
Simulating Confidence Intervals for Mean and
Variance using Real Data in R Programming

Environment
Leslie Chandrakantha
lchandra@jjay.cuny.edu

Department of Mathematics & Computer Science
John Jay College of Criminal Justice of CUNY

USA

ABSTRACT
Research has shown that the use of computer simulation methods as an alternative to traditional
methods enhances the understanding of the statistical concepts. The increasing availability of
technology allows instructors and students to use computationally intensive methods such as
simulation. This paper presents the use of real data and a simulation approach to help students
understand the confidence intervals for population mean and variance. Use of real data makes
the concepts more real for students and enhances their ability to ground the new concepts in
their existing knowledge. We use the R programming environment for simulating repeated
sampling from a fairly large dataset and compute the approximate sampling distributions of
sample mean and variance. We notice that the confidence intervals for population variance
work poorly if the normality assumption is violated.

Introduction
Statistics is used in most of our everyday activities and it is applicable in a wide variety of
settings such as in crime reports, weather reports, and education. This wide applicability of
statistics in many areas makes it essential for students to have a good understanding of the
concepts. Understanding fundamental statistical concepts in introductory level classes is a
challenge for students. Many students struggle to grasp the inferential statistics concepts in
sampling distribution, confidence intervals, and hypothesis testing. Due to the abstract nature
of these topics, traditional way of teaching using books and lecture based instructions does not
give a good understanding of the concepts to many students. We feel this difficulty can be
confounded by introducing concepts through a focus on abstract mathematical models.
According to the American Statistical Association’s Guidelines for Assessment and Instruction
in Statistics Education (GAISE) [8], an introductory statistics course should: promote statistical
literacy and statistical thinking, use real data, promote conceptual understanding, foster active
learning, use technology for developing conceptual understanding and analyzing data, use
assessments to improve and evaluate student learning. This paper will focus on the second and
fifth guidelines, the use of real data, and the use of technology in teaching statistics.
In this paper, we describe the use of real data and computer simulation to introduce statistical
concepts. The use of real data in teaching statistical concepts has been increasingly
recommended in statistics education. Schaeffer [15] noted that real-life data should be used
when teaching statistics, particularly data that is of interest and relevance to the lives and
experience of students. In 2005, the American Statistical Association’s GAISE report (noted
in the previous paragraph) included the recommendation to use real data to achieve learning
goals given by Franklin & Garfield [7]. According to Conner & Davis [4], the national
curriculum guidelines for teaching statistics in many countries including Australia and England
emphasized the need to use real data. Garfield & Ben-Zvi [9] noted that students will construct
knowledge based on their experiences using real data sets. Willett & Singer [16] have
recommended instructors and textbook authors to use real data. They pointed out that students

learn skills in a realistic and relevant context. In addition to being more interesting, real data
sets provide a practical arena in which students can learn how to link research questions to
statistical models. Real data gives students a chance to reflect upon their work with the data
while instructors provide guidance to build their own understanding. Pfannkuch [14] noted that
students may develop their statistical reasoning through an interaction between their contextual
knowledge about the data set and their emerging statistical knowledge. Students can use data
sets to practice calculations, gain experience in the interpretation of the results, and develop
their statistical reasoning about a problem. Instructors may also use data sets to introduce
different research approaches, methods of data analysis, and applications of statistical theory
to solve real life problems.

The second GAISE report guideline we focus on in this paper is the use of technology in
teaching statistics. Technology strongly influences how we teach statistics. Advances in
technology have enabled instructors to experiment with different teaching methods. Today,
computers and software, calculators, and graphing calculators allow users to perform many
functions that may not be possible without them. Technology turns statistics into a hands-on
activity-based course where students become engaged in statistics by not just learning about
formulas. Ang[1] noted that technology and technology based environments allow students to
alleviate some of the difficulties of grasping the concepts in mathematical modeling and in
related disciplines. Simulation is the imitation of the operations of a real life process or system.
Simulation can be an effective tool in learning abstract concepts in statistics. Technology
allows students to conduct simulations which let them experience the long term behavior of
sample statistics under repeated random sampling. Through simulations, students can build on
their intuitions about probability and expected values, and come to understand the behavior of
sampling distributions in order to explore the patterns inherent in randomness. Mills [13] has
given a comprehensive review of the literature of computer simulation methods used in all
areas of statistics to help students understand difficult concepts.

