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ABSTRACT 
Research has shown that the use of computer simulation methods as an alternative to traditional 
methods enhances the understanding of the statistical concepts. The increasing availability of 
technology allows instructors and students to use computationally intensive methods such as 
simulation. This paper presents the use of real data and a simulation approach to help students 
understand the confidence intervals for population mean and variance. Use of real data makes 
the concepts more real for students and enhances their ability to ground the new concepts in 
their existing knowledge. We use the R programming environment for simulating repeated 
sampling from a fairly large dataset and compute the approximate sampling distributions of 
sample mean and variance. We notice that the confidence intervals for population variance 
work poorly if the normality assumption is violated. 

Introduction 
Statistics is used in most of our everyday activities and it is applicable in a wide variety of 
settings such as in crime reports, weather reports, and education. This wide applicability of 
statistics in many areas makes it essential for students to have a good understanding of the 
concepts. Understanding fundamental statistical concepts in introductory level classes is a 
challenge for students. Many students struggle to grasp the inferential statistics concepts in 
sampling distribution, confidence intervals, and hypothesis testing. Due to the abstract nature 
of these topics, traditional way of teaching using books and lecture based instructions does not 
give a good understanding of the concepts to many students. We feel this difficulty can be 
confounded by introducing concepts through a focus on abstract mathematical models. 
According to the American Statistical Association’s Guidelines for Assessment and Instruction 
in Statistics Education (GAISE) [8], an introductory statistics course should: promote statistical 
literacy and statistical thinking, use real data, promote conceptual understanding, foster active 
learning, use technology for developing conceptual understanding and analyzing data, use 
assessments to improve and evaluate student learning. This paper will focus on the second and 
fifth guidelines, the use of real data, and the use of technology in teaching statistics.  
In this paper, we describe the use of real data and computer simulation to introduce statistical 
concepts. The use of real data in teaching statistical concepts has been increasingly 
recommended in statistics education. Schaeffer [15] noted that real-life data should be used 
when teaching statistics, particularly data that is of interest and relevance to the lives and 
experience of students. In 2005, the American Statistical Association’s GAISE report (noted 
in the previous paragraph) included the recommendation to use real data to achieve learning 
goals given by Franklin & Garfield [7]. According to Conner & Davis [4], the national 
curriculum guidelines for teaching statistics in many countries including Australia and England 
emphasized the need to use real data. Garfield & Ben-Zvi [9] noted that students will construct 
knowledge based on their experiences using real data sets. Willett & Singer [16] have 
recommended instructors and textbook authors to use real data. They pointed out that students 



learn skills in a realistic and relevant context. In addition to being more interesting, real data 
sets provide a practical arena in which students can learn how to link research questions to 
statistical models. Real data gives students a chance to reflect upon their work with the data 
while instructors provide guidance to build their own understanding. Pfannkuch [14] noted that 
students may develop their statistical reasoning through an interaction between their contextual 
knowledge about the data set and their emerging statistical knowledge. Students can use data 
sets to practice calculations, gain experience in the interpretation of the results, and develop 
their statistical reasoning about a problem. Instructors may also use data sets to introduce 
different research approaches, methods of data analysis, and applications of statistical theory 
to solve real life problems.   

The second GAISE report guideline we focus on in this paper is the use of technology in 
teaching statistics. Technology strongly influences how we teach statistics. Advances in 
technology have enabled instructors to experiment with different teaching methods. Today, 
computers and software, calculators, and graphing calculators allow users to perform many 
functions that may not be possible without them. Technology turns statistics into a hands-on 
activity-based course where students become engaged in statistics by not just learning about 
formulas. Ang[1] noted that technology and technology based environments allow students to 
alleviate some of the difficulties of grasping the concepts in mathematical modeling and in 
related disciplines. Simulation is the imitation of the operations of a real life process or system. 
Simulation can be an effective tool in learning abstract concepts in statistics. Technology 
allows students to conduct simulations which let them experience the long term behavior of 
sample statistics under repeated random sampling.  Through simulations, students can build on 
their intuitions about probability and expected values, and come to understand the behavior of 
sampling distributions in order to explore the patterns inherent in randomness. Mills [13] has 
given a comprehensive review of the literature of computer simulation methods used in all 
areas of statistics to help students understand difficult concepts.  
 
