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Abstract

Problems and theorems of elementary geometry are categorized roughly into four hi-

erarchies, affine, metric, Hilbert and Tarski geometry. Difference between the latter three

is especially hard to make out. In this paper, we give algorithmic descriptions for these

hierarchies. Our descriptions together with sophisticated programs of computer algebra

systems such as Gröbner basis computation, primary decomposition of a polynomial ideal

and real quantifier elimination enable teachers to understand these hierarchies. They also

could help teachers to make high quality problems of elementary geometry.

1 Introduction

Problems and theorems of elementary geometry are categorized roughly into four hierarchies,
affine, metric, Hilbert and Tarski geometry. Affine geometry is what remains of Euclidean
geometry when not using the metric notions of distance and angle. It is not difficult to check
whether a given problem or theorem lies in this hierarchy. On the other hand, the difference
between the latter three is very subtle and hard to make out. Though there exists a book which
describes those hierarchies such as [1], it does not contain a complete algorithmic description for
them and there are very few publications which contain thorough algorithmic treatment of those
hierarchies. As a result, many mathematics teachers make problems of elementary geometry
without recognizing them well. In fact, even in a high level competition such as International



Mathematical Olympiad, many problems containing unnecessary assumptions are given as is
reported in [2].

In this paper, we give algorithmic descriptions for the three hierarchies in terms of com-
puter algebra such as a Gröbner basis, primary decomposition of a polynomial ideal and real
quantifier elimination. Using technology of the latest computer algebra systems which contain
the implementations of these computations, we can decide the hierarchy of a given problem or
a theorem of elementary geometry.

The paper is organized as follows. In section 2, we give a minimum description of the
above-mentioned tools of computer algebra which is necessary to understand this paper. We
deal with metric geometry in section 3, Hilbert geometry in section 4 and Tarski geometry in
section 5 together with a typical computation example.

2 Preliminary

Q,R and C denote the field of rational numbers, real numbers and complex numbers respec-
tively, N denotes the set of natural numbers. For a capital letter such as X, X̄ denotes some
variables X1, . . . , Xn. T (X̄) denotes a set of terms in X̄. For an ideal I ⊂ Q[X̄], VC(I) denotes
its variety in C.

2.1 Gröbner Basis

The following fundamental properties of Gröbner bases, found in most standard text books of
Gröbner bases, play important roles in this paper.

Theorem 1 Let I be an ideal in a polynomial ring Q[X̄]. For any admissible term order of

T (X̄), VC(I) = ∅ if and only if the reduced Gröbner basis of I is equal to {1}.

Corollary 2 Let f1(X̄), . . . , fl(X̄), h(X̄), g(X̄) be polynomials in Q[X̄]. For any admissible

term order of T (X̄, Y ), ∀ā ∈ Cn(f1(ā) = 0∧ · · · ∧ fl(ā) = 0∧h(ā) 6= 0 ⇒ g(ā) = 0) holds if and
only if the reduced Gröbner basis of the ideal 〈f1, . . . , fl, hgY − 1〉 in Q[X̄, Y ] is equal to {1}.

Theorem 3 For polynomials f1(X̄), . . . , fl(X̄), h(X̄), g(X̄) in Q[X̄], Let G be a Gröbner basis

of the ideal 〈f1(X̄), . . . , fl(X̄), h(X̄)Y −1〉 in Q[X̄, Y ] w.r.t. an arbitrary admissible term order

of T (X̄, Y ). For any polynomial g(X̄) ∈ Q[X̄], the following relation holds:

∀ā ∈ Cn (f1(ā) = 0 ∧ · · · ∧ fl(ā) = 0 ∧ h(ā) 6= 0 ⇒ g(ā) = 0) ⇔ ∃s ∈ N g(X̄)s
G

= 0,

where g(X̄)s
G

denotes the remainder of the polynomial devision of g(X̄)s by G.