R is a free, powerful, and flexible statistical programming language and computing
environment that has become very popular among statisticians. R runs on all of the commonly
used computer platforms including Windows, Unix/Linux, and the Macintosh operating
system. Many introductory and higher level statistics instructors are now using R to teach and
perform statistical data analysis. Although it is an initial challenge for students to write
statements in the command line, R can be used to conduct data analysis effectively. R can easily
generate random samples from many data sets and a variety of probability distributions.
Hallgren [12] has used R in data analysis, estimating statistical power, and constructing
confidence intervals of parameters. He noted that simulation methods are flexible and can be
applied to a number of problems to obtain answers that may not be possible to derive through
other approaches.
In this paper, we describe the use of real data sets and R in an introductory statistics class to
understand the concepts of confidence intervals for population mean and variance. We generate
random samples from a fairly large real data set and compute confidence intervals. R syntax is
used to repeat this process for a large number of times to understand the meaning of a
confidence level. We observe the effects of non-normality of the population data on the
confidence intervals.
In section 2, we give quick tour on R. Section 3 gives a description of the real data set. In
sections 4 and 5, we demonstrate the simulation of confidence intervals for mean and variance.
We end the paper in section 6 with some concluding remarks.

A Quick Tour of R
Although it is not feasible to provide a general introduction to R in this paper, we will
provide enough background information to understand the remainder of the paper. R is a
relatively simple syntax-driven and case-sensitive language. Even though the syntax for
writing instructions may be somewhat difficult initially, most students with little or no prior
programming experience have become comfortable using R. R is an object-oriented program
that works with data structures such as vectors (one-dimensional array) and data frames (two-
dimensional arrays). A vector contains a list of values. When the R program is started and
after it prints an introductory message, the R interpreter prompts for input with > (the greater-
than sign). The interpreter executes expressions that are typed at the command prompt. For
example:

> 1 + 3*4
[1] 13
> 1:4
[1] 1 2 3 4
> 1:4 + c(2,6,-3,4)
[1] 3 8 0 8
> x <- 1:4
> 3*x
[1] 3 6 9 12

Most of the above R statements are self-explanatory except the following:

• Simple (vector) output is prefixed by [1]. If the output extends over several lines , the
index number of the first element in each line appears in square brackets at the
beginning of the line

• c() function combines its arguments to create a vector. The arguments are specified
within parenthesis and separated by commas.

• <- is the assignment operator. The equal sign (=) may also be used for assignment
purposes. Variables are created and memory is allocated to them dynamically.
Variable names can consist of any combination of lower and upper case letters,
numerals, periods, and underscores, but cannot begin with a numeral or an
underscore. R is case sensitive and there is no limit on the number of characters in a
name.

Once we have a vector of numbers, we can apply built-in functions to get useful statistical
summaries and visual displays. R also provides functions for generating random samples from
various probability distributions.

sample and subset functions
The sample function generates a random sample of specified size from a set of values with or
without replacement. Let’s suppose values are stored in a vector named x. To take a random
sample of size n without replacement from the set x, we use following R commands:

> sample(x, n) or > sample(x, n, replace = FALSE)

To obtain a sample of size n with replacement, we use following command:

> sample(x, n, replace = TRUE)
We can use the sample function to obtain a random number from a set of numbers, say 1
through 10, in following way:

> sample(1:10,1)
[1] 2

The subset function returns a subset of a vector or data frame which meets a particular
condition. The following command returns the values in vector x that are greater than zero:
> subset(x, x > 0)

Data Input
Variables with small data sets can be directly entered at the keyboard, but this approach is
limited. R has many other ways to input data. Data can be read from text files, csv (comma-
separated values) files, and attached packages.
read.table function is used to import data from a text file. Similarly, read.csv function
imports data from a csv file.
To read data into a data frame named mydata from a text file named values.txt resides in
c:\data\values.txt:

> mydata <- read.table(“c:\data\values.txt”, header = TRUE)
The first line of the file should have a name for each variable in the data frame. However, if
the first row does not contain names of variables then header argument should be set
to FALSE.
To read from a csv file, replace read.table with read.csv.

In addition, you can read in files using the file.choose() function in R. After typing the
following command in R, you can manually select the directory and the file where your dataset
is located.

