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Abstract

Mathematics is full of problems from the easy to the intractable; in fact it may be quite
fairly said that mathematics is the study of problems. Some problems are straightforward
enough to be used as student exercises; others are of a difficulty and complexity to occupy
the attention of scholars all their lives. The purpose of this paper is to look at a few
problems which are neither trivially easy nor impossibly difficult. These problems all
have the similarity that in their classical statements they are about the placement of
ladders. However, they are difficult enough that solving them is more than an elementary
routine exercise; also, they are perfect vehicles for the use of a Computer Algebra System.
We thus show how standard, simple problems can be greatly expanded in scope by the use
of technology, and these new problems, which may be seen as “difficult” in a classroom
sense, are amenable to experimentation.

1 The crossed ladders problem

This problem has attained a certain degree of notoriety. In his Bibliography of Recreational
Mathematics [9], William Schaaf says:“Like the cat in the alley, the problem of the crossed
ladders seems also to have nine lives.” Its basic format can be illustrated as in the left hand
diagram in Figure 1.
We imagine an alleyway in which there are two ladders leaning against each wall; the base of each
ladder sits firmly at an edge of the alleyway. The lengths of the ladders a and b, and the height
of their crossing h is given: what is the width of the alley? This problem was discussed at length
by Martin Gardner in one of his “Mathematical Games” columns for Scientific American; it was
reprinted as the chapter “Elegant Triangles” in the book “Mathematical Circus” [5]. Schaaf [9]
gives references going back to 1909.

To solve this, we introduce some new lengths as shown in the right hand diagram. By
similar triangles, we have
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Figure 1: The crossed ladders

By adding these equations we have
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and since y + z = x we can divide through by x to obtain
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This is a standard result and is known as the crossed ladders theorem. In fact the equation is
true as long as the left and right sides, and the line from the crossing, are all parallel—they do
not have to be perpendicular to the bottom line. We can rewrite the values A and B in terms
of x, a and b by Pythagoras, so that

1

h
=

1√
a2 − x2

+
1√

b2 − x2
. (1)

This equation can be turned into a polynomial in x, by clearing fractions and by repeated
squaring to eliminate all the square roots. This is prone to error, and a much better way is to
use a computer algebra system.

To obtain the polynomial, we shall use Sage, and a Gröbner basis reduction to eliminate
variables. To do this we can set up a polynomial ring in all the variables, with an ideal generated
by the four equations above: the two similar triangle relations, and the relations of the triangle
side.

sage: R.<a,b,h,x,A,B,y,z> = PolynomialRing(QQ)

sage: Id = R.ideal([A^2+x^2-a^2, B^2+x^2-b^2, y+z-x, y*B-x*h, z*A-x*h])

sage: E = Id.elimination_ideal([A,B,y,z])

sage: p = E.gen(0)

sage: px = list(p.factor())[1][0].polynomial(x)



The result of all of this is a lovely eighth degree polynomial, which is in fact a quartic polynomial
in x2:

x8 +
(
−2a2 − 2b2 + 4h2

)
x6 +

(
a4 + 4a2b2 + b4 − 6a2h2 − 6b2h2

)
x4

+
(
−2a4b2 − 2a2b4 + 2a4h2 + 8a2b2h2 + 2b4h2

)
x2

+ a4b4 − 2a4b2h2 − 2a2b4h2 + a4h4 − 2a2b2h4 + b4h4 (2)

Since quartic polynomials can be solved by radicals, it would be possible, at least in theory, to
obtain a closed-form expression for x as a function of a, b, and h. Such an expression however,
would be very large, unwieldy, and useless. However the interest of this particular problem
is that such an initial simple setting should give rise to such a complicated polynomial to be
solved.

