1.  
If triangle MNP is an equilateral triangle admitting this ellipse as inscribed ellipse (and by the way 
the three sides (PM), (MN) and (NP) tangent to the ellipse respectively at T1, T2 and T3), thanks to 
the known geometric properties of the ellipse, (PM) is the perpendicular bisector of (F2K1), (MN) is 
the perpendicular bissector of (F2K2) and (NP) is the perpendiculare bisector of (F2K3). Knowing 
that the quadrilateral F2H1MH2 has two right angles (H1 and H2), angles H2 and M are 
supplementary angles and eventually, ∠H1F2H2= 

8!
"

. So we know now that (𝐹2𝐻1,	𝐹2𝐻2) = 
8!
"

 . 

With the same reasoning we obtain (𝐹2𝐻2,	𝐹2𝐻3) = 
8!
"

 and (𝐹2𝐻3,	𝐹2𝐻1) = 
8!
"

 . 
Construction algorithm of an equilateral triangle starting from the first contact point of 
tangency T1 : 
-Consider a point T1 on the given ellipse. 
-Construct the ray [F1T1) intersecting the given director circle in K1. 
-Construct H1 midpoint of [F2K1]. 
-Line (T1H1) is the line supporting the first side [PM] of MNP. 
-Rotate [F1T1) around F2 (angle −2𝜋

3 ) to get a ray intersecting the director circle at K2. 
-The line supporting the second side [MN] is the perpendicular bisector of [F2K2]. 
-The point of tangency of the second side is point T2 intersection between this line and segment 
[F1K2]. 
-Rotate [F1T2) around F2 (angle −2𝜋

3 ) to get a ray intersecting the director circle at K3. 
-The line supporting the third side [NP] is the perpendicular bisector of [F2K3]. 
-The point of tangency of the third side is point T3 intersection between this line and segment F1K3. 
M, N and P are the intersection points of the three tangent line constructed. 
Remark : dragging point T1 along the ellipse allows us to obtain all the equilateral triangles admitting 
this ellipse as an inscribed ellipse 
 



     
 

Figure 7 : Equilateral triangles and inscribed ellipses 
 

5.2.2. Equilateral triangles of minimum area admitting an inscribed given ellipse (Figure 7) 
We display (to six places of decimals) the area of the triangle MNP we obtained previously and we 
drag point T1 along the ellipse to state that the minimum of this area is reached each time a base of 
the equilateral triangle is parallel to (F1F2) or which is equivalent, each time one of the three rays 
[F2K1), [F2K2) and [F2K3) is perpendicular to (F1F2) (Figure 7 in the middle). 
Consequence : given an equilateral triangle, we know now how to construct all the ellipses inscribed 
in this triangle with a given shape (Figure 7 on the right). 
Perform the previous construction for any ellipse defined by the director circle centered in F1 (first 
focus) and F2 (second focus inside the circle). We obtain all the equilateral triangles by dragging T1 
on such an ellipse. 
Given an equilateral triangle M1N1P1 on the plane, this triangle is the image of MNP by the 
translation mapping point M onto point M1 followed by the rotation which angle is (𝑀𝑁,	𝑀1𝑁1) and 
by the dilation centered on M1 and with scale factor of M1N1/MN. 
Eventually, the image of the given ellipse by the composition of these three transformations will give 
an inscribed ellipse to the given equilateral triangle. And dragging point T1 along the given ellipse 
will generate all the inscribed ellipses to the given equilateral triangle. 
 
5.2.3. First result : conjecture and proof 
5.2.3.1.An equivalent problem : 
To prove it, we return to the initial presentation starting from an ellipse of given shape (Figure 7 on 
the left). Let us evaluate the area of triangle MNP with a formula that will help for an analytic proof. 
This area is equal to the sum of the area of the triangles MF2N, NF2P and PF2M that is to say : 
E
8
(𝐹2𝐻2.𝑀𝑁 + 𝐹2𝐻3.𝑁𝑃 + 𝐹2𝐻1. 𝑃𝑀) = E

8
(𝐹2𝐻2 + 𝐹2𝐻3 + 𝐹2𝐻1)𝑎 where a is the side of the 

equilateral triangle which depends of the position of T1. This area is also equal to &
' "
_