> mydata <- read.table(file.choose(), header = TRUE)

The attach function can be used to make objects contained in data frames accessible. The
following command allows the user to access data in mydata data frame:

> attach(mydata)

Control Structures
R has the standard control structures such as if, while, and for. These can be used to control the
flow of an R code. We will demonstrate the use of control structures in R using the following
code segment. Let’s assume that we have stored 1000 numbers in the vector named x. The
following code will compute the average of the nonnegative numbers in vector x. The symbol
is used to write comments.

> total <- 0 # variable total initialized to 0
> count <- 0 # variable count initialized to 0
> for(i in 1:1000)
+ {
+ if (x[i] >= 0)

+ {
+ count <- count +1 # count the positive values
+ total <- total + x[i] # add the positive values
+ }
+ }
> average <- total/count # compute the average

In the above code segment, the for loop iterates 1000 times, selecting only nonnegative
numbers using the if statement. It computes the average as well. The variable named count
counts the number of nonnegative numbers stored in x. We will use the control structures
when we discuss simulations in the following sections.

Real Data
Data used in this paper came from the General Social Survey (GSS) data set of year 2016. This
survey is a sociological survey created and regularly collected since 1972 by the National
Opinion Research Center at the University of Chicago. Since 1972, GSS has provided
politicians, policymakers and scholars with a clear and unbiased perspective on what
Americans think and feel about many social issues. GSS data are used in numerous newspaper,
magazine, and journal articles. The GSS is also a major teaching tool in colleges and
universities. More than 27,000 journal articles, books, and Ph.D. dissertations are based on the
GSS and about 400,000 students use the GSS in their classes each year [11]. GSS data is freely
available to interested parties over the internet. The data is generally available in formats
designed for statistical programs such as R, SAS, and SPSS.

For the purpose of this paper, we use the data collected in year 2016 which is the latest data
available. The 2016 data file has 2867 cases and 960 variables. We use the hrs1 variable which
represents the number of hours worked last week by the respondents of the survey for our data
analysis. There were three types of missing values in the data. They are inapplicable (IAP), do
not know (DK), and no answer (NA). The numbers -1, 98, and, 99 respectively, were used to
indicate these missing values in the data set. We eliminate these missing values in following
way. First, we save hrs1 variable data into a csv file named hrs1data.csv. This file has a column
heading hrs1. Then we import this file using following command:

> file1 <- read.csv(file.choose(), header = TRUE)

After selecting the hrs1data.csv file from the directory, we make the data accessible to R by
using the attach function.

> attach(file1)

Now we eliminate missing values from the hrs1 data and assign it to a new variable named
hrs2 in the following command:

> hrs2 <- subset(hrs1, hrs1 !=-1 & hrs1 != 98 & hrs1 != 99)

In the above subset function, the logical condition hrs1 !=-1 & hrs1 != 98 & hrs1 != 99 selects
data values that are not equal to -1, 98, and 99 and assign them to the hrs2 variable. The hrs2
variable has 1646 data values. This will represent the population for the purpose of this paper.
We will use hrs2 in coming sections to study the concepts of confidence intervals.

Simulating Confidence Intervals for population mean (µ)
Confidence intervals are one of the most commonly used statistical methods to estimate
plausible values of population parameters using sample data. However, both the formal concept
and the intuition behind confidence intervals remain elusive to many students. Confidence
intervals give the most likely range of the unknown population parameter. Garfield, delMas,
& Chance [10] have listed the following points for confidence intervals that students should
understand:

• A confidence interval for a population mean is an interval estimate of an unknown
population parameter (mean) based on a random sample from population.

• A confidence interval for a population mean is a set of plausible values of the true
population mean that could have generated the observed data as a likely outcome.

• The level of confidence tells the probability that the method produced an interval that
includes the true population parameter.