2.2 Primary Decomposition

A primary decomposition of a polynomial ideal in a multivariate polynomial ring corresponds
to a factorization of a univariate polynomial. When the given ideal is not a radical ideal, we
need to discuss some technical issues concerning isolated and embedded components. Since we
need the decomposition of only radical ideals in this paper, we only deals with radical ideals.

Definition 4 For an ideal I of Q[X̄], its radical denoted
√
I is an ideal {f ∈ Q[X̄] : ∃l ∈

N f l ∈ I} of Q[X̄]. We say I is radical if I =
√
I.



When I is an ideal in a univariate polynomial ring Q[X], I = 〈f〉 for some polynomial f . Let
f = fn1

1 · · · fnl

l
where each fi is irreducible in Q[X], then

√
I = 〈f1 · · · fl〉 = 〈f1〉 ∩ · · · ∩ 〈fl〉.

Theorem 5 The radical of an arbitrary ideal I of Q[X̄] can be represented as an intersection

of prime ideals, that is
√
I = I1 ∩ · · · ∩ Il with prime ideals I1, . . . , Il of Q[X̄] such that

√
I 6=

I1 ∩ · · · ∩ Ii−1 ∩ Ii+1 ∩ · · · ∩ Il for any i. Furthermore, I1, . . . , Il are determined unique.

Definition 6 The representation
√
I = I1 ∩ · · · ∩ Il in the above theorem is called the the

primary decomposition of
√
I.

Given an arbitrary ideal I = 〈f1, . . . , fs〉 of Q[X̄], we can always compute the primary decom-
position of

√
I. The primary decomposition

√
I = I1∩· · ·∩Il gives an irreducible decomposition

VC(I) = VC(I1) ∪ · · · ∪ VC(Il), where each variety VC(Ii) is irreducible, that is VC(Ii) cannot be
represented as a union of two varieties, such that each of them is smaller than VC(Ii).

2.3 Real Quantifier Elimination

Quantifier elimination(QE) means the following procedure:

For a given first order formula, compute an equivalent quantifier free formula

by eliminating all quantifiers.

We can handle QE in many types of domains. In this paper, however, we deal with QE only
in the domain of real numbers, where any first order formula consists from atomic formulas of
polynomial equations and inequalities with real coefficients. The following examples are real
QE computations using Mathematica’s real QE implementations Resolve ([4]).

In[1]:= F[x_]:= x^3 - x + 1;

In[2]:= Resolve[Exists[epsilon, epsilon > 0 &&

ForAll[x1, Implies[-epsilon < x - x1 < 0 || 0 < x - x1 < epsilon,

F[x] > F[x1]]] && M == F[x]], {x, M}, Reals]

Out[2]:= x == -(1/Sqrt[3]) && M == 1 - x + x^3

3 Metric Geometry

A problem or a theorem of elementary geometry in the hierarchy of metric geometry is roughly
speaking a problem or a theorem which does not need a description of inequality.

Algorithmically we can say that a problem or a theorem of metric geometry is a problem which

can be automatically solved using computation of a Gröbner basis.

The following problem does not seem to be in this hierarchy since it contains the descriptions
“the shorter arc” and “is closer to”. It will turn out that the problem actually belongs to metric
geometry. The conclusion also holds even when J is on the longer arc R or A is not closer to R.

Problem 4 (International Mathematical Olympiad 2017)
✞

✝

☎

✆

Let R and S be different points on a circle Ω such that RS is not a diameter. Let ℓ be the
tangent line to Ω at R. Point T is such that S is the midpoint of the line segment RT . Point
J is chosen on the shorter arc RS of Ω so that the circumcircle Γ of triangle JST intersects ℓ
at two distinct points. Let A be the common point of Γ and ℓ that is closer to R. Line AJ
meets Ω again at K. Prove that the line KT is tangent to Γ.