 . From these 

two expressions, we get : a = 8
"
.	(𝐹2𝐻2 + 𝐹2𝐻3 + 𝐹2𝐻1). Therefore the minimum area will be 

obtain when a is minimum or when the sum 𝐹2𝐻2 + 𝐹2𝐻3 + 𝐹2𝐻1 is minimum or which is 
equivalent when the sum 𝐹2𝐾2 + 𝐹2𝐾3 + 𝐹2𝐾1 is minimum. 
5.2.3.2.Investigations leading to the conjecture 
On a graph page (Figure 8), we represent a circle centered in F1, a point F2 inside this circle and 
three point K1, K2 and K3 such as ∠K1F2K3 = ∠K3F2K2 = ∠K2F2K1 =	2𝜋3  . K1 is commanded by 
a slider whose boundaries are 0 and the length of the circle. So point K1 can be dragged from the 
intersection point between the circle and the positive part of the x axis to this point again after a 
complete rotation around F1. Then we have constructed in an analytic page the point whose 
coordinates are the length transferred with the slider and the sum of the three distances F2K1, F2K2 



and F2K3. The locus of this point when the slider point moves on the segment representing this slider 
is the curve we can see in Figure 8. We can conjecture that this curve has six minimum points 
corresponding to vertical positions of each ray constructed from F2. It is easy to conjecture that in 
these cases the angle between the positive part of the x axis and vector 𝐹2𝐾1,	 could likely be ,  
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Figure 8 : Investigations for a first result 
 
Conclusion1 : for a given equilateral triangle and an ellipse of given shape, there are three 
ellipses (of this given shape) of maximum area inscribed in the triangle, those which principal 
axis is parallel to one side of the given equilateral triangle.  
5.2.3.3. CAS supported solution 
Eventually, consider a circle centered on F1 (radius 2), F2 a point inside the circle (F1F2 = 2c where 
0 < c < 1) and three points on the circle K1, K2 and K3 seen from F2 with the same angle (necessarily 
8!
"

 ). To obtain all the possible shapes of this ellipse, we only have to change the position of F2. Let 
us evaluate the three distances with respect to angle t (0≤ 𝑡 ≤ 2𝜋)  as shown in the coordinate system 
of Figure 9 on the left. 
If we call k1= F2K1, k2=F2K2 and k3=F2K3, the coordinates of K1 are k1cos(t)+2c and k1sin(t). 
Here the parameters a, b and c of the initial ellipse are such as a = 1 and a2 = b2 + c2 = 1. In order to 
evaluate k1 we have to express the constraint « K1 belongs to the director circle which equation is 
« x2 + y2 – 4 = 0 » which means : (2c+k1.cos(t))2 + (k1.sin(t))2 – 4 = 0 (which is a quadratic equation) 
easily solved by the CAS of TI-NSpire. The CAS provides two solutions : the non negative one is 
the one we expect : k1 = −2.c.cos(t) - 2 1 − 𝑐8. (sin 𝑡 )8	; from this formula we obtain the following 

ones : k2 = −2.c.cos(t-
8!
"

) - 2 1 − 𝑐8. (sin 𝑡 − 2𝜋
3 )8 and 

 k3 = −2.c.cos(t+
8!
"

) - 2 1 − 𝑐8. (sin 𝑡 + 2𝜋
3 )8 . 

In a graph page of TI-Nspire we have represented function f (called f4 on the screen of Figure 9 in 
the middle) defined by : 
f(t) = k1 + k2 + k3 for a special value of c commanded by the slider ccc (0< ccc <1).This function  
seems to reach its minimum six times on the interval 0	≤ 𝑡 ≤ 2𝜋. The values we have guessed 
geometrically for the vertical positions of one of the three rays drawn from F2,  
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 are corroborated by Figure 9 in the middle. These values seems to be appropriate for every 
values of c because the observation does not change even if we change the values of c. 



Using the CAS, we confirm this property by evaluating f ’(t) = 0 for t equal to each of these six 
numbers and by evaluating f(t)= 2 1 − 𝑐8 - 2 4 − 𝑐8 for t equal to each of these six numbers. 
That completes the proof « for me ». 
 

   
 

Figure 9 : The sum of the distances from a point inside a circle to three of its points 
 

Remark : the CAS of the software is unable to evaluate the zeroes of f. 
 
5.2.4. Second result : conjecture and proof 
We work again as in paragraph 4.2. in the same coordinate system, centered at the center of the 
inscribed circle of the given equilateral triangle (radius 1). In this coordinate system we know the 
equations of the three sides of the given triangle. We will consider all the inscribed ellipses of this 
triangle whose principal axis is parallel to the horizontal side of the triangle. We will compute their 
equations to get their areas. 
At last we will see which ellipse maximizes its area.  
Our reasoning is based on Figure 10. If I is the center of such an ellipse, if H is the midpoint of [BC], 
we chose for the coordinates of I, I(0,h). As I can only be located between H and A and as the 
symmetric of H with respect to I must be below A, therefore -1 < h < 0.5. 