In this section, we consider creating and interpreting the confidence interval for the mean (µ)
assuming that the population standard deviation (σ) is known by using simulation. A random
sample of size n is taken from the population of data. For sufficiently larger n, the Central Limit
Theorem (CLT) implies that the sample mean has approximately a normal distribution
regardless of the nature of the population distribution. The larger the sample size, the better the
normal approximation. It then follows that has approximately a standard
normal distribution. Generally speaking, n > 30 will be sufficient for the normal approximation
for sample mean. However if the original population is more skewed, a larger sample is needed
to use the normal approximation. See Chandrakantha [3] for more details. Then it can be
derived that the confidence interval for mean µ is , where Zα/2 is the value of the
standard normal curve with area (1-α) between critical points – Zα/2 and Zα/2 , n is the sample
size. The confidence level (1-α) is the probability that the confidence interval actually does
contain the population mean µ, assuming the estimation process is repeated a large number of
times. Students have major difficulties in understanding this last statement. Fidler [6] has noted
the following misconceptions of student understanding of confidence intervals: the majority of
the individual values are in the interval, the interval contains the plausible values of the sample
mean, covers 100(1-α)% of the sample, and the probability that the population mean is
contained within a level (1-α) confidence interval is (1-α). It is important that students
understand that in repeated sampling from a population, 100(1-α)% of intervals (say 95%)
would capture the true unknown mean. In using the traditional way of teaching, we only
consider one sample and calculate one interval. This leads them to believe the wrong
interpretation of the interval, that there is a 95% chance that this interval will have the true
mean. The iteration (or simulation) process builds a distribution of intervals, and can be
displayed graphically in R.

A computer simulation method using R will allow students to understand the true meaning of
the confidence interval. We use the real data set in the hrs2 variable (mentioned in previous
section) for this purpose. This data set represents the number of hours worked in the previous
week by the respondents of the survey and it serves as our population or sampling frame. We
generate many samples from this population and compute 95% confidence intervals for the
mean number of hours worked. The confidence interval formula given in the previous
paragraph is valid when sampling distribution of the sample mean is normally or approximately
normally distributed. First, we verify this requirement. To do so, we study the population
distribution of hrs2 using the hist(hrs2) and qqnorm(hrs2) commands in R. hist and qqnorm

X

)/()(nXz sµ-=

nX sa/2Z±

functions create histogram and normal probability plot, respectively. Figure 1 shows both plots
below:

Figure 1: Histogram and Normal Probability Plot of Population Data

From both plots we notice that the data is not normally distributed. Significantly more hours
spent working are between 35 and 40. According to the central limit theorem, if we take
larger samples, the sampling distribution of the mean will be approximately normally
distributed. With the sample size (n) of 100, we simulate the process of computing the
sampling distribution of sample mean, . We use the following R code to select 1000
random samples of size 100 from the population, compute the sample mean, and create the
histogram, normal probability plot, and box plot to verify the normality of the sampling
distribution of the mean.

> mean_v <- NULL
> for(i in 1:1000)
 {
+ x <- sample(hrs2,100, replace = FALSE)
+ m <- mean(x)
+ mean_v <- c(mean_v,m)
 }
> hist(mean_v, breaks = 15, main = "Histogram of Sample Means", xlab = "Sample Mean")
> qqnorm(mean_v, main = "Normal Probability Plot of Sample Means")
> boxplot(mean_v, main = "Boxplot of Sample Means", ylab = "Sample Mean")

In this code segment, we first create an empty (null) vector named mean_v to hold the sample
means. The for loop repeats the process of taking 1000 random samples of size 100 without
replacement, computes the sample means and saves them in the mean_v vector. Variable x is a
vector that holds the random sample for each iteration of the for loop. hist, qqnorm, and boxplot
functions draw the corresponding plot. The Figure 2 shows these plots below. All three plots
in Figure 2 show that the sample means are approximately normally distributed and that they
can be used to compute the confidence intervals.

X

Figure 2: Histogram, Normal Probability Plot, and Boxplot of Sample Means

The end points of the 95% confidence interval are estimates of the 2.5th and 97.5th percentiles
of the distribution of , Hallgren [12]. 95% confidence interval limits are obtained using the
quantile function in the following R code segment. The quantile function computes the sample
percentiles for given probabilities. For a 95% confidence level, we identify the values at the
2.5th and 97.5th percentiles of the mean_v vector (these values could be adjusted to obtain
confidence interval limits for different confidence levels). The result is saved in a vector named
conflim. Calling the conflim vector returns the values that correspond with 2.5th and 97.5th
percentile of the empirical sampling distribution of mean.