R is a free, powerful, and flexible statistical programming language and computing 
environment that has become very popular among statisticians. R runs on all of the commonly 
used computer platforms including Windows, Unix/Linux, and the Macintosh operating 
system. Many introductory and higher level statistics instructors are now using R to teach and 
perform statistical data analysis. Although it is an initial challenge for students to write 
statements in the command line, R can be used to conduct data analysis effectively. R can easily 
generate random samples from many data sets and a variety of probability distributions. 
Hallgren [12] has used R in data analysis, estimating statistical power, and constructing 
confidence intervals of parameters. He noted that simulation methods are flexible and can be 
applied to a number of problems to obtain answers that may not be possible to derive through 
other approaches. 
In this paper, we describe the use of real data sets and R in an introductory statistics class to 
understand the concepts of confidence intervals for population mean and variance. We generate 
random samples from a fairly large real data set and compute confidence intervals. R syntax is 
used to repeat this process for a large number of times to understand the meaning of a 
confidence level. We observe the effects of non-normality of the population data on the 
confidence intervals.  
In section 2, we give quick tour on R. Section 3 gives a description of the real data set. In 
sections 4 and 5, we demonstrate the simulation of confidence intervals for mean and variance. 
We end the paper in section 6 with some concluding remarks. 
 



A Quick Tour of R 
Although it is not feasible to provide a general introduction to R in this paper, we will 
provide enough background information to understand the remainder of the paper. R is a 
relatively simple syntax-driven and case-sensitive language. Even though the syntax for 
writing instructions may be somewhat difficult initially, most students with little or no prior 
programming experience have become comfortable using R. R is an object-oriented program 
that works with data structures such as vectors (one-dimensional array) and data frames (two-
dimensional arrays). A vector contains a list of values. When the R program is started and 
after it prints an introductory message, the R interpreter prompts for input with > (the greater-
than sign). The interpreter executes expressions that are typed at the command prompt. For 
example: 

> 1 + 3*4 
[1] 13 
> 1:4 
[1] 1 2 3 4 
> 1:4 + c(2,6,-3,4) 
[1] 3 8 0 8 
> x <- 1:4 
> 3*x 
[1]  3  6  9 12 

Most of the above R statements are self-explanatory except the following: 

• Simple (vector) output is prefixed by [1]. If the output extends over several lines , the 
index number of the first element in each line appears in square brackets at the 
beginning of the line 

•  c() function combines its arguments to create a vector. The arguments are specified 
within parenthesis and separated by commas.    

• <- is the assignment operator. The equal sign (=) may also be used for assignment 
purposes. Variables are created and memory is allocated to them dynamically. 
Variable names can consist of any combination of lower and upper case letters, 
numerals, periods, and underscores, but cannot begin with a numeral or an 
underscore. R is case sensitive and there is no limit on the number of characters in a 
name.  

Once we have a vector of numbers, we can apply built-in functions to get useful statistical 
summaries and visual displays. R also provides functions for generating random samples from 
various probability distributions.  
 
sample  and subset functions 
The sample function generates a random sample of specified size from a set of values with or 
without replacement. Let’s suppose values are stored in a vector named x.  To take a random 
sample of size n without replacement from the set x, we use following R commands: 
 
>  sample(x, n)    or  > sample(x, n, replace = FALSE) 

To obtain a sample of size n with replacement, we use following command: 



 
>  sample(x, n, replace = TRUE)  
We can use the sample function to obtain a random number from a set of numbers, say 1 
through 10, in following way: 
 
> sample(1:10,1) 
[1] 2 

The subset function returns a subset of a vector or data frame which meets a particular 
condition. The following command returns the values in vector x that are greater than zero: 
> subset(x, x > 0) 