What we can do, though, is to explore possible integer values of the parameters which
give rise to “nice” (integer) values of x. To do this, we can simply loop over values of the
parameters—keeping a and b different, and ensuring that h is always less than both of them.
For each set of parameters, we obtain the above polynomial and attempt to factorize it. If a
factorization is possible, then we obtain a solution for x. For example, with a = 37, b = 91 and
h = 14 we find that the polynomial above can be factored into

(x6 − 17291x4 + 83266003x2 − 71405259849)(x+ 35)(x− 35)

whence x = 35 seems to be a solution. The following is a brute-force program to find such
values:

sage: for i in range(1,100):

....: for j in range(i+1,100):

....: for k in range(1,min(i,j)):

....: pp=px.subs(a=i,b=j,h=k,x=w)

....: pl = pp.factor_list()

....: if len(pl)>2:

....: print i,j,k,pp.factor()

With the range given here, the parameters with integer values are

a, b, h, x = 37, 91, 14, 35

= 51, 75, 40, 45

= 52, 60, 45, 48

= 75, 78, 70, 72

However, these results are not in fact solutions to the initial crossed ladders equation (1), since
we have left out some scaling factors as part of the simplification when obtaining the eighth
degree polynomial above. For example, substituting a, b, x = 37, 91, 35 into the right hand side
of equation (1) produces

1√
372 − 352

+
1√

912 − 352
=

2

21

or h = 21/2. To obtain an integer value for h, we need to multiply each of a, b, x by 2 to obtain
h = 21, and so

a, b, h, x = 74, 182, 21, 70



is a set of integer solutions.
Another set of manageable solutions can be obtained for those values of a, b and h for which

the polynomial (2) can be factorized into two quartics; in fact into two quadratics in x2. For
example, if a, b, h = 20, 28, 15 then the polynomial factorizes into

(x4 + 16x2 − 108800)(x4 − 1484x2 + 563200)

for which the only positive real solution is

x = 2

√
18
√

2− 2 ≈ 17.9428.

There is in fact a simpler approach, which I traced back to a 1956 paper [2]. Instead of solving
for the alley width x, we first solve for the value A+B, from which the width x can be obtain
by a simple quadratic.

The setup is very similar, except for a new variable u = A+B:

sage: Id = R.ideal([A^2+x^2-a^2, B^2+x^2-b^2, y+z-x, y*B-x*h, z*A-x*h, u-A-B])

sage: E = Id.elimination_ideal([A,B,x,y,z])

sage: p = E.gen(0)

sage: pu = list(p.factor())[-1][0].polynomial(u)

This polynomial is the much simpler

u4 − 4hu3 − (a2 − b2)2.

A similar approach is discussed by Bremner at al [4]; this paper also provides an extensive
bibliography.

2 The crossed ladders problem made difficult

The crossed ladders problem, as described in section 1, is difficult enough maybe, involving as
it does the solution of a quartic equation in x2. But in fact it can be attacked in many different
ways, some of which we have explored. However, there is one aspect of the problem which
can be changed, and that is its physical provenance. We have modelled the ladders by two
lines—which as we know may be taken to have zero width. Now modelling the physical world
by making simplifying assumptions is standard in mathematics, even if those assumptions are
not physically realizable1. And it often happens that the more “real world” assumptions we
take into account, the more intractable the problem becomes.

So we now change the ladder problem by assuming that the ladders, as well as having lengths
a and b, have widths w. We take the same width for each ladder. This just adds one more
parameter, but as we shall see, explodes the difficulty of the problem. In this new problem, we
take h as being the common height of both ladders from the ground.

The new problem is shown on the left in Figure 2, where the ladders are shown in a sort of
x-ray view.

The right hand diagram in Figure 2 shows some extra lengths that we will use to develop a
system of equations. The shaded part shows two similar triangles.

1A classic example of this is in the physics joke about cows: “Consider a spherical cow. . . ”
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Figure 2: Crossed ladders with non-zero width

By Pythagoras, we immediately have

p2 + q2 = w2, r2 + s2 = w2.

and by similar triangles,

q

w
=
y + z + r

b
,

s

w
=
y + z + p

a
,

y

h
=
q

p
,

z

h
=
s

r

and of course

x = p+ q + y + z.