> conflim <- c(quantile(mean_v,0.025), quantile(mean_v,0.975))
> conflim
 2.5% 97.5%
38.1400 43.5815

Based on the confidence interval computed above, we are 95% confident that the mean number
of hours worked per week by the population is between 38.14 hours and 43.58 hours. The level
of confidence tells the probability the method produced an interval that includes the true
population parameter. To get a better understanding of this concept, we generate 1000 random
samples from population data and compute a confidence interval for each sample using the
confidence interval formula. For a 95% confidence level, this formula is . Using
these 1000 confidence intervals, we find the proportion of those intervals containing the true
mean which is known as the coverage probability. This proportion should be 95% which is the
assumed confidence level when the population distribution is normal or close to it for larger
sample sizes. The following R code simulates this process:

> lower_lim <- NULL
> upper_lim <- NULL
> for(i in 1:1000)
 {
+ x <- sample(hrs2,100, replace = FALSE)
+ l_lim <- mean(x) - 1.96*sd(hrs2)/sqrt(100)
+ u_lim <- mean(x) + 1.96*sd(hrs2)/sqrt(100)
+ lower_lim <- c(lower_lim,l_lim)
+ upper_lim <- c(upper_lim,u_lim)
 }

X

nX s*96.1±

> count <- 0
> for(i in 1:1000)
 {
+ if(lower_lim[i] < mean(hrs2) & upper_lim[i] > mean(hrs2))
+ count <- count +1
 }
> count/1000
[1] 0.957

In this code segment, first we create two empty vectors named lower_lim and upper_lim to
hold the confidence interval limits for 1000 simulated samples. In each iteration of the for loop,
a random sample of size 100 selected without replacement from population data and assigned
to variable x. The sd function computes the standard deviation of the population data. Using
each sample, lower and upper limits of the confidence interval are calculated and saved in
lower_lim and upper_lim vectors. After completion of the for loop, lower_lim and upper_lim
vectors will contain 1000 confidence interval limits. Next for loop counts how many intervals
would contain the true mean of the population data. In each iteration, the count variable will
increment by one if the interval contains the mean. Dividing the count variable by 1000 at the
end of the for loop will produce the proportion of intervals containing the population mean. In
this simulation run, this proportion is 0.957 (95.7%). This means that in the long run, 95% of
the computed confidence intervals will contain the population mean. To see this visually, we
use the following R commands to draw 100 confidence intervals horizontally and draw a
vertical line for the true mean. The resulting 100 confidence intervals are shown in Figure 3.
It can be seen that 5 intervals do not contain the true mean indicating that 95% of the intervals
contain the mean.

> matplot(rbind(lower_lim, upper_lim), rbind(1:100, 1:100), type = "l", lty = 1, xlab =
"Sample Means",ylab = "Samples", main = "Confidence Intervals for 100 Samples")
> abline(v = mean(hrs2))
The matplot function plots columns of one matrix against columns of another. In this case it
plots the columns of (1:100, 1:100) matrix against columns of (lower_lim, upper_lim) matrix
to produce the plot in Figure 3. type = “l” is used to draw lines between points and lty = 1
draws solid lines. The abline function with v = mean(hrs2) draws a vertical line through the
true mean.

Figure 3: One Hundred 95% Confidence Intervals

To verify the accuracy of the 95% confidence interval calculated earlier using the 2.5th and
97.5th percentiles from empirical sampling distribution of the mean, we find the average of all
1000 intervals calculated using the confidence interval formula. The interval computed using
these percentiles was (38.14, 43.58). To find the average of 1000 confidence interval limits,
we find the average of lower_lim and upper_lim vectors as follows:

> ave_limits <- c(mean(lower_lim),mean(upper_lim))
> ave_limits
[1] 38.09635 43.74359

The average confidence interval limits of 1000 simulated intervals are very close to the limits
computed from percentiles of empirical sampling distribution.

Simulating Confidence Intervals for population variance (σ2)
Even though inferences concerning population variance (σ2) and standard deviation (σ) are
usually of less interest than that about the mean (µ), there are occasions where such inferences
are needed. In this section we compute confidence intervals for variance and standard deviation
using repeated sampling from our real data set and study the concepts. Bonett [2] has noted
that the exact confidence intervals for σ2 and σ given in many text books are sensitive to
violations of the normality assumption and their performance does not improve with increasing
sample size. We observed in the previous section that the distribution of hrs2 data does not
follow a normal distribution. This data has a very high peak in middle of the distribution. Use
of this data allows us to study the robustness of the confidence intervals. Now we introduce the
confidence intervals for σ2 and σ.