Data Input 
Variables with small data sets can be directly entered at the keyboard, but this approach is 
limited. R has many other ways to input data. Data can be read from text files, csv (comma-
separated values) files, and attached packages.  
read.table function is used to import data from a text file. Similarly, read.csv function 
imports data from a csv file.  
To read data into a data frame named mydata from a text file named values.txt resides in 
c:\data\values.txt: 

> mydata <- read.table(“c:\data\values.txt”, header = TRUE)  
The first line of the file should have a name for each variable in the data frame. However, if 
the first row does not contain names of variables then header argument should  be set 
to FALSE. 
To read from a csv file, replace read.table with read.csv.  
 
In addition, you can read in files using the file.choose() function in R. After typing the 
following command in R, you can manually select the directory and the file where your dataset 
is located. 
 
> mydata  <-  read.table(file.choose(), header = TRUE) 

The attach function can be used to make objects contained in data frames accessible. The 
following command allows the user to access data in mydata data frame: 

> attach(mydata)  

Control Structures 
R has the standard control structures such as if, while, and for. These can be used to control the 
flow of an R code. We will demonstrate the use of control structures in R using the following 
code segment. Let’s assume that we have stored 1000 numbers in the vector named x. The 
following code will compute the average of the nonnegative numbers in vector x. The symbol 
# is used to write comments. 

> total <- 0         # variable total initialized to 0 
> count <- 0            # variable count initialized to 0 
> for(i in 1:1000) 
+  { 
+    if (x[i] >= 0) 



+     { 
+      count <- count +1    # count the positive values 
+      total <- total + x[i]    # add the positive values 
+     }   
+  } 
> average <- total/count  # compute the average 
 
In the above code segment, the for loop iterates 1000 times, selecting only nonnegative 
numbers using the if statement. It computes the average as well. The variable named count 
counts the number of nonnegative numbers stored in x.  We will use the control structures 
when we discuss simulations in the following sections. 
 
Real Data 
Data used in this paper came from the General Social Survey (GSS) data set of year 2016. This 
survey is a sociological survey created and regularly collected since 1972 by the National 
Opinion Research Center at the University of Chicago. Since 1972, GSS has provided 
politicians, policymakers and scholars with a clear and unbiased perspective on what 
Americans think and feel about many social issues. GSS data are used in numerous newspaper, 
magazine, and journal articles. The GSS is also a major teaching tool in colleges and 
universities. More than 27,000 journal articles, books, and Ph.D. dissertations are based on the 
GSS and about 400,000 students use the GSS in their classes each year [11]. GSS data is freely 
available to interested parties over the internet. The data is generally available in formats 
designed for statistical programs such as R, SAS, and SPSS.  

For the purpose of this paper, we use the data collected in year 2016 which is the latest data 
available. The 2016 data file has 2867 cases and 960 variables. We use the hrs1 variable which 
represents the number of hours worked last week by the respondents of the survey for our data 
analysis. There were three types of missing values in the data. They are inapplicable (IAP), do 
not know (DK), and no answer (NA). The numbers -1, 98, and, 99 respectively, were used to 
indicate these missing values in the data set. We eliminate these missing values in following 
way. First, we save hrs1 variable data into a csv file named hrs1data.csv. This file has a column 
heading hrs1. Then we import this file using following command: 

> file1 <- read.csv(file.choose(), header = TRUE) 

After selecting the hrs1data.csv file from the directory, we make the data accessible to R by 
using the attach function. 

> attach(file1) 

Now we eliminate missing values from the hrs1 data and assign it to a new variable named 
hrs2 in the following command: 

> hrs2 <- subset(hrs1, hrs1 !=-1 & hrs1 != 98 & hrs1 != 99) 

In the above subset function, the logical condition hrs1 !=-1 & hrs1 != 98 & hrs1 != 99  selects 
data values that are not equal to -1, 98, and 99 and assign them to the hrs2 variable. The hrs2 
variable has 1646 data values. This will represent the population for the purpose of this paper. 
We will use hrs2 in coming sections to study the concepts of confidence intervals.  