We can assume that Ω is a unit circle with its center (0, 0), the coordinate of R is R(1, 0) and
ℓ is the line perpendicular to x-axis at R w.o.l. of generality. Let the coordinates of S, J,
A be S(s1, s2), J(j1, j2), A(1, a2). Hence the coordinates of T and K are T(2s1 − 1, 2s2) and
K(k(j1 − 1) + 1, k(j2 − a2) + a2) for some real number k. Let M(m1,m2) be the center of Γ.
We have the following relations.

S is on Ω⇔ s21+s22 = 1, J is on Ω⇔ j21+j22 = 1, K is on Ω⇔ (k(j1−1)+1)2+(k(j2−a2)+a2)
2 = 1,

Γ is the circumcircle of triangle JST ⇔ (m1 − s1)
2 + (m2 − s2)

2 = (m1 − j1)
2 + (m2 − j2)

2 =
(m1 − (2s1 − 1))2 + (m2 − 2s2)

2, A is on Γ ⇔ (m1 − s1)
2 + (m2 − s2)

2 = (m1 − 1)2 + (m2 − a)2,
J 6= R ⇔ j1 6= 1, S 6= R ⇔ s1 6= 1, K 6= J ⇔ k 6= 1, RS is not a diameter ⇔ s1 6= −1.
We can also assume s2 > 0 w.l.o. generality which implies J is on the shorter arc RS ⇔ j1 > s1.

KT is tangent to Γ ⇔ KT ⊥ TM ⇔ ((k(j1 − 1) + 1) − (2s1 − 1))(m1 − (2s1 − 1)) + (k(j2 −
a2) + a2 − 2s2)(m2 − 2s2) = 0.

Hence the theorem is translated to the following first order sentence.

∀s1, s2, j1, j2,m1,m2, k, a2 ∈ R

s21+ s22 = 1 ∧ j21 + j22 = 1 ∧ (k(j1− 1)+1)2+(k(j2−a2)+a2)2 = 1 ∧ (m1− s1)
2+(m2− s2)

2 =
(m1 − j1)

2 + (m2 − j2)
2 = (m1 − (2s1 − 1))2 + (m2 − 2s2)

2 = (m1 − 1)2 + (m2 − a)2 ∧ j1 6= 1 ∧
s1 6= 1 ∧ s1 6= −1 ∧ k 6= 1 ∧ s2 > 0 ∧ j1 > s1

⇒ ((k(j1 − 1) + 1)− (2s1 − 1))(m1 − (2s1 − 1)) + (k(j2 − a2) + a2 − 2s2)(m2 − 2s2) = 0

Actually, we can prove that the following much stronger sentence holds.

∀s1, s2, j1, j2,m1,m2, k, a2 ∈ C

s21+ s22 = 1 ∧ j21 + j22 = 1 ∧ (k(j1− 1)+1)2+(k(j2− a2)+ a2)
2 = 1 ∧ (m1− s1)

2+(m2− s2)
2 =

(m1 − j1)
2 + (m2 − j2)

2 = (m1 − (2s1 − 1))2 + (m2 − 2s2)
2 = (m1 − 1)2 + (m2 − a)2 ∧ j1 6= 1 ∧

s1 6= 1 ∧ s1 6= −1 ∧ k 6= 1 ∧ j1 6= s1

⇒ ((k(j1 − 1) + 1)− (2s1 − 1))(m1 − (2s1 − 1)) + (k(j2 − a2) + a2 − 2s2)(m2 − 2s2) = 0



There are two ways to check the above sentence holds. One is the way using Corollary 2.
What we have to do is the computation of the reduced Gröbner basis of the following ideal
〈f1, f2, f3, f4, f5, f6, hgy − 1〉 in Q[s1, s2, j1, j2,m1,m2, k, a2, y]. Where, f1 = s21 + s22 − 1, f2 =
j21 + j22 − 1,f3 = (k(j1 − 1) + 1)2 + (k(j2 − a2) + a2)

2 − 1, f4 = (m1 − s1)
2 + (m2 − s2)