We can now enter all of this into Sage, and again eliminate variables by a Gröbner basis
reduction.

sage: R.<a,b,w,x,p,q,r,s,y,z> = PolynomialRing(QQ)

sage: Id = R.ideal([p^2+q^2-w^2,r^2+s^2-w^2,q*b-w*(y+z+r),s*a-w*(y+z+p),\

....: y*p-h*q,z*r-h*s,x-p-r-y-z])

sage: E = Id.elimination_ideal([p,q,r,s,y,z])

sage: px = E.gen(0).polynomial(x)

The result is a splendid polynomial in x of degree 12, which is far too large to display. But we
can display an example, say with a, b, w, h = 10, 15, 1, 2:

sage: var(’u’)

sage: px.subs(a=10,b=15,w=1,h=2,x=u)



506205001u12 − 670470200u11 − 322935375884u10 + 335225355400u9

+ 73656660260134u8 − 53780411133400u7 − 7115882111296900u6

+ 2781397003913400u5 + 258332092075315625u4 − 4111492998550000u3

− 1074364829595415000u2 − 689287839525000000u− 113126876243750000

Sage’s find root command will produce u = 4.105408760589318 as a positive real root.
We have seen earlier how to find integer values for the standard ladder problem. We now

might ask: are there values of a, b, w, x and h which are all simultaneously integers?
We start by considering the two right triangles under any one of the ladders, as shown in

Figure 2. Suppose that every length in the larger right hand triangle is a multiple of the lengths
of the sides in the smaller left hand triangle. Thus

b = mw, y + z + r = mq

for some (integer) m, and similarly

a = nw, p+ y + z = ns

for some (integer) n. We need to choose m and n so that

x = mq + p = ns+ r.

From this last equation we can write

qm− sn = r − p

and by the extended Euclidean algorithm for the greatest common divisor we know that this
equation will have a solution in integers if gcd(s, q) is a factor of r − p.

In order to have a non-trivial example, we shall aim for the two small corner triangles: with
sides p, q, w and r, s, w, to be different. If they are the same then either the ladder diagram is
symmetric, or the ladders meet at right angles. So we first need to find a solution to

w2 = p2 + q2 = r2 + s2

in integers, with {p, q} 6= {r, s}. A little experimentation produces

252 = 72 + 242 = 152 + 202.

We thus choose w, p, q, r, s = 25, 15, 20, 7, 24. We now have to find integers m and n for which

20m+ 15 = 24n+ 7.

This can be rewritten as 24n− 8 = 20m and by dividing through by 4 we have

2(3n− 1) = 5m

and so we can choose n so that 3n−1 is a multiple of 5, for example n = 7. Then m = 8. Thus
a = nw = 175, b = mw = 200 and x = 20m+ 15 = 175. To determine h, we have the ratios of
sides of similar triangles:

h

z
=

7

24
,

h

y
=

15

20



as well as y + z = x− p− r = 153. These can be solved as linear equations for h, y, z and we
find that

h =
3213

100

We can clear this fraction by multiplying by 100, which leads to the integer values:

w = 2500

a = 17500

b = 20000

h = 3213

x = 17500.

Finally, we display the 12-th degree polynomial with these values. It turns out that the co-
efficients all have a large common divisor, and once divided out the remaining polynomial
is

43681 z12 − 147733740 z11 − 60967809507000 z10 + 156933228375000000 z9

+ 32173558510353000000000 z8 − 55684093306829006250000000 z7

− 7750484271226683593750000000000 z6 + 6508626797129900625000000000000000 z5

+ 779257290394432075305175781250000000000 z4

+ 113291362742732369384765625000000000000000 z3

− 17155366123489502686614990234375000000000000000 z2

− 28792033813148365173339843750000000000000000000000 z

− 12426567284662449643611907958984375000000000000000000

It is clear that this simple generalization of the crossed ladders problem leads to some very
complicated mathematics. Here are some questions which arise from the elementary discussion
so far:

1. Is there a simple function of the variables (such as u = A + B for the original problem)
which leads to a simpler form of the equation?

2. What is the equation with smallest coefficients for which the solution is an integer?

3. By how much more would the problem be complicated if the ladder widths were allowed
to be different?

4. What would the equations look like if the cross-sectional areas of the ladders (both as-
sumed to be non-zero) were equal?