  



Simulating Confidence Intervals for population mean (µ) 
Confidence intervals are one of the most commonly used statistical methods to estimate 
plausible values of population parameters using sample data. However, both the formal concept 
and the intuition behind confidence intervals remain elusive to many students. Confidence 
intervals give the most likely range of the unknown population parameter.  Garfield, delMas, 
& Chance [10] have listed the following points for confidence intervals that students should 
understand: 

• A confidence interval for a population mean is an interval estimate of an unknown 
population parameter (mean) based on a random sample from population. 

• A confidence interval for a population mean is a set of plausible values of the true 
population mean that could have generated the observed data as a likely outcome. 

• The level of confidence tells the probability that the method produced an interval that 
includes the true population parameter. 

In this section, we consider creating and interpreting the confidence interval for the mean (µ) 
assuming that the population standard deviation (σ) is known by using simulation. A random 
sample of size n is taken from the population of data. For sufficiently larger n, the Central Limit 
Theorem (CLT) implies that the sample mean  has approximately a normal distribution 
regardless of the nature of the population distribution. The larger the sample size, the better the 
normal approximation. It then follows that  has approximately a standard 
normal distribution. Generally speaking, n > 30 will be sufficient for the normal approximation 
for sample mean. However if the original population is more skewed, a larger sample is needed 
to use the normal approximation. See Chandrakantha [3] for more details.  Then it can be 
derived that the confidence interval for mean µ is , where Zα/2 is the value of the 
standard normal curve with area (1-α) between critical points – Zα/2  and Zα/2 , n is the sample 
size.  The confidence level (1-α) is the probability that the confidence interval actually does 
contain the population mean µ, assuming the estimation process is repeated a large number of 
times. Students have major difficulties in understanding this last statement. Fidler [6] has noted 
the following misconceptions of student understanding of confidence intervals: the majority of 
the individual values are in the interval, the interval contains the plausible values of the sample 
mean, covers 100(1-α)% of the sample, and the probability that the population mean is 
contained within a level (1-α) confidence interval is (1-α). It is important that students 
understand that in repeated sampling from a population, 100(1-α)% of intervals (say 95%) 
would capture the true unknown mean. In using the traditional way of teaching, we only 
consider one sample and calculate one interval. This leads them to believe the wrong 
interpretation of the interval, that there is a 95% chance that this interval will have the true 
mean. The iteration (or simulation) process builds a distribution of intervals, and can be 
displayed graphically in R. 

A computer simulation method using R will allow students to understand the true meaning of 
the confidence interval. We use the real data set in the hrs2 variable (mentioned in previous 
section) for this purpose. This data set represents the number of hours worked in the previous 
week by the respondents of the survey and it serves as our population or sampling frame. We 
generate many samples from this population and compute 95% confidence intervals for the 
mean number of hours worked. The confidence interval formula given in the previous 
paragraph is valid when sampling distribution of the sample mean is normally or approximately 
normally distributed. First, we verify this requirement. To do so, we study the population 
distribution of hrs2 using the hist(hrs2) and qqnorm(hrs2) commands in R. hist and qqnorm 
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functions create histogram and normal probability plot, respectively. Figure 1 shows both plots 
below: 

 
Figure 1: Histogram and Normal Probability Plot of Population Data 

From both plots we notice that the data is not normally distributed. Significantly more hours 
spent working are between 35 and 40. According to the central limit theorem, if we take 
larger samples, the sampling distribution of the mean will be approximately normally 
distributed. With the sample size (n) of 100, we simulate the process of computing the 
sampling distribution of sample mean, . We use the following R code to select 1000 
random samples of size 100 from the population, compute the sample mean, and create the 
histogram, normal probability plot, and box plot to verify the normality of the sampling 
distribution of the mean. 