2 −
((m1 − j1)

2 + (m2 − j2)
2), f5 = (m1 − s1)

2 + (m2 − s2)
2 − ((m1 − (2s1 − 1))2 + (m2 − 2s2)

2),
f6 = (m1−s1)

2+(m2−s2)
2− ((m1−1)2+(m2−a)2), h = (j1−1)(s1−1)(s1+1)(k−1)(j1−s1)

and g = ((k(j1 − 1) + 1)− (2s1 − 1))(m1 − (2s1 − 1)) + (k(j2 − a2) + a2 − 2s2)(m2 − 2s2).

The following picture is the computation of its reduced Gröbner basis w.r.t. lexicographic order
such that s1 > s2 > j1 > j2 > m1 > m2 > k > a2 > y using the Gröbner basis computation
program GroebnerBasis of Mathematica. The program produces {1} as is desired.

In[1]:= f1:=s1^2+s2^2-1;f2:=j1^2+j2^2-1;

f3:=(k(j1-1)+1)^2+(k(j2-a2)+a2)^2-1;

f4:=(m1-s1)^2+(m2-s2)^2-((m1-j1)^2+(m2-j2)^2);

f5:=(m1-s1)^2+(m2-s2)^2-((m1-(2*s1-1))^2+(m2-2*s2)^2);

f6:=(m1-s1)^2+(m2-s2)^2-((m1-1)^2+(m2-a2)^2);

h:=(s1-1)*(s1+1)*(j1-1)*(j1-s1)*(k-1);

g:=((k(j1-1)+1)-(2*s1-1))*(m1-(2*s1-1))+(k(j2-a2)+a2-2*s2)*(m2-2*s2);

In[9]:= GroebnerBasis[{f1,f2,f3,f4,f5,f6,h*g*y-1},{s1,s2,j1,j2,m1,m2,k,a2,y}]

Out[9]= {1}

The another way is by Theorem 3. The following picture is also by Mathematica. It produces
gG = 0 for the reduced Gröbner basis G of the ideal 〈f1, f2, f3, f4, f5, f6, hy − 1〉 w.r.t. degree
reverse lexicographic order such that s1 > s2 > j1 > j2 > m1 > m2 > k > a2 > y as is desired.

In[10]:= G:=GroebnerBasis[{f1,f2,f3,f4,f5,f6,h*y-1},

{s1,s2,j1,j2,m1,m2,k,a2,y},MonomialOrder->DegreeReverseLexicographic];

In[11]:= Last[PolynomialReduce[g,G,{s1,s2,j1,j2,m1,m2,k,a2,y},

MonomialOrder->DegreeReverseLexicographic]]

Out[11]= 0

4 Hilbert Geometry

A problem or a theorem of elementary geometry in the hierarchy of Hilbert geometry is roughly
speaking a problem or a theorem which needs descriptions of inequality only in the assumption
but not in the conclusion.

Algorithmically we can say that a problem or a theorem of Hilbert geometry is a problem or a

theorem which cannot be automatically solved by only computation of a Gröbner basis, but can

be solved with computation of primary decomposition of a radical ideal.

Consider the following theorem of Steiner.

Steiner’s Theorem
✄

✂

�

✁

For an arbitrary triangle ABC, let D, E and F be the points lying in its outside such that
triangles DBC, ACE and ABF are equilateral. Then the lines AD, BE and CF intersects at
one point.



Let the coordinates of the points A,B be A(0, 0), B(1, 0) w.l.o. generality and C,D,E,F,M be
C(c1, c2), D(d1, d2), E(e1, e2), F(

1

2
, f2), M(md1,m d2). We can assume 0 < c1 < 1 and 0 < c2

w.o.l. of generality since at least two angles are acute. Then the following relations hold.