The author has experimented with question 1, but has not yet found a solution.



3 The ladder in the corner problem

This ladder problem, problem seems to have attained the status of a modern mathematical
classic, at least in terms of elementary calculus, and there must be few students who have not
been exposed to it. The problem can be stated as:

Two hallways of width a and b meet a right angles. What is the longest ladder—
assumed to be of zero width—which can be moved around the corner?

Sometimes “ladder” is replaced with “pipe”; at any rate the problem is of moving a long straight
object around a corner, as shown in Figure 3.

a

b

Figure 3: Moving a zero-width ladder around a
corner

The insight required to solve this problem
is to notice that the longest ladder which can
be carried around the corner is the length of
the shortest line between the outer two walls
of the hallway, that touches the inner corner.
Note that shorn of any physical meaning, and
couched in purely abstract terms, the problem
asks for the shortest line between the positive
x and y axis that passes through the point
(a, b), where both coordinates are positive.
This is the form in which it is found in old
calculus textbooks, such as Hardy’s classic Course of Pure Mathematics [6].
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Figure 4: Solving the ladder problem

There are two simple methods of solution; one uses trigonometry, the other straightforward
algebra, both of which are illustrated in Figure 4. For the trigonometric solution, suppose that
the ladder makes an angle θ with the y axis, and that the lengths of the ladder from the corner
to the west and south walls are X and Y respectively. Since X sin θ = a and Y cos θ = b the
length of the ladder is then

L =
a

sin θ
+

b

cos θ
.

Alternatively, suppose that the lengths of the walls reached by the ladder from the outside
corners are a + x and b + y. By similar triangles, b/x = y/a and so y = ab/x. Then we may
aim to minimize the square of the length of the ladder, which is

L2 = S = (a+ x)2 +

(
b+

ab

x

)2

.



With either equation, finding the stationary points and substituting back produces the
minimum length of line, which is the maximum length of ladder, which as we mentioned earlier
is (a2/3 + b2/3)3/2.

So far, there is nothing here which is out of the reach of a beginning calculus student. Our
intention is to generalize the problem.

4 Ladders with positive width

The problem suddenly rockets into a new sphere of difficulty when we assume that the ladder
has a non-zero width, say c, as shown in Figure 5. In this form it is a version of the “piano-
mover’s problem” which in its most general form involves moving a rigid object between points
in the plane.

c

Figure 5: Moving a ladder with positive width

Applying the trigonometric approach, we
see that the length of the original ladder has
been reduced by a small amount at each end.
Chasing angles and similar triangles reveals
that the length of the original ladder has been
shortened by c cot θ at the top and by c tan θ
at the bottom. Thus the new length is

a

sin θ
+

b

cos θ
− ccos θ

sin θ
− c sin θ

cos θ

and this can be written more elegantly as

a cos θ + b sin θ − c
sin θ cos θ

.

To find the maximum value, again differentiate and solve for θ. Considering the numerator of
the derivative only, the equation to be solved is

a cos3 θ − b sin3 θ + c(sin2 θ − cos2 θ) = 0.

This is an intractable looking equation, so we shall make a polynomial of it by applying the
transformation θ = 2 arctan t for which

sin θ =
2t

1 + t2
, cos θ =

1− t2

1 + t2
.

Substituting these into the previous equation, and again considering the numerator only, we
have the polynomial equation

(a+ c)t6 − (3a+ 5c)t4 + 8bt3 + (3a− 5c)t2 − a+ c = 0.

This is a sextic equation for which there is no general solution in terms of radicals: by the well-
known Abel-Ruffini theorem. This is the point at which one would ordinarily give up trying to
find a closed form solution. We will instead try to find values of the parameters for which this
equation can be solved using radicals.