First, we introduce the sampling distribution of sample variance S2. When the original

population is normally distributed, the random variable has a chi-

square (χ2) probability distribution with (n-1) degrees of freedom, Devore [5]. We will use our

hrs2 variable to compute the approximate sampling distribution of by taking 10,000

random samples. In this case we use 10,000 samples to examine the properties of the empirical
sampling distribution more closely comparing to the theoretical distribution. The following R
code selects the random samples of size 100, and draws the histogram.

> var_v = NULL
> for(i in 1:10000)
 {
+ x <- sample(hrs2, 100, replace = FALSE)
+ v <- 99*var(x)/var(hrs2)
+ var_v <- c(var_v,v)
 }
> hist(var_v, breaks = 30, main = expression(paste("Histogram of (n-
1)","S"^2,"/",sigma^2)), xlab = expression(paste("(n-1)","S"^2,"/",sigma^2)))

The theoretical sampling distribution for samples of size 100 is a chi-square distribution with
99 degrees of freedom. We will compare the approximate sampling distribution we obtained
using the above R code with the theoretical distribution in Figure 4.

2

2

2

2)()1(
ss

å -
=

- XXSn

2

2)1(
s
Sn -

Figure 4: Empirical and Theoretical Sampling Distributions of (n-1)S2/σ2

From the above Figure 4, we observe that the empirical sampling distribution with samples of
size 100, quite reasonably agree with the theoretical distribution even if the original population
is not normally distributed.

Using the sampling distribution of

 as χ2 with (n-1) degrees of freedom, the 100(1-

α)% confidence interval for population variance σ2 is given as . The

area under a chi-square curve with (n-1) degrees of freedom to the right of is α/2, as is

the area to the left of . Taking the square root of the endpoints of the above interval

gives the 100(1-α)% confidence interval for σ. This confidence interval is valid when the
original population has a normal distribution.

First we approximate the 95%confidence interval for variance σ2 by identifying the 2.5th and
97.5th percentiles of the empirical distribution of S2 for 10,000 samples. We have already

calculated the empirical distribution of . Multiplying this by σ2/(n-1) gives the

distribution of S2. The following R code computes the approximate confidence intervals for
the variance and standard deviation:

> var_v1 <- var_v*var(hrs2)/99
> conflim <- c(quantile(var_v1,0.025), quantile(var_v1,0.975))
> conflim
 2.5% 97.5%
140.1664 283.0900
> sqrt(conflim)
 2.5% 97.5%
11.83919 16.82528

2

2)1(
s
Sn -

÷
÷

ø

ö

ç
ç

è

æ --

2
1,2

1

2

2
1,2

2)1(,)1(

nn

SnSn
aa cc

2
1,2 -nac

2
1,21 -- nac

2

2)1(
s
Sn -

Based on the approximate confidence intervals, it can be concluded that we are 95% confident
that the true population variance is between 140.17 hours and 283.09 hours and the standard
deviation is between 11.94 hours and 16.83 hours. As we noted earlier, the inference
procedures for σ2 based on the assumption of a normally distributed population can work poorly
if this assumption is violated. To investigate this further, we generate 10,000 random samples
from population data and compute 95% confidence interval for each using the normal theory
confidence interval formula. Then we compute the proportion of confidence intervals
containing the true population variance. This coverage probability should be exact or close to
95% if the assumptions are met. The following R code performs this task and computes the
coverage probability:

> lower_lim <- NULL
> upper_lim <- NULL
> for(i in 1:10000)
 {
+ x <- sample(hrs2,100,replace = FALSE)
+ l_lim <- 99*var(x)/qchisq(0.975,99)
+ u_lim <- 99*var(x)/qchisq(0.025,99)
+ lower_lim <- c(lower_lim,l_lim)
+ upper_lim <- c(upper_lim,u_lim)
 }
> count <- 0
> for(i in 1:10000){
+ if (lower_lim[i] < var(hrs2) & upper_lim[i] > var(hrs2))
+ count <- count + 1}
> count/10000
[1] 0.8877

This cord segment is similar to what we used in the previous section for computing coverage
probability for the mean except that we use formulas to compute confidence intervals for
variance. This indicates that in long run, only 88.77% of the 95% confidence intervals will
contain the actual population variance. This computation confirms that confidence intervals for
population variance and standard deviation are sensitive to violation of normality assumption.
To observe the effect of sample size on this coverage probability, we take a range of sample
sizes and compute the coverage probabilities. Table 1 shows our findings:

Table 1: Coverage Probabilities
n Coverage Probability
25 0.8735
50 0.8785

100 0.8877
200 0.8920
300 0.9086
400 0.9258
500 0.9364

From Table 1, we observe that the coverage probability increases as sample size increases. For
sample sizes as large as 300, confidence intervals do not perform well. For a sample size of
500, coverage probability is close to the assumed confidence interval of 95%. On the other
hand, the confidence interval for mean is less sensitive to a violation of normality. Since in real
life the distributions of the data are unknown or do not follow normal distribution, for most
cases, we need very large sample sizes for estimations of population variance and standard
deviation.

Conclusions
In this paper we show how to use large sets of real data and R to teach the confidence
intervals for mean and variance. Many students have difficulties grasping these concepts in
introductory statistics classes. Students feel comfortable using real data in their lessons rather
than fake or simulated data. R enables students to write simple codes and create visuals for
understanding concepts. Students understand the concepts of confidence intervals by
repeating the sampling process and computing coverage probabilities. Using this approach,
students observe that while confidence intervals for mean are less sensitive to non-normality,
confidence intervals for variance and standard deviation are more sensitive.

References
[1] Ang, K. C. (2010). Teaching and Learning Mathematical Modeling with Technology,

Proceedings of the 15th Asian Technology Conference in Mathematics, Kuala Lumpur,
Malaysia, 19-29.

[2] Bonett, D. G. (2006). Approximate Confidence Interval for Standard Deviation of
Nonnormal Distributions, Computational Statistics and Data Analysis, 50, 775-782.

[3] Chandrakantha, Leslie. (2018), Simulating Sampling Distribution of the Mean in R. The
Electronic Journal of Mathematics and Technology (EJMT), 12(2): p 309-321

[4] Connor, D., & Davies, N. (2002). An International Resource for Learning and
Teaching, Teaching Statistics, 24(2), 59-61.

[5] Devore, J. L. Probability and Statistics for Engineering and Sciences, 9th Edition,
Boston, MA: Cengage Learning, 2016.

[6] Fidler, F. (2006). Should Psychology Abandon p value and Teach CIs instead?
Evidence Based Reforms in Statistics Education, Proceedings of the Seventh
International Conference in Teaching Statistics. Voorburg, The Netherlands.

[7] Franklin, C. A., & Garfield, J. (2006). Developing Statistics Education Guidelines for
pre K-12 and College Courses, Thinking and Reasoning about Data and Chance: Sixty-
eight NCTM yearbook, 345-375, Reston, VA.

[8] GAISE (2005). Guidelines for Assessment and Instruction in Statistics Education
Report. American Statistical Association, Alexandria, VA.
http://www.amstat.org/education/gaise/

[9] Garfield, J., & Ben-Zvi, D. (2009). Helping Students Develop Statistical Reasoning:
Implementing a Statistical Reasoning Learning Environment, Teaching Statistics, 31(3),
72-77.

[10] Garfield, J., delMas, R., & Chance, B. (1999). Tools for Teaching and Assessing
Statistical Inferences. Retrieved from www.tc.umn.edu/~delma001/stat_tools/

[11] General Social Survey (GSS): http://gss.norc.org/

[12] Hallgren, K. A., (2103). Conducting Simulation Studies in the R Programming
Environment. Tutorial in Quantitative Methods for Psychology, 9(2), 43-60.

[13] Mills, J. D. (2002). Using Computer Simulation Methods to Teach Statistics: A Review
of the Literature. Journal of Statistics Education (Online), 10 (1).
http://www.amstat.org/publications/jse/v10n1/mills.html

[14] Pfannkuch, M. (2011). The Role of Context in Developing Informal Statistical
Inferential Reasoning: A Classroom Study, Mathematical Thinking and Learning,
13(1&2), 27-46.

[15] Scheaffer, R.L. (2001). Statistics Education; Perusing the past, embrasing the present,
and charting the future, Newsletter for the Section on Statistical Education, 7(1).
http://www.amstat.org/sections/educ/newsletter/v7n1/Persuing.html.

[16] Willett, J. B., & Singer, J. D. (1992). Providing a Statistical Model: Teaching Applied
Statistics Using Real-world Data, Statistics for the Twenty First Century, 83-98.
Washington DC, Mathematical Association of America.