> mean_v <- NULL 
> for(i in 1:1000) 
    { 
+    x <- sample(hrs2,100, replace = FALSE) 
+   m <- mean(x) 
+   mean_v <- c(mean_v,m) 
    } 
> hist(mean_v, breaks = 15, main  = "Histogram of Sample Means", xlab = "Sample Mean") 
> qqnorm(mean_v, main = "Normal Probability Plot of Sample Means") 
> boxplot(mean_v, main = "Boxplot of Sample Means", ylab = "Sample Mean") 

In this code segment, we first create an empty (null) vector named mean_v to hold the sample 
means. The for loop repeats the process of taking 1000 random samples of size 100 without 
replacement, computes the sample means and saves them in the mean_v vector. Variable x is a 
vector that holds the random sample for each iteration of the for loop.  hist, qqnorm, and boxplot 
functions draw the corresponding plot. The Figure 2 shows these plots below. All three plots 
in Figure 2 show that the sample means are approximately normally distributed and that they 
can be used to compute the confidence intervals.   
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Figure 2: Histogram, Normal Probability Plot, and Boxplot of Sample Means 

The end points of the 95% confidence interval are estimates of the 2.5th and 97.5th percentiles 
of the distribution of , Hallgren [12]. 95% confidence interval limits are obtained using the 
quantile function in the following R code segment. The quantile function computes the sample 
percentiles for given probabilities. For a 95% confidence level, we identify the values at the 
2.5th and 97.5th percentiles of the mean_v vector (these values could be adjusted to obtain 
confidence interval limits for different confidence levels). The result is saved in a vector named 
conflim.  Calling the conflim vector returns the values that correspond with 2.5th and 97.5th 
percentile of the empirical sampling distribution of mean. 

> conflim <- c(quantile(mean_v,0.025), quantile(mean_v,0.975)) 
> conflim 
   2.5%   97.5%  
38.1400 43.5815 
 
Based on the confidence interval computed above, we are 95% confident that the mean number 
of hours worked per week by the population is between 38.14 hours and 43.58 hours. The level 
of confidence tells the probability the method produced an interval that includes the true 
population parameter. To get a better understanding of this concept, we generate 1000 random 
samples from population data and compute a confidence interval for each sample using the 
confidence interval formula. For a 95% confidence level, this formula is .  Using 
these 1000 confidence intervals, we find the proportion of those intervals containing the true 
mean which is known as the coverage probability. This proportion should be 95% which is the 
assumed confidence level when the population distribution is normal or close to it for larger 
sample sizes. The following R code simulates this process: 

> lower_lim <- NULL 
> upper_lim <- NULL 
> for(i in 1:1000) 
   { 
+     x <- sample(hrs2,100, replace = FALSE) 
+     l_lim <- mean(x) - 1.96*sd(hrs2)/sqrt(100) 
+    u_lim <- mean(x) + 1.96*sd(hrs2)/sqrt(100) 
+    lower_lim <- c(lower_lim,l_lim) 
+    upper_lim <- c(upper_lim,u_lim) 
 } 
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> count <- 0 
> for(i in 1:1000) 
    { 
+      if(lower_lim[i] < mean(hrs2) & upper_lim[i] > mean(hrs2)) 
+          count <- count +1 
     } 
> count/1000 
[1] 0.957 

In this code segment, first we create two empty vectors named lower_lim and upper_lim to 
hold the confidence interval limits for 1000 simulated samples. In each iteration of the for loop, 
a random sample of size 100 selected without replacement from population data and assigned 
to variable x. The sd function computes the standard deviation of the population data. Using 
each sample, lower and upper limits of the confidence interval are calculated and saved in 
lower_lim and upper_lim vectors. After completion of the for loop, lower_lim and upper_lim 
vectors will contain 1000 confidence interval limits. Next for loop counts how many intervals 
would contain the true mean of the population data. In each iteration, the count variable will 
increment by one if the interval contains the mean. Dividing the count variable by 1000 at the 
end of the for loop will produce the proportion of intervals containing the population mean. In 
this simulation run, this proportion is 0.957 (95.7%). This means that in the long run, 95% of 
the computed confidence intervals will contain the population mean. To see this visually, we 
use the following R commands to draw 100 confidence intervals horizontally and draw a 
vertical line for the true mean. The resulting 100 confidence intervals are shown in Figure 3. 
It can be seen that 5 intervals do not contain the true mean indicating that 95% of the intervals 
contain the mean.  