5 Solving polynomial equations

The fundamental theorem of algebra states that all polynomials have a complex root: in fact
all polynomials can be factored into linear factors over the complex numbers. For quadratic,
cubic and quartic polynomials, the roots can be obtained by a finite sequence of arithmetic
operations and the taking of n-th roots. However, as we have known now for 200 years, quintic
equations, and equations of higher orders, can not in general be so solved. What this means is
that for every n ≥ 5 there is a polynomial equation of degree n whose roots can not be obtained
by any finite sequence of arithmetic operations and root-taking. Equations whose roots can be
obtained by such a sequence of operations are said to be solvable by radicals, or simply (by a
slight abuse of terminology) solvable.

Although the general sextic is unsolvable by radicals, some sextics are solvable. Trivially,
sextics which are factorizable into a quadratic and a quartic are solvable. More interestingly,
though, some irreducible sextics are solvable [3].

Although we might hope to eliminate terms of the sextic, it turns out we will have better
luck by factorization. In particular, we will be able to solve the sextic equation (by radicals) if
either

• its Galois group is solvable

• it can be factored over Q into polynomials of degree 4 or less, whose coefficients themselves
are the roots of solvable equations of degree 4 or less.

Here Q is the algebraic completion of Q: the set of all roots of polynomials over Q. At this
stage I’ll come clean and admit that I don’t know of any method which will enable us to
solve the equation in any sort of generality: such a solution, if it existed, would be extremely
complicated. Instead, we shall pick some values of a, b and c which should work, and see what
we can do with them.

We will need some computer algebra help, and using Sage, we can run through values
300 > a > b > c >= 1 to find values for which either the sextic is solvable, or is factorizable.

In this range there are no values of a, b, c which gave a factorizable polynomial, and only 11
triples whose polynomial has a solvable Galois group. The smallest such triple is

a, b, c = 36, 5, 4

but we shall swap the values of a and b, so as to avoid complex numbers later on. We note
in passing that although the theory of Galois groups is well understood, effective means of
computing them for polynomials of arbitrary size is still an active area of research.

Attempts at factorization

Since the polynomial to be solved is irreducible, we can’t factorize over the rationals. Our hope
is to be able to factor over the algebraic numbers, and for the coefficients in the factors to be
obtainable by solving equations of degree four or less. We shall closely follow the method given
by Piezas [8], even down to his choice of symbols.

We can try factorizing into or into two cubics or into a quartic and quadratic. Suppose we
try two cubics; we will try to find the coefficients ri, m, n so that

t6 − 35

9
t4 + 32t3 − 5

9
t2 − 1

9
= (t3 + r1t

2 + r2t+ r3)(t
3 +mt2 + nt+ r4).



First set up the equations.

sage: F = expand((t^3+r1*t^2+r2*t+r3)*(t^3+m*t^2+n*t+r4)).collectterms(t)

sage: eqs = [maxima.coeff(F,t,i)-maxima.coeff(L,t,i) for i in range(6)]

These equations (which will be automatically set equal to zero) are:

r3r4 +
1

9
= 0 r2r4 + nr3 = 0 r1r4 +mr3 + nr2 +

5

9
= 0

r1 +m = 0 r4 + r3 +mr2 + nr1 − 32 = 0 r2 +mr1 + n+
35

9
= 0

We can solve the last four equations for ri:

sage: rs = maxima.solve([eqs[2],eqs[3],eqs[4],eqs[5]],[r1,r2,r3,r4])[0]

sage: rs

[
r1 = −m, r2 = −9n− 9m2 + 35

9
,

r3 =
9n2 + (9m2 + 35)n− 9m4 + 35m2 + 288m− 5

18m
,

r4 = −9n2 + (35− 27m2)n+ 9m4 − 35m2 − 288m− 5

18m

]
Now we substitute these into the first two equations:

sage: e0 = maxima.subst(rs,eqs[0])

sage: e1 = maxima.subst(rs,eqs[1])

What we have now is two very long polynomial equations in m and n. Each polynomial can
be considered as a univariate polynomial in one variable, with coefficients being polynomials in
the other variable. To eliminate each of m or n we can use the resultant of the two polynomials,
which is defined as being equal to zero if and only if the original two equations share a common
root. In general, given two monic polynomial equations p(x) = 0 and q(x) = 0 of degrees n
and m respectively, their resultant is defined to be

n∏
i=1

m∏
j=1

(pi − qj)

where pi and qj are the roots of p and q. Note that the resultant can in fact be computed
without knowing the roots first, as the determinant of a matrix whose rows are shifted lists of
the coefficients; this matrix is called Sylvester’s matrix [1].