The equation of such set of ellipses is given by :  #
'

&'
+ ()Dj)'

(E/j)'
− 1 = 0. Let’s evaluate a in order 

to obtain ellipses tangent to (AB) and by symmetry tangent to (AC). The technique is simple with the 
CAS or by hand : determine the intersection between such an ellipse and (AB) which equation is  
3x - 3 y + 2 3 = 0. The screenshot of the Note page of TI-NSpire displayed in Figure 10 in the 
middle shows that we obtain in the general case two intersection points. The condition to obtain only 
one point is : a2 + 2h – 1 = 0 or a = −2ℎ + 1. As we want the principal axis to be horizontal, we 
have the constraint −2ℎ + 1 ≥ 1+h which is equivalent to h	≤	0. Eventually the area of those 
ellipses is given by the formula 𝜋.(1+h)	 −2ℎ + 1. We can check it in displaying some of these 
ellipses until the last one for h = 0.5 (Figure 10 on the right) : for h = 0.5, the ellipse reaches the 
position of the inscribed circle with area of 𝜋. 
 

   
 

Figure 10 : Maximizing the area of a set of ellipses 



 
Now on a graph page, let us display the function f(x) = 𝜋.(1+x)	 −2𝑥 + 1 and the horizontal line y 
= 𝜋 (Figure 11). We obtain an increasing curve for x ≤	0 the maximum of which seems to be reached 
for x = 0 and with f(0) = 	𝜋 . The software corroborates that it is really the maximum. But let us notice 
that the abscissa of the maximum is evaluated by -1.29.10-7. Nevertheless the CAS used in a Note 
page gives f ’(0) = 0 and f(0) = 𝜋. 
 

 
 

Figure 11 : Areas of horizontal ellipses tangent to an equilateral triangle 
 

The formal proof is now given with the expression of f ’(x) obtained with the CAS : D"#!
D8#/E

 which is 
positive when x ≤	0. Now we are sure that the ellipse of maximum area is the inscribed circle. 
Conclusion2 : among the inscribed ellipses to an equilateral triangle with principal axis parallel 
to one side of the triangle, the one with the maximum area is the inscribed circle. 
 
5.2.5. Final conclusion 
The interpretation of conclusion 1 and conclusion 2 is : the ellipse of maximum area inscribed 
in an equilateral triangle is its inscribed circle and therefore the ellipse of maximum area 
inscribed in a triangle is its Steiner ellipse (the one which is tangent to the triangle at its three 
midpoints). 
 
6. Conclusion  

 

After writing such a paper, telling the story of a research principally in paragraph 5 (or some 
moments), my first impression is that nothing would have been possible without geometric 
knowledge (properties of affinities to solve a problem in a particular case and obtained by the way 
this property in the general case), the communication between the members of my group of research 
enriching my way of investigation by DGS or CAS, my skills in analytic geometry allowing a 
pertinent use of the CAS which boundaries are very disappointing, the fact that calculations by hand 
are crucial to sort ideas that seem interesting and very often disappointing. Proving that the inscribed 
ellipse of maximum area of a triangle is the Steiner ellipse was the final and very challenging part of 
this paper and eventually the most important even if at the beginning I thought that this proof could 
not be interesting : it gave me the oppurtunity to use an original technique suggested by one of my 
colleagues. In order to use this idea I had to solve the problem of constructing all the ellipses (of any 
shape) inscribed in a random triangle. The first part of this paper aimed principally to show to teachers 
some ways to present mathematics to their students in using the power of visualization and animation 
of digital tools (paragraphs 1 to 3). The second part aimed to give an example of problem with an 
unexpected link with the previous work : in mathematics never forget to consider unexpected 
connections (paragraph 4). Finally the aim of paragraph 5 was to show to teachers that research is 



not only based on a unique skill especially on technical skills but on a lot of necessary knowleledge 
and techniques (by hand or DGS or CAS techniques). One of the power of digital tools used for this 
paper (especially the TI-NSpire environment) is to allow « us » to revisit known problems and known 
results to investigate differently and get new proofs and sometimes new results. 
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YouTube videos (links) 
 

     [1’] Playlist of YouTube channel « jjdahan » : T3 SAN ANTONIO 2018 JJ DAHAN 
https://www.youtube.com/playlist?list=PLOIs4xavv0zFNELpk0S7SkQ9RWPasFvdx 
 

 
Software 

       Cabri 2 Plus and Cabri 3D by Cabrilog at http://www.cabri.com 
       TI-NspireTM CX CAS Premium Teacher Software 

 
 
 
 
 
 
 