> matplot(rbind(lower_lim, upper_lim), rbind(1:100, 1:100), type = "l", lty = 1, xlab = 
"Sample Means",ylab = "Samples", main = "Confidence Intervals for 100 Samples") 
> abline(v = mean(hrs2)) 
The matplot function plots columns of one matrix against columns of another. In this case it 
plots the columns of (1:100, 1:100) matrix against columns of (lower_lim, upper_lim) matrix 
to produce the plot in Figure 3. type = “l” is used to  draw lines between points and lty = 1 
draws solid lines. The abline function with v = mean(hrs2)  draws a vertical line through the 
true mean. 

 
 

 

Figure 3: One Hundred 95% Confidence Intervals 



To verify the accuracy of the 95% confidence interval calculated earlier using the 2.5th and 
97.5th percentiles from empirical sampling distribution of the mean, we find the average of all 
1000 intervals calculated using the confidence interval formula. The interval computed using 
these percentiles was (38.14, 43.58). To find the average of 1000 confidence interval limits, 
we find the average of lower_lim and upper_lim vectors as follows:  

> ave_limits <- c(mean(lower_lim),mean(upper_lim)) 
> ave_limits 
[1] 38.09635 43.74359 
 
The average confidence interval limits of 1000 simulated intervals are very close to the limits 
computed from percentiles of empirical sampling distribution. 

Simulating Confidence Intervals for population variance (σ2)  
Even though inferences concerning population variance (σ2) and standard deviation (σ) are 
usually of less interest than that about the mean (µ), there are occasions where such inferences 
are needed. In this section we compute confidence intervals for variance and standard deviation 
using repeated sampling from our real data set and study the concepts. Bonett [2] has noted 
that the exact confidence intervals for σ2 and σ given in many text books are sensitive to 
violations of the normality assumption and their performance does not improve with increasing 
sample size. We observed in the previous section that the distribution of hrs2 data does not 
follow a normal distribution. This data has a very high peak in middle of the distribution. Use 
of this data allows us to study the robustness of the confidence intervals. Now we introduce the 
confidence intervals for σ2 and σ. 

First, we introduce the sampling distribution of sample variance S2. When the original 

population is normally distributed, the random variable  has a chi-

square (χ2) probability distribution with (n-1) degrees of freedom, Devore [5].  We will use our 

hrs2 variable to compute the approximate sampling distribution of   by taking 10,000 

random samples. In this case we use 10,000 samples to examine the properties of the empirical 
sampling distribution more closely comparing to the theoretical distribution. The following R 
code selects the random samples of size 100, and draws the histogram.  

> var_v = NULL 
> for(i in 1:10000) 
  { 
+    x <- sample(hrs2, 100, replace = FALSE) 
+    v <- 99*var(x)/var(hrs2) 
+    var_v <- c(var_v,v) 
  } 
> hist(var_v, breaks = 30, main = expression(paste("Histogram of (n-
1)","S"^2,"/",sigma^2)), xlab = expression(paste("(n-1)","S"^2,"/",sigma^2))) 

The theoretical sampling distribution for samples of size 100 is a chi-square distribution with 
99 degrees of freedom.  We will compare the approximate sampling distribution we obtained 
using the above R code with the theoretical distribution in Figure 4.  
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Figure 4: Empirical and Theoretical Sampling Distributions of (n-1)S2/σ2 

From the above Figure 4, we observe that the empirical sampling distribution with samples of 
size 100, quite reasonably agree with the theoretical distribution even if the original population 
is not normally distributed.  