sage: resn = maxima.resultant(e1,e0,m).factor()

sage: resn

38424226636031774976(n2 − 10n+ 5)(9n2 + 35n− 5)2

(43046721n18 + · · ·+ 49207488981750n+ 20823831125)



sage: resm = maxima.resultant(e1,e0,n).factor()

sage: resm

−688747536m4(9m2 − 125)(59049m18 − · · ·+ 4551498748225m2 − 1385280125)

In this last expression the final term is polynomial in even powers of m only; that is a ninth-
degree polynomial in m2.

Now we can find values of m and n by solving some of the low degree factors in the resultants:

sage: n0 = resn.part(2).solve(n)[1].rhs()

sage: m0 = resm.part(1,3).solve(m)[0].rhs()

sage: r40 = maxima.subst(n0,n,maxima.subst(m0,m,rs[3].rhs())).radcan()

sage: m0,n0,r40

2
√

5 + 5, −53/2

3
, −2

√
5 + 5

3
√

5

We now have all the coefficients we need for the second cubic factor, and so we can solve this
equation:

sage: sol = maxima.solve(t^3+m0*t^2+n0*t+r40,t)

sage: sol[2].radcan()

t =
53/2

9
+

(
729(23/2)

√
901
√

5 + 2041− 266(37/2)
√

5− 22(315/2)
)1/3

319/6

− 22/3(27
√

5 + 5)

311/6
(

27
√

2
√

901
√

5 + 2041− 133
√

15− 11(39/2)
)1/3

This has approximate value

sage: t0 = sol[2].rhs().float();

sage: t0

0.26092

and can be turned into an angle:

sage: t0.atan()*2

sage: (t0.atan()*2*180/pi).float()

which is 0.51046 radians or 29.247 degrees.
Note that this accords with the one positive real root of the initial sextic:

sage: L.realroots().float()

[t = −2.8863, t = .26092]

A triumph for computer algebra and really complicated algebraic expressions. Note that we
have suppressed a lot of detail here: for instance, how do we know which factors of the resultants
in m and n are to be solved to create r4? I simply used trial-and-error: trying different values
until a pair was found which can be used to provide a root of the original sextic (an approximate
value of which can be found by any standard numeric root-finding methods).



Note that in this example the two hallways are of very different widths; we might consider
this example as moving something between a large room and a small service corridor, as shown
in Figure 6.

Figure 6: The example (a, b, c) = (5, 36, 4)

6 More generalization and concluding remarks

In some ways the problem we have just explored is the simplest of all possible generalizations.
We could also ask for the longest ladder (of either zero or positive width) which can be moved
around a corner where the hallways meet at an angle different from a right angle. Or we could
ask, as Leo Moser did in 1966 [7], for the largest area of any shape that can be moved around
a corner—and this problem, the so-called “sofa problem” is as yet unsolved.

The problems we have solved and generalized show in part the remarkable power of computer
algebra to explore and (attempt to) solve difficult problems. Although none of the mathematics
we have discussed is, in itself, conceptually difficult, the complexity of the algebra involved is
considerable, and trying to deal with much of this by hand would be an arduous task.

We notice that we have left many problems unsolved (and unmentioned). Here are several:

1. Can we find integer values for all of the parameters a, b, w, x and h?

2. Are there integer values of the parameters for which the 12-th degree equation has a factor
of degree 4 or less?

3. Are there integer values for the parameters a, b, c and t of the corner problem?

4. Are there integer values a, b and c which produce a polynomial factorizable over the
rationals Q? Or, alternatively, can we prove that there are none?



I have not explored these in great detail; it may be that some of them are relatively straight-
forward to solve.

I encourage you and your students to roll up your sleeves, crank up your favourite computer
algebra system, and enjoy experimenting!
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