AF=BF=AB ⇔ f 2
2 = 3

4
, AC=AE=EC ⇔ c21+c22 = e21+e22 = (e1−c1)

2+(e2−c2)
2, BC=BD=DC

⇔ (c1−1)2+c22 = (d1−1)2+d22 = (c1−d1)
2+(c2−d2)

2, BE//BM ⇔ (md1−1)e2 = md2(e1−1),
CF//MF ⇔ (md1 − 1

2
)(f2 − c2) = (md2 − f2)(

1

2
− c1), D is on the upper side of the line CB ⇔

d2(c1 − 1) < c2(d1 − 1), E is on the upper side of the line AC ⇔ e2 c1 > c2 e1, F is on the lower
side of the line AB ⇔ f2 < 0.

Hence the theorem is translated to the following first order sentence.

∀c1, c2, d1, d2, e1, e2, f2,m ∈ R

0 < c1 < 1 ∧ 0 < c2 ∧ d2(c1 − 1) < c2(d1 − 1) ∧ e2 c1 > c2 e1 ∧ f2 < 0 ∧ f 2
2 = 3

4
∧

c21+c22 = e21+e22 = (e1−c1)
2+(e2−c2)

2 ∧ (c1−1)2+c22 = (d1−1)2+d22 = (c1−d1)
2+(c2−d2)

2 ∧
(md1 − 1)e2 = md2(e1 − 1)

⇒ (md1 − 1

2
)(f2 − c2) = (md2 − f2)(

1

2
− c1)

If the following sentence holds, the theorem belongs to metric geometry.

∀c1, c2, d1, d2, e1, e2, f2,m ∈ C

c1 6= 0 ∧ c1 6= 1 ∧ c2 6= 0 ∧ d2(c1 − 1) 6= c2(d1 − 1) ∧ e2 c1 6= c2 e1 ∧ f 2
2 = 3

4
∧

c21+c22 = e21+e22 = (e1−c1)
2+(e2−c2)

2 ∧(c1−1)2+c22 = (d1−1)2+d22 = (c1−d1)
2+(c2−d2)

2 ∧
(md1 − 1)e2 = md2(e1 − 1)

⇒ (md1 − 1

2
)(f2 − c2) = (md2 − f2)(

1

2
− c1)

Unfortunately, we can check that it is false by computation of a Gröbner basis. Hence, the
theorem does not belong to metric geometry. We can check that the theorem belongs to Hilbert
geometry by manipulation of a suitable ideal as follows. Let I be the following polynomial ideal
generated by the polynomials which appear in the equations of the above sentence.

I = 〈f 2
2 − 3

4
, c21 + c22 − (e21 + e22), c

2
1 + c22 − ((e1 − c1)

2 + (e2 − c2)
2),

(c1 − 1)2 + c22 − ((d1 − 1)2 + d22), (c1 − 1)2 + c22 − ((c1 − d1)
2 + (c2 − d2)

2)〉
Unfortunately most computer algebra systems including Mathematica do not have a primary



decomposition program. We use the primary decomposition program primedec of Risa/Asir
([3]) for the computation of the primary decomposition of

√
I, which is one of the fastest

implementations we can use for a primary decomposition of a polynomial ideal.

[1905] primedec([f2^2-3/4,c1^2+c2^2-(e1^2+e2^2),

c1^2+c2^2-((e1-c1)^2+(e2-c2)^2),(c1-1)^2+c2^2-((d1-1)^2+d2^2),

(c1-1)^2+c2^2-((c1-d1)^2+(c2-d2)^2)],[d1,d2,e2,e1,c1,c2,f2]);