Using the sampling distribution of  
  
 as χ2 with (n-1) degrees of freedom, the 100(1-

α)% confidence interval for population variance σ2 is given as  . The 

area under a chi-square curve with (n-1) degrees of freedom to the right of is α/2, as is 

the area to the left of . Taking the square root of the endpoints of the above interval 

gives the 100(1-α)% confidence interval for σ.  This confidence interval is valid when the 
original population has a normal distribution.  

First we approximate the 95%confidence interval for variance σ2 by identifying the 2.5th and 
97.5th percentiles of the empirical distribution of S2 for 10,000 samples. We have already 

calculated the empirical distribution of . Multiplying this by σ2/(n-1) gives the 

distribution of S2.  The following R code computes the approximate confidence intervals for 
the variance and standard deviation: 

> var_v1 <- var_v*var(hrs2)/99 
> conflim <- c(quantile(var_v1,0.025), quantile(var_v1,0.975)) 
> conflim 
    2.5%    97.5%  
140.1664 283.0900  
> sqrt(conflim) 
    2.5%    97.5%  
11.83919 16.82528 
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Based on the approximate confidence intervals, it can be concluded that we are 95% confident 
that the true population variance is between 140.17 hours and 283.09 hours and the standard 
deviation is between 11.94 hours and 16.83 hours. As we noted earlier, the inference 
procedures for σ2 based on the assumption of a normally distributed population can work poorly 
if this assumption is violated. To investigate this further, we generate 10,000 random samples 
from population data and compute 95% confidence interval for each using the normal theory 
confidence interval formula. Then we compute the proportion of confidence intervals 
containing the true population variance. This coverage probability should be exact or close to 
95% if the assumptions are met. The following R code performs this task and computes the 
coverage probability: 
 
> lower_lim <- NULL 
> upper_lim <- NULL 
> for(i in 1:10000) 
  { 
+   x <- sample(hrs2,100,replace = FALSE) 
+   l_lim <- 99*var(x)/qchisq(0.975,99) 
+   u_lim <- 99*var(x)/qchisq(0.025,99) 
+  lower_lim <- c(lower_lim,l_lim) 
+  upper_lim <- c(upper_lim,u_lim) 
  } 
> count <- 0 
> for(i in 1:10000){ 
+ if (lower_lim[i] < var(hrs2) & upper_lim[i] > var(hrs2)) 
+ count <- count + 1} 
> count/10000 
[1] 0.8877   
 
This cord segment is similar to what we used in the previous section for computing coverage 
probability for the mean except that we use formulas to compute confidence intervals for 
variance. This indicates that in long run, only 88.77% of the 95% confidence intervals will 
contain the actual population variance. This computation confirms that confidence intervals for 
population variance and standard deviation are sensitive to violation of normality assumption. 
To observe the effect of sample size on this coverage probability, we take a range of sample 
sizes and compute the coverage probabilities. Table 1 shows our findings:  
 

Table 1: Coverage Probabilities 
n Coverage Probability 
25 0.8735 
50 0.8785 

100 0.8877 
200 0.8920 
300 0.9086 
400 0.9258 
500 0.9364 

  



From Table 1, we observe that the coverage probability increases as sample size increases. For 
sample sizes as large as 300, confidence intervals do not perform well. For a sample size of 
500, coverage probability is close to the assumed confidence interval of 95%. On the other 
hand, the confidence interval for mean is less sensitive to a violation of normality. Since in real 
life the distributions of the data are unknown or do not follow normal distribution, for most 
cases, we need very large sample sizes for estimations of population variance and standard 
deviation.  

  
 

Conclusions 
In this paper we show how to use large sets of real data and R to teach the confidence 
intervals for mean and variance. Many students have difficulties grasping these concepts in 
introductory statistics classes. Students feel comfortable using real data in their lessons rather 
than fake or simulated data. R enables students to write simple codes and create visuals for 
understanding concepts. Students understand the concepts of confidence intervals by 
repeating the sampling process and computing coverage probabilities. Using this approach, 
students observe that while confidence intervals for mean are less sensitive to non-normality, 
confidence intervals for variance and standard deviation are more sensitive.  
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