[

[2*c2*f2-2*e1+c1,2*c1*f2+2*e2-c2,(2*c1-2)*f2-c2+2*d2,2*c2*f2+c1-2*d1+1,

4*f2^2-3],

[2*c2*f2+2*e1-c1,2*c1*f2-2*e2+c2,(2*c1-2)*f2+c2-2*d2,2*c2*f2-c1+2*d1-1,

4*f2^2-3],

[2*c2*f2-2*e1+c1,2*c1*f2+2*e2-c2,(2*c1-2)*f2+c2-2*d2,2*c2*f2-c1+2*d1-1,

4*f2^2-3],

[2*c2*f2+2*e1-c1,2*c1*f2-2*e2+c2,(2*c1-2)*f2-c2+2*d2,2*c2*f2+c1-2*d1+1,

4*f2^2-3],

[2*c1-1,2*c2*e1-e2,2*d2*c2-d1+1,4*f2^2-3,4*c2^2+1],

[4*f2^2-3,(2*c1-2)*f2+c2-2*d2,2*c2*f2-c1+2*d1-1,c1^2+c2^2,c1*e1+c2*e2,

c2*e1-c1*e2,e1^2+e2^2],

[4*f2^2-3,(2*c1-2)*f2-c2+2*d2,2*c2*f2+c1-2*d1+1,c1^2+c2^2,c1*e1+c2*e2,

c2*e1-c1*e2,e1^2+e2^2],

[4*f2^2-3,2*c2*f2-2*e1+c1,2*c1*f2+2*e2-c2,c1^2-2*c1+c2^2+1,

d2*c1+(-d1+1)*c2-d2,(d1-1)*c1+d2*c2-d1+1,d1^2-2*d1+d2^2+1],

[4*f2^2-3,2*c2*f2+2*e1-c1,2*c1*f2-2*e2+c2,c1^2-2*c1+c2^2+1,

d2*c1+(-d1+1)*c2-d2,(d1-1)*c1+d2*c2-d1+1,d1^2-2*d1+d2^2+1]]

The obtained decomposition contains 9 components. Among them, a valid component is only
the third one 〈2c2f2−2e1+c1, 2c1f2+2e2−c2, (2c1−2)f2+c2−2d2, 2c2f2−c1+2d1−1, 4f 2

2 −3〉.
That is the following sentence is true.

∀c1, c2, d1, d2, e1, e2, f2,m ∈ C

2c2f2 − 2e1 + c1 = 0∧ 2c1f2 + 2e2 − c2 = 0∧ (2c1 − 2)f2 + c2 − 2d2 = 0∧ 2c2f2 − c1 + 2d1 − 1 =
0 ∧ 4f 2

2 − 3 = 0 ∧ (md1 − 1)e2 = md2(e1 − 1)

⇒ (m d1 − 1

2
)(f2 − c2) = (m d2 − f2)(

1

2
− c1).

We can also check it by suitable Gröbner basis computation as is described in the previous
section. The following picture is its computation by Mathematica.

In[1]:= GroebnerBasis[{2*c2*f2-2*e1+c1,2*c1*f2+2*e2-c2,(2*c1-2)*f2+c2-2*d2,

2*c2*f2-c1+2*d1-1,4*f2^2-3,(m*d1-1)*e2-m*d2*(e1-1),

((m*d1-1/2)(f2-c2)-(m*d2-f2)(1/2-c1))*y-1}, {d1,d2,e2,e1,c1,c2,f2,m,y}]

Out[1]= {1}

Note that the obtained primary component correspond to two cases that is the points D, E and
F lie in the outside or inside of the triangle ABC simultaneously. It also can be automatically
checked by real QE computation. The following picture is the computation of Mathematica’s
real QE program Resolve.

In[1]:= Resolve[ForAll[{d1, d2, e2, e1, c1, c2, f2},

f2 < 0 && c2 > 0 && 1 > c1 > 0&& f2^2-3/4==0,



Implies[ c1 + 2*f2*c2 - 2*e1 == 0 && 2*f2*c1 - c2 + 2*e2 == 0 &&

2*f2*c1 + c2 - 2*d2 - 2*f2 == 0 && c1 - 2*f2*c2 - 2*d1 + 1 == 0,

d2 (c1 - 1) < c2 (d1 - 1) && e2 c1 > c2 e1]], Reals]

Out[1]= True

In[2]:= Resolve[ForAll[{d1, d2, e2, e1, c1, c2, f2},

f2 > 0 && c2 > 0 && 1 > c1 > 0&& f2^2-3/4==0,

Implies[ c1 + 2*f2*c2 - 2*e1 == 0 && 2*f2*c1 - c2 + 2*e2 == 0 &&

2*f2*c1 + c2 - 2*d2 - 2*f2 == 0 && c1 - 2*f2*c2 - 2*d1 + 1 == 0,

d2 (c1 - 1) > c2 (d1 - 1) && e2 c1 < c2 e1]], Reals]

Out[2]= True

Note that each of the first 4 components also contains 2 different cases of the position of the
points D, E, F. For example the first component contains two cases such that F is outside, D
is inside, E is outside of the triangle or F is inside, D is outside, E is inside of the triangle. We
can also check it by real QE computation as above. Note also that the other 5 components
contains conditions which are not satisfiable by real numbers, which can also be checked by
real QE computation.

We can give a more precise algorithmic description of Hilbert geometry as follows.

Let f1 = 0, . . . , fl = 0 be all equations and h1 6= 0, . . . , hm 6= 0 be all dis-equations contained

in the assumption of a theorem, let g = 0 be the conclusion of a theorem. The theorem be-

longs to Hilbert geometry, if ∀c̄ ∈ VC(Ii) g(c̄) = 0 holds on some component Ii of the ideal

〈f1, . . . , fl, h1h2 · · ·hm g y − 1〉.
Of course we have to check that any c̄ ∈ VC(Ii) satisfies all inequalities contained in the as-
sumption of the theorem. We need a real QE computation for it, but such a computation is
not very heavy in general as the above example.

5 Tarski Geometry

A problem or a theorem of elementary geometry in the hierarchy of Tarski geometry is roughly
speaking a problem or a theorem which needs descriptions of inequality in the conclusion.

Algorithmically we can say that a problem or a theorem of Tarski geometry is a problem or a

theorem which cannot be automatically solved by the method described in the previous sections

but needs computation of real QE.

Consider the following problem of elementary geometry.
A problem given in an entrance examination of some Japanese university 2018

✄

✂

�

✁

For a unit circle Ω, consider all possible triangles whose inscribed circle is Ω.
(1) Compute the possible range of the area of such triangles.
(2) What is the shape of a triangle which has the minimum area ?

Let the center of the unit circle Ω be the origin O(0, 0). We can assume that two points of
the triangle are A(x3,−1) and B(x4,−1) with x3 > 0 > x4 and the tangent point of Ω and
AB is F(0,−1) w.o.l. of generality. Let the third point of the triangle be C(x5, y5) and the
tangent point of Ω and CA be D(x1, y1) and the other tangent point by CB be E(x2, y2). We
can assume that y1, y2 > 0 and x1 > 0 > x2.



Since x1 > 0 > x2 implies x3 > 0 > x4 and y1, y2 > 0 implies y5 > 0, we have the following
conditions.

OE⊥CE ⇔ x2(x5 − x2) + y2(y5 − y2) = 0, OE⊥BE ⇔ x2(x2 − x4) + y2(y2 + 1) = 0, OD⊥CD
⇔ x1(x5 − x1) + y1(y5 − y1) = 0, OD⊥AD ⇔ x1(x1 − x3) + y1(y1 + 1) = 0.

Using the variable s to represent the area of the triangle ABC, a necessary and sufficient
condition for s can be represented by the following first order formula:

∃x1, x2, y1, y2, x3, x4, x5, y5
x1 > 0 > x2 ∧ y1 > 0 ∧ y2 > 0 ∧ x2(x5 − x2) + y2(y5 − y2) = 0 ∧ x2(x2 − x4) + y2(y2 + 1) =
0 ∧ x1(x5 − x1) + y1(y5 − y1) = 0 ∧ x1(x1 − x3) + y1(y1 + 1) = 0 ∧ 2s = (x3 − x4)(y5 + 1).

The following picture is a computation of the real QE program Resolve of Mathematica, which
automatically produces the solution s ≥ 3

√
3 of (1).

In[1]:= Resolve[Exists[{x1,x2,y1,y2,x3,x4,x5,y5},x1>0>x2&&y1>0&&y2>0&&

x2*(x5-x2)+y2*(y5-y2)==0&&x2*(x2-x4)+y2*(y2+1)==0&&x1*(x5-x1)+y1*(y5-y1)==0

&&x1*(x1-x3)+y1*(y1+1)==0

&&x1^2+y1^2==1&&x2^2+y2^2==1&&2*s==(x3-x4)*(y5+1)],

Reals]

Out[1]= s >= 3 Sqrt[3]

we can also compute the solution of (2) by real QE as follows.

In[2]:= Resolve[Exists[{x3,x4,x5},Resolve[Exists[{x1,x2,y1,y2},

x1>0>x2&&y1>0&&y2>0&&x2*(x5-x2)+y2*(y5-y2)==0&&x2*(x2-x4)+y2*(y2+1)==0&&

x1*(x5-x1)+y1*(y5-y1)==0&&

x1*(x1-x3)+y1*(y1+1)==0&&x1^2+y1^2==1&&x2^2+y2^2==1

&&108==(x3-x4)^2*(y5+1)^2],Reals]],Reals]

Out[2]= y5 == 2

In[3]:= Resolve[Exists[{x3,x4,x1,x2,y1,y2,y5},

x1>0>x2&&y1>0&&y2>0&&y5==2&&x2*(x5-x2)+y2*(y5-y2)==0&&

x2*(x2-x4)+y2*(y2+1)==0&&x1*(x5-x1)+y1*(y5-y1)==0&&x1*(x1-x3)+y1*(y1+1)==0

&&x1^2+y1^2==1&&x2^2+y2^2==1&&108==(x3-x4)^2*(y5+1)^2],Reals]



Out[3]= x5 == 0

In[4]:= Resolve[Exists[{x1,x2,y1,y2,y5,x5},

x1>0>x2&&y1>0&&y2>0&&y5==2&&x5==0&&x2*(x5-x2)+y2*(y5-y2)==0&&

x2*(x2-x4)+y2*(y2+1)==0&&x1*(x5-x1)+y1*(y5-y1)==0&&x1*(x1-x3)+y1*(y1+1)==0

&&x1^2+y1^2==1&&x2^2+y2^2==1&&108==(x3-x4)^2*(y5+1)^2],Reals]

Out[4]= -3 + x4^2 == 0 && x3 + x4 == 0 && x4/2 < 0

From the above output, we know that the triangle has the minimum area when x5 = 0, y5 =
2, x3 =

√
3 and x4 = −

√
3 that is the triangle is a equilateral.

6 Conclusion and Remarks

A problem of a lower level hierarchy also belongs to a higher level hierarchy. Hence, any problem
in affine, metric or Hilbert geometry can be solved by computation of real QE. However,
computation of real QE is much heavier than Gröbner basis computation in general. The
problems of metric and Hilbert geometry we treated in section 3,4 can not be handled by any
of the existing real QE implementations. Real QE program can handle only easy part of the
problem obtained by the computation of primary decomposition. Since real QE computation
is a very heavy computation, there are many problems which can be handled theoretically but
not in realistic computation time. The first real QE computation presented in section 5 needs
more than half a minute with a standard laptop computer. We also use some technique in the
next computation. We divide the QE computation into two QE computations, if we simply use
Resolve[Exists[x1,x2,y1,y2,x3,x4,x5],...] the computation does not terminate within
one hour.

We should mention that the program primedec of Risa/Asir we use in this paper is now a sort
of legacy program, Risa/Asir has much faster program, nevertheless it satisfactorily works even
for our rather non-trivial example.